===== Fiber Fuselage ===== After still having major problems with waterproof design, the idea is to start a new fuselage design from scratch in fiber composite technology. This promises the following advantages * Waterproof material - foam is not water resistant * Possibility to adapt the geometry to our requirements, e.g. camera connection * Thin material requires only small holes for camera without obstruction view * Fiberwings will pave the way to possible solar cell support for extending range The big drawback is missing experience with aircraft design and fiber technology. Further Component tests are here: * [[sw-fiber-wing|SearchWing Fiber Wing]] * [[sw-fiber-servo|SearchWing Fiber Servo]] * [[sw-fiber-fuselage|SearchWing Fiber Fuselage]] As description about the tooling is here: [[sw-milling|Milling at Hochschule Augsburg]] ==== Strategy ==== * Design a negative lamination mould from Rampf MB-0600 Polyurethan material by milling * Mill: Step-Four Xpert 1000 S in the Holzwerkstatt Modellbau * CAD: Onshape, CAM: Deskproto, NC: XpertMill (Holzwerkstatt) * Glueing of the Rampf MB-0600 for L shape: Rampf EP2306 resin + EH-2904-1 hardener * Surface Sealing of the MB-0600 material with Münch Mikon 399 MC sealer * Release Agent (Trennmittel): Münch Mikon® Mirror Wax liquid W-99+ * Alternative Release Agent: RAKU® TOOL AC-9103 * Laminate 2 layers 160g/m2 GFK (R&G) * Epoxyresin from R&G ==== Tooling ==== The Deskproto CAM software needs some RAM depending on the detail level. The Deskproto Software is [[https://www.hs-augsburg.de/homes/beckmanf/dokuwiki/doku.php?id=breakout#deskproto|installed on the breakout]]. ==== Design ==== Stefan Laimer and Maximilian Schäferle did a first {{ ::g4-faserverbund.pdf |concept design}} of a fiber fuselage during the Systems Engineering 2 course in WS20/21. This design is used for the first lamination tests. The design is available in [[https://cad.onshape.com/documents/462341583a3ce9a0ce3df71b/w/451ff5ec3fe9085daef8b15f/e/eae436c607beb291f9462ec2|"Onshape - Fuselage Shell"]]. ==== Materials ==== The [[searchwing-fiber##membrane_supported_vacuum_infusion_composyst|membrane supported vacuum infusion]] tests are done with the material from Composyst in Landsberg. The other tests with hand lamination and vacuum pressure are done with material from R&G. === Vacuum Pressure Materials === * [[https://shop1.r-g.de/art/100130|R&G Epoxidharz L + Härter EPH 161 (90 min) - 100130]] * [[https://shop1.r-g.de/art/190118|R&G Glasgewebe 160g/m2 - 190118]] * [[https://shop1.r-g.de/art/190181-100|R&G Abreißgewebe 64g/m2 - 190181-100]] * [[https://shop1.r-g.de/art/390190|R&G Vakuumfolie BLAU gelocht (P1) - 390190]] * [[https://shop1.r-g.de/art/390180|R&G Breatex™ Saug- und Formvlies 150 g/m² - 390180]] * [[https://shop1.r-g.de/art/390165|R&G Vakuum-Folienschlauch (PE/PA/PE), 1200 x 0,1 mm - 390165]] Neu für Flügel: * [[https://shop1.r-g.de/art/190105|R&G Glasgewebe 49 g/m² ( Interglas 02037, Finish FE 800, Leinwand) 110 cm - 190105]] * [[https://shop1.r-g.de/art/190112-PA-100|Glasgewebe 80 g/m² (Silan, Köper) 100 cm - 190112-PA-100-4]] * [[https://shop1.r-g.de/art/190200|Aramidgewebe 61 g/m² (Style 120, Aero, Leinwand) 100 cm - 190200]] * [[https://shop1.r-g.de/art/210130|R&G 3M™ Glass Bubbles 0,12 g/cm³ - 210130]] * [[https://shop1.r-g.de/art/390175-200|R&G Vakuumfolie PO120, 200 cm - 390175]] * [[https://shop1.r-g.de/art/390183|R&G Diatex Fließhilfe DIANET 135, Breite 200 cm - 390183]] * [[https://shop1.r-g.de/art/390184|R&G Diatex Fließhilfe OM 70, Breite 200 cm - 390184]] * [[https://shop1.r-g.de/art/390403|R&G Dupont PET-Folie Mylar® A 350, 100 cm - 390403]] * [[https://shop1.r-g.de/art/165110|R&G Folientrennmittel PVA - 165110]] === Membrane Supported Vacuum Infusion Process (Composyst) Materials === * [[https://www.composyst.com/download/4405|VAP Membrane CS/E - 0202010021]] * [[https://www.hexion.com/CustomServices/PDFDownloader.aspx?type=tds&pid=1d6cc73d-5814-6fe3-ae8a-ff0300fcd525|Hexion EPIKOTE™ Resin MGS™ RIMR 135 (Harz) + EPIKURE™ Curing Agent MGS RIMH137 (Härter) (240 min) - 0250000022]] * Lochfolie, Fließhilfen, Aluröhrchen, 8mm Schlauch u.s.w. === Gewebebänder, Mumpe und Gelcoat === * [[https://shop1.r-g.de/art/200115|R&G Glasgewebeband 130 g/m² (Silan, Leinwand) 25 mm - 200115]] und weitere Glasgewebebänder 130g/m2 40mm, 225g/m2 20mm, 225g/m2 40mm * [[https://shop1.r-g.de/art/210100|R&G Glasfaserschnitzel 3 mm - 210100]] * [[https://shop1.r-g.de/art/210122|R&G Thixotropiermittel TM 100, Dose/ 75 g (ca. 1 l) - 210122]] * [[https://shop1.r-g.de/art/120100|R&G EP-Gelcoat farblos + Härter S (15 min) - 120100]] === Anschlüsse, Schläuche === * [[https://shop1.r-g.de/art/390170|R&G Vakuum-Dichtband GRAU, 