
Dark numbers 
 

Wolfgang Mückenheim 
University of Applied Sciences 

Augsburg, Germany 
wolfgang.mueckenheim@hs-augsburg.de 

 
 
Abstract   The axiom of infinity postulates that every natural number n has a successor Sn. 
Unfortunately its creators (Dedekind, Peano, Zermelo) forgot to emphasize that every 
individually identifiable number n has an individually identifiable successor Sn. They did not 
bother to state this property explicitly because it was considered a triviality at their times. Only 
when numerous contradictions showed up in set theory, to the end that even undefinable "real 
numbers" had to become accepted, this implicit clause sank into oblivion, and nowadays it is 
impudently claimed that numbers need not be individually identifiable at all. The present paper 
shows that, in the framework of set theory, already most natural numbers are not individually 
identifiable; they cannot be given a name, cannot be checked as elements of mappings, and 
therefore they cannot be applied in mathematics. 
 
 
 Introduction 
 
Arithmetic is based on the potentially infinite sequence of definable natural numbers. Also 
analysis has no use for the actual infinity of the set Ù. Limits of sequences are never depending 
on the complete set of terms but only on the formulas defining or constructing them. The only 
circumstantial evidence of actual infinity arbitrarily adopted in set theory is supplied in geometry. 
Without actual infinity, for instance of the set of fractions, there are gaps between the definable 
points of the real line. 
 
On the other hand, an infinite sequence of well-ordered elements of the completed set Ù is 
impossible. "Completed" means that there is an end, like ω following upon all natural numbers or 
0 following upon the sequence of all unit fractions. A cursor moving from 1 to 0 must pass a last 
unit fraction, if they all are well-ordered. A last element however would contradict infinity. 
Therefore the only feasible way to reconcile completeness and infinity is to refrain from well-
order. There are mostly natural numbers which cannot be distinguished from each other. They are 
inaccessible; we briefly call them dark. 
 
It is unfamiliar and hard for mathematicians trained to believe in completed infinity to imagine a 
potentially infinite set which is finite without having a last fixed element. When the number n 
belongs to the set, then also n+1, 2n, n2 and nnn belong to the set. Of course with nnn also nnn+1 
and so on belong to the set. This is the potential infinity, accepted by almost all mathematicians 
before Bolzano and Cantor. The present paper will show a lot of evidence and plenty of proofs 
for this kind of numbers and discuss the consequences of their existence. 
 
If the actually infinite set Ù is to be accepted, then it will unavoidably comprise an actually 
infinite subset Y of undefinable natural numbers, so-called dark natural numbers. Best evidence is 
this: Every potentially infinite sequence of defined natural numbers can be analyzed at every 
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index. Mappings of Ù cannot be analyzed at every index, step by step completely, which means 
in linear sets: until the end. If all natural numbers have been processed individually in linear 
order, then necessarily a last one has been processed. This holds for every potentially infinite set: 
It has always a last element, not a fixed one though. In order to avoid this last element in spite of 
completed infinity, dark numbers are required. A dark number cannot be treated as an individual 
but only with the whole set Y. 
 
Definition: A natural number is "named" or "addressed" or "identified" or "individually defined" 
or "instantiated" if it can be communicated, necessarily by a finite amount of information, in the 
sense of Poincaré [1], such that sender and receiver understand the same and can link it by a finite 
initial segment to the origin 0. All other natural numbers are called dark natural numbers [2]. 
 
Communication can occur 
Ë by direct description in the unary system like ||||||| or as many beeps, flashes, or raps, 
Ë by a finite initial segment of natural numbers (1, 2, 3, 4, 5, 6, 7) called a FISON, 
Ë as n-ary representation, for instance binary 111 or decimal 7,  
Ë by indirect description like "number of colours of the rainbow" or "number of days per week", 
Ë by other words known to sender and receiver like "seven". 
 
Only when a number n is identified we can use it in mathematical discourse and can determine 
the trichotomy properties of n and of every multiple kn or power nk or tetration kn with respect to 
every identified number k. Ùdef contains all defined natural numbers as elements – and nothing 
else. Ùdef is a potentially infinite set; therefore henceforth it will be called a collection. 
 
