Hochschule Augsburg

                     University of Applied Sciences



          Lehrgebiete: Mathematik, Physik

          Mathematik EED, Montag 11:40 Uhr, C1.11

          Mathematik B, Dienstag 9:50 Uhr, A1.09, 11:40 Uhr, B2.14

          Mathematik B, Mittwoch 9:50 Uhr, G1.10

            Die Geschichte des Unendlichen Dienstag 14:00 Uhr, B2.14

          Forschungsgebiet: MatheRealismus, ArithmoGeometrie

          Lebenslauf  / Publikationsverzeichnis     

        WIKIPEDIA       FACEBOOK        GOOGLE


Prof. Dr. Wolfgang Mückenheim                               


MatheRealism as a philosophical foundation of mathematics is based on the fact that mathematics is not independent of physical constraints of reality. MatheRealism denies the existence of entities which, in principle, can never be observed. MatheRealism distinguishes between numbers which can be determined exactly and ideas which can not. MatheRealism necessarily leads to the elimination of any actual infinity from mathematics.

In ArithmoGeometry digits, numbers, letters and other symbols are used to construct geometric figures in order to refute finished infinity, i.e., aleph0 of transfinite set theory as "a constant quantity, fixed in itself, but larger than all finite quantities" (Cantor).

Example: The sequence of natural numbers, here given in unary representation,






does not contain any row with aleph0 symbols. If all natural numbers are written into one and the same row however, the number of symbols is aleph0, larger than every natural number, according to set theory. This is contradicting translation invariance of mathematical expressions.

Was Sie schon immer über das Unendliche wissen wollten (englisch).





Die Geschichte des Unendlichen (1.-5. u. 6.-7. Auflage)

 Die Mathematik des Unendlichen


Mathematik für die ersten Semester (1.-3. u. 4. Auflage)