3 x 12 mm x 15 m (bis 90 °C) - 390170]] * [[https://shop1.r-g.de/art/3901571M|R&G Vakuum-Anschluss VA 1 (beständig bis 100 °C)]] * [[https://shop1.r-g.de/art/390110|R&G Pumpenschlauch (Ø 6/8 mm) aus LD-PE]] * PVC Schlauch ID 8mm * [[https://www.carlroth.com/de/de/schlaeuche-fuer-spezielle-anwendungen/schlauch-rotilabo-gummi-vakuumausfuehrung/p/0680.1|Schlauch ROTILABO® Gummi Vakuumausführung, 8 mm, 18 mm]] * [[https://www.carlroth.com/de/de/schlaeuche-fuer-spezielle-anwendungen/schlauch-rotilabo-gummi-vakuumausfuehrung/p/0681.1|Schlauch ROTILABO® Gummi Vakuumausführung, 10 mm, 20 mm]] === Kleber === * [[https://www.3mdeutschland.de/3M/de_DE/p/d/b40066473/|3M™ Scotch-Weld™ 2-Komponenten-Konstruktionsklebstoff auf Epoxidharzbasis DP490]] * [[https://www.3mdeutschland.de/3M/de_DE/p/d/b40066435/|3M™ Scotch-Weld™ 2-Komponenten-Konstruktionsklebstoff auf Epoxidharzbasis DP100]] * [[https://shop1.r-g.de/art/100100|R&G Epoxidharz L + Härter S (15 min) (Eigentlich nicht als Kleber gedacht)]] === GFK Platten === * [[https://shop1.r-g.de/art/620620540|GFK Platten 0.5mm, 1mm und 1,5mm]] ==== First milling ==== On 15./19./20.12.2020 we did a first milling test with a small MB-0600 test block * Testblock size: 250mm x 146mm x 75mm * CAD: [[https://cad.onshape.com/documents/462341583a3ce9a0ce3df71b/w/451ff5ec3fe9085daef8b15f/e/db3e5d0a08651c1b1cb6da25|Onshape - FräsenTest]] * [[https://youtu.be/RTPPZxAvHSE|Movie with milling results (Youtube)]] * {{ ::fraestest-ergebnisse-klein.pdf |Ergebnisse des Frästests}} * {{ ::fraestest.zip |Deskproto Design Data and GCode Files}} The milling was done aiming at best milling results. So the distance between milling paths and z distance was set to 0.06mm. Schlichten took 2h 50min for the "Z Konstant" strategy and 7h for the "Überkreuz" strategy. (Friedrich Beckmann, 23.12.2020) ==== First Lamination Test ==== Some initial lamination test with the "Minirumpf" with 2 x 160g/m2 glas fiber with vakuum showed laminates which seem optically o.k. but the laminate is not waterproof. I made three tests with different amounts of resin in the mould. The final weight after the vakuum process is however always more or less equal. The area of the "Minirumpf" is about 3dm with a laminate weight of 21g. On 4.3.2021 Alex, Björn and I did a lamination test of the 80cm fuselage half. * Surface Sealing of the MB-0600 material with Münch Mikon 399 MC sealer * 2 x Release Agent (Trennmittel): Münch Mikon® Mirror Wax liquid W-99+ (1 month waiting time) * R&G Resin L with EP161 Hardener * First layer of pure resin with brush * 1 x 49g/m2 glas fiber (brush) * 3 x 160g/m2 glas fiber (brush) * Abreißgewebe (brush) * Lochfolie * Saugvließ * Vakuumsack at -900mBar for 24h * Removal of the laminate from the mould after another 24h === Results === The laminate is not waterproof. After about 10 seconds water penetrates through an optically o.k. laminate. * [[https://youtu.be/s8uSAbvXaIA|Youtube: SearchWing - Wassertest]] There must still be air/voids in the laminate although it seems optically in good condition. The fuselage half has a weight of 116g. {{::sw-2020305-80cm-rumpf.jpg|First Laminate - Weight 116g}} === Ideas === A flat test laminate without vacuum shows a closed surface and a simple water test did not show easy water penetration. I think we must find a way to avoid the voids/air in the laminate. I am pretty sure that the voids also have an impact on the strength of the laminate but nothing is tested on that side. So to improve water resistance I have the following ideas: * Add an epoxy gelcoat layer. Yachts and gliders have a Gelcoat finishing layer but most model planes do not have that. This will hopefully provide a closed watertight surface layer. * Hand lamination without vacuum. The hand lamination will have more resin in the laminate and the surface seems closed. No idea if the voids are reduced or if there is just a closed surface. * Vacuum infusion. Compared to vacuum bagging literature claims that voids are reduced with this technique. The VAP membrane technology might be a way. This promises a void free laminate with a high fiber content. * Degassing the resin. Is probably useless for hand lamination because bubbles are introduced during the lamination process. (Friedrich Beckmann, 7.3.2021) ==== Membrane supported Vacuum Infusion (Composyst) ==== A first lamination test with membrane supported vacuum infusion technology was done at Composyst in Landsberg on 19.3.2021. The results are very promising. I have made a [[https://youtu.be/bqjWxYAFjBQ|video]] to show the differences between vacuum compression and membrane assisted vacuum infusion technology. (TODO: Describe the process). Friedrich Beckmann (1.8.2021).