 
 Dark numbers in set theory
 
Ernst Zermelo explained: If among the numbers β there is no largest one, then they have 
(according to the second generation principle) a "limit" β', which is following next upon all β [3]. 
This statement is based upon Cantor's principle that "to any finite or infinite set of elements 
belongs a certain element which is the element following next upon all in the succession" [4]. 
  
Georg Cantor himself defined "that ω is the first whole number following upon all numbers ν, i.e. 
which has to be called greater than each of the numbers ν" [5], that however the distance "ω - ν is 
always equal to ω" [6]. "The totality of all finite cardinal numbers ν presents the most obvious 
example of a transfinite set; we call its cardinal number 'Alef-null', in symbols ¡0" [7].  
 
If ω is following next upon all natural numbers n then nothing exists in between. If on the other 
hand between every natural number ν and ω there are always ω or ¡0  natural numbers, then it is 
obvious that the numbers here denoted by ν must differ significantly from the numbers here 
denoted by n. 
 
An explanation suggesting itself would be: The actually infinite set Ù of all natural numbers n 
embraces the potentially infinite collection Ùdef of definable numbers ν. Then however ¡0 is the 
cardinal number of all finite cardinal numbers n and not of the definable cardinal numbers ν. 
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Dark numbers have been introduced also by Sergeyev1 [8] who calls the largest natural number 
grossone ① and puts Ù = {1, 2, 3, ..., ① - 1, ①}. Of course the grossone and its predecessors ①, 
① - 1, ① - 2, ... and also ①/n for every identified natural number n are not identifiable according 
to the above definition and belong to the set Y. 
 
 
 Dark natural numbers proved by the sequence of FISONs
 
According to set theory the set Ù of all natural numbers is actually infinite. While potential 
infinity only requires that for every finite initial segment of natural numbers {1, 2, 3, ..., n}, 
abbreviated by FISON Fn, there exists a larger one 
 
 "Fn $Fm: |Fn| < |Fm| ⁄ Fn Õ Fm
 
actual infinity exchanges quantifiers and states 
 
 $Ù "Fn: |Fn| < |Ù| ⁄ Fn Õ Ù . 
 
Every FISON Fn ends with a natural number n defined by this very segment, because it connects 
this number to the origin 1. Every finite union of FISONs is a FISON itself again:
 
 {1} = {1} 
 {1} » {1, 2} = {1, 2} 
 {1} » {1, 2} » {1, 2, 3} = {1, 2, 3} 
 ... . 
 
Because of inclusion monotony, this is true – independent of the set of merged segments. And it 
is independent of the representation, be it as sets of numbers 
 
 {1}, {1, 2}, {1, 2, 3}, ... 
 
or as (implicitly indexed) strings of symbols 
 
 o, oo, ooo, ... . 
 
Theorem   More than finitely many FISONs cannot be merged. 
 
Proof: This becomes clear from the pigeonhole principle and the definition "finite initial 
segment". If each of the first n positive integers has a unary representation in form of a string, 
like ooooo, that is shorter than n then, by the pigeonhole principle, there must be two different 
positive integers defined by the same unary representation. Clearly this is absurd. 
 

                                                 
1 Sergeyev's theory, based on the inevitable fact that the natural numbers Ù count themselves, |Ù| = ①, 
yields the interesting results that the number of integers Ÿ is |Ÿ| = 2ÿ① + 1, and the number of fractions – 
is |–| = 2ÿ①2 + 1. 
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Same holds in case of ¡0 finite strings. ¡0 is a fixed quantity such that "n œ Ù: n < ¡0. If each 
one of all ¡0 positive integers has a unary representation in form of a string that is shorter than 
¡0 then, by the pigeonhole principle, there must be two different positive integers defined by the 
same unary representation. Clearly this is absurd too. 
 
Same holds for FISONs. Since the order of numbers in {1, 2, 3, 4, 5} does not matter, it has the 
same information content as ooooo. É 
 
Ù has more elements than all Fn. It differs from all Fn because it has a greater cardinal number 
¡0. This however is only possible if Ù has at least one element that is not in any Fn. But it turns 
out that no such element can be found. Therefore the actually infinite set Ù must embrace 
elements which have not been identified. We call them dark natural numbers. Almost all 
elements of Ù are undefinable dark numbers. Note that every Fn can be summed, but Ù cannot. 
 
Theorem   Almost all natural numbers are dark and therefore are not identifiable. 
 
Proof: Consider the collection ≈ = {Fn | n œ Ù} of FISONs Fn (which by definition are identified 
or, if being dark yet, can become identified) and assume that its union is Ù. 
 
 Ù does not change when one of the FISONs is omitted: 
 
 F1 » F2 » F3 » ... » Fn-1 » Fn+1 » Fn+2 » Fn+3 » ... = Ù . 
 
There is no FISON whose omission would change the result of the union. So every FISON can be 
omitted; the collection of FISONs which can be omitted separately without effect is the 
collection ≈ of all existing FISONs. Further those FISONs which are predecessors, i.e., subsets, 
of the omitted Fn can be omitted too with no effect so that we get for all n  
 
 Fn+1 » Fn+2 » Fn+3 » ... = Ù . 
 
Since there is no first FISON that cannot be omitted without effect, we get «{ } = { } = Ù. Of 
course this result is false because Ù is not empty. But the usual explanation, that every FISON 
can be omitted only as long as there remain larger FISONs, does not hold, because according to 
Cantor's theorem B [9] every set of ordinal numbers has a first element. And the question 
whether a set is necessary can be decided in every case. Thus the explanation is false, firstly 
because a FISON without successor does not exist at all and thus cannot be omitted either, and 
secondly because we can see that as long as Fn is a proper subset of Ù, it is neither necessary nor 
sufficient to be relevant in the union producing Ù. This holds for all FISONs how large they ever 
may be. Therefore we must accept the implication: if Ù were the union of all FISONs, then Ù 
would be empty: 
 
 F1 » F2 » F3 » ... = Ù   fl   { } = Ù .      (1) 
 
By contraposition, it follows that Ù is not the union of only all FISONs, i.e., of only all 
identifiable natural numbers. What remains? Numbers that cannot be identified: Dark numbers. 
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Conclusion: If Ù is larger than all unions of FISONs, then it must contain something larger than 
all FISONs, in fact much larger because 
 
 "Fn: |Ù \ Fn| = ¡0 .          (2) 
 
Therefore almost all elements of Ù are undefinable: dark numbers. É 
 
Every identified natural number is followed by infinitely many natural numbers including 
potentially infinitely many dark numbers – any difference between two FISONs – which later on 
may become identified, and an actually infinite set Y, with |Y| = ¡0, of dark numbers which will 
remain dark forever and in every system. 
 
The implication (1) only holds if Ù is larger than every FISON, because only then every FISON 
is too small to be relevant for the union. In case of a purely potentially infinite view there is no 
fixed set Ù but the temporary maximum Ùdef of an ever increasing sequence of FISONs: 
 
 Ùdef = F1 » F2 » F3 » ... .        (3) 
 
In this view not all FISONs exist simultaneously, there is always a next one and therefore not all 
FISONs can be omitted by omitting those existing in (3). 
 
All individually definable natural numbers fit into one common finite initial segment. Ùdef is a 
potentially infinite collection. It does not matter that n+1 is not contained in {1, 2, 3, ..., n}, 
because it is contained in {1, 2, 3, ..., n, n+1}. Further n is a variable not a number. But it can be 
replaced by any definable natural number. 
 
The set of FISONs cannot have cardinality ¡0 because (1) every FISON has ¡0 successors, but 
two consecutive ¡0-sets are impossible in the natural order of Ù, (2) the pigeonhole principle (see 
above) excludes more than a finite number of distinguishable FISONs, (3) their union does not 
contain any element missing in all FISONs, and (4) Ù cannot be exhausted by individually 
definable numbers but only collectively by sets, like Ù\Ù = «. 
 
 
 Dark natural numbers proved by the union of FISONs 
 
All infinitely many FISONs Fn = {1, 2, 3, ..., n}, when subtracted from Ù, leave almost all 
natural numbers there according to (2). What happens when the union «{1, 2, 3, ..., n} is 
subtracted? Often we hear the false argument that the union of all FISONs is larger than all 
FISONs. But even then we have only two alternatives: 
 
Ë Either even this union is not sufficient to exhaust Ù completely. Then natural numbers remain 
which cannot be removed individually. They are dark. 
 
Ë Or no natural numbers remain. Then the infinite difference of natural numbers can only be 
removed collectively (by the union of FISONs) but not individually (by any FISON). That 
means, they are dark. 
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Anyhow dark numbers are indispensible. 
 
There is another argument claiming that all remainders in (2) are different. But in fact all 
remainders can differ by at most a finite number of elements, because all FISONs and their 
differences are finite. An infinite number |Y| must be the same in all remainders if they are 
actually infinite, so-called ¡0-sets. 
 
 
 Dark natural numbers proved by intersections of endsegments 
 
Definition: En = {n, n+1, n+2, n+3, ...} is called the endsegment of n œ Ù. For every identified 
number n there is a last identified endsegment, En = {n, n+1, n+2, n+3, ...}, containing it, and a 
first identified endsegment, En+1 = {n+1, n+2, n+3, ...}, where n has vanished. However the 
infinite sequence (En) of definable endsegments  
 
 (En) = E1, E2, E3, ... 
 
and of their finite intersections 
 
 E1, E1 ∩ E2, E1 ∩ E2 ∩ E3, ... 
 
contains only members of cardinality ¡0. This effect of every identified endsegment is proved by 
the system 
 
 "n œ Ùdef: »{E1, E2, E3, ..., En} = En ∫ «   where   |En| = ¡0 .   (4) 
 
Every intersection of a finite set of definable endsegments is not empty but infinite. Even the 
intersection over the potentially infinite collection of identified endsegments 
 
 »{En | n œ Ùdef} Œ »{En | »{E1, E2, E3, ..., En} = ¡0} = ¡0   (5) 
or 
 |»{E(n) | E(n) appears in (4)}| = ¡0       (5') 
 
is not empty since it contains not more than the En of (4), each of which acts like a filter that, 
independent of its position and of the presence of other endsegments, removes, in all 
environments, up to n-1 natural numbers from an incoming set and lets pass the infinite rest. Its 
effect at last position in (4) cannot change when appearing at not-last position in (5). A set has no 
order anyway. 
 
Every intersection of an actually infinite set of endsegments, however, like the complete set, is 
empty according to set theory 
 
 »{En | n œ Ù} = «         (6) 
 
because every number will be deleted by at least one endsegment. 
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 An actually infinite set has more elements than all finite sets. So it is a legitimate question to ask 
what endsegments make the set intersected in (6) actually infinite and the result empty? Since all 
identified endsegments fail, there must be a difference between the collections of identified 
endsegments in (5) and of all endsegments in (6). Otherwise the contradiction « = ¡0 would 
follow from (5) and (6). However, it is impossible to find an endsegment that is in (6) but not in 
(5). Only undefinable, i.e., dark endsegments, neither subject to universal quantification by their 
index or first natural number n in (4) nor identifiable in (5), can constitute the endsegments 
necessary for producing the empty intersection in (6). This is the set of dark endsegments. 
 
Counting down to the empty set by intersecting endsegments can only happen one by one in steps 
of one natural number per endsegment because the definition 
 
 En \ {n} = En+1         (7) 
 
disallows other mechanisms than the loss of one number per term. We find the bijective function 
 
 subtract(n) = En+1 .  
 
But no endsegment can be identified that contributes to reduce the intersection from an infinite 
set of (4) to the empty set of (6) by deleting the infinite set step by step – if (7) holds without an 
exception, i.e., if mathematics is valid for all steps. 
 
Ë Remark: In principle every bijection between infinite sets would have to cover undefinable, 
dark natural numbers or functions of them and requires to identify them, which of course is 
impossible. In most cases however that is not so obvious. 
 
Ë Remark: The loss of ¡0 elements between every definable endsegment and the empty set can 
occur only by means of as many dark endsegments. Dark numbers solve the puzzle why 
 
 ¡0 = limnØ¶ |En| ∫ |limnØω En| = 0 . 
 
limnØω En is calculated from (6) whereas limnØ¶ |En| can only be calculated by means of (5). 
 
 
 Dark natural numbers proved by infinitely many infinite endsegments 
 
According to a theorem of ZFC there are infinitely many infinite endsegments. (Note that ZFC 
knows only actual infinity.) In spite of inclusion monotony their intersection is "proved" to be 
empty. This is mathematically impossible because a sequence of decreasing infinite sets cannot 
be empty (inclusion monotony!). An infinite set is in all predecessors. It is not the same in all 
terms; the first terms contain somewhat more than the later terms, but this is not a reason to deny 
the infinite set being in all terms. Like the sand contained in a not yet empty hourglass has been 
there over all instances from the beginning, the infinite set has been there from the beginning. 
 
But the present argument does not use the intersection. The infinite set of endsegments exhausts 
all ¡0 natural numbers as indices. What remains for the contents of the infinite endsegments? 
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Two consecutive actually infinite sequences in the natural order of Ù are impossible. Therefore 
there are not ¡0 actually infinite endsegments. There can only be a potentially infinite set of 
definable endsegments with infinite contents. The actually infinite set of endsegments contains 
visible infinite endsegments, dark infinite endsegments, and also dark finite endsegments. It 
decreases according to (7) until the empty set is reached.  
 
 
 Dark natural numbers proved by descending sequences of ordinals 
 
Every sequence of natural numbers ascending from 0 to ω is actually infinite; it has ¡0 terms. 
Every sequence of natural numbers descending from ω to 0 is finite. But there is no largest 
sequence. So the collection of these sequences is potentially infinite. This follows from the axiom 
of foundation. But above all it is dictated by the practical impossibility to identify a natural 
number having actually infinitely many predecessors and to choose it as destination for the leap 
down from ω 
 
 1, 2, 3, 4, 5, 6, 7, ....... ω . 
 
If all were identifiable, then each one could be selected without deciding in advance whether we 
would continue and in which direction. 
 
As already mentioned above Cantor defined "that ω is the first whole number following upon all 
numbers ν" [5], that however the difference "ω - ν is always equal to ω" [6]. 
 
According to the first statement we find 
 
 {0, 1, 2, 3, ..., ω} \ Ù = {0, ω} . 
 
Since no cloudy "empty spaces" but only concrete natural numbers have been subtracted from the 
well-ordered set, and since, after subtraction, ω has the direct predecessor 0, it must have had a 
direct predecessor before too. The claim that all natural numbers exist and can be applied implies 
that there exists a state where all natural numbers have been applied. Otherwise the claim would 
be void. 
 
According to Cantor's second statement the distance between every identified number n (for dark 
numbers nothing can be said with respect to distances) and ω is ¡0 
 
 "n œ Ùdef: ω - n = ω > n . 
 
This determines an interval of dark ordinals, an actually infinite set 
 
 Y Õ (Ù \ Ùdef) 
 
of natural numbers larger than every identified n but less than ω. 
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Let L be the greatest natural number instantiated in a system, then numbers like L + 1 or 2L or LLL  
are also instantiated, but with fading reality. Larger numbers are dark but can become 
instantiated. 
 
Let M be the greatest natural number ever instantiated during the lifetime of the universe, then 
also numbers like M + 1 or 2M or MMM and similar numbers are also instantiated but with fading 
reality; all greater numbers are dark and remain so. 
 
 
 Dark fractions 
 
If we for a moment assume, counterfactually, that all natural numbers were visible, then they 
could be housed in the first column of an infinite matrix (see Fig. 1). All positive fractions, then 
being visible too, could be housed in such a matrix (see Fig. 2). 
 
 1, __, __, __, ... 1/1, 1/2, 1/3, 1/4, ...     1/1, __, __, __, ...  
 2, __, __, __, ... 2/1, 2/2, 2/3, 2/4, ...     1/2, __, __, __, ... 
 3, __, __, __, ... 3/1, 3/2, 3/3, 3/4, ...     2/1, __, __, __, ... 
 4, __, __, __, ... 4/1, 4/2, 4/3, 4/4, ...     1/3, __, __, __, ... 
 5, __, __, __, ... 5/1, 5/2, 5/3, 5/4, ...     2/2, __, __, __, ... 
  ...   ...        ...       . 
          Fig. 1          Fig. 2     Fig. 3 
 
 By Cantor's formula 
 
 k = (m + n - 1)(m + n - 2)/2 + m       (8) 
 
all these fractions can be brought into a sequence 
 
 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, ...     (9) 
 
which also can be housed in the first column of the infinite matrix (see Fig. 3). 
 
But if we try to transform Fig. 2 into Fig. 3 without forgetting the fractions initially residing in 
the first column (placing them intermediately there where the processed fractions have been taken 
from), then we will obtain a sequence of matrices. Note that this sequence is as static as (9) and 
by no means a so-called super task. Fig. 5 shows the first terms of this sequence following Fig. 2. 
Each matrix is belonging to that fraction of sequence (9) which is for the first time appearing in 
the first column. This one and the exchanged fraction are printed bold in the following matrices 
 
 1/1, 2/1, 1/3, 1/4, ...    1/1, 3/1, 1/3, 1/4, ...    1/1, 3/1, 4/1, 1/4, ...    1/1, 3/1, 4/1, 1/4, ... 
 1/2, 2/2, 2/3, 2/4, ...    1/2, 2/2, 2/3, 2/4, ...    1/2, 2/2, 2/3, 2/4, ...    1/2, 5/1, 2/3, 2/4, ... 
 3/1, 3/2, 3/3, 3/4, ...    2/1, 3/2, 3/3, 3/4, ...    2/1, 3/2, 3/3, 3/4, ...    2/1, 3/2, 3/3, 3/4, ... 
 4/1, 4/2, 4/3, 4/4, ...    4/1, 4/2, 4/3, 4/4, ...    1/3, 4/2, 4/3, 4/4, ...    1/3, 4/2, 4/3, 4/4, ... 
 5/1, 5/2, 5/3, 5/4, ...    5/1, 5/2, 5/3, 5/4, ...    5/1, 5/2, 5/3, 5/4, ...    2/2, 5/2, 5/3, 5/4, ... 
  ...     ...     ...     ...        . 
      Fig. 5 
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Although every fraction contained in (9) will be found in the first column and no fraction 
appearing in (9) can be found sitting permanently in the other columns, never a free place will 
occur there. The fractions sitting there are dark. 
 
That also most natural numbers are dark aggravates the result. This result however would not 
have been observed, although it would have been the same, if the fractions were not gathered in 
the first column but in an additionally made up zeroth column. 
 
 
 Dark real numbers in the Binary Tree 
 
The complete infinite Binary Tree consists of nodes representing bits (binary digits 0 and 1) 
which are indexed by non-negative integers and connected by edges such that every node has two 
and only two child nodes. Node number 2n + 1 is called the left child of node number n, node 
number 2n + 2 is called the right child of node number n. 
 
A path p is a subset of nodes having the indices 
 
 0 œ p 
and 
 n œ p  fl  (2n + 1 œ p  or  2n + 2 œ p  but not both) . 
 
The set {ak | k œ Ù0} of nodes ak is countable as is shown by the indices of the nodes: 
 
 Level           Bits          Nodes 
 

    0              0.               a0.  
            /      \             /      \  
    1          0         1          a1       a2  
        /  \        /  \             /   \      /   \  
    2       0    1     0    1    a3   a4 a5   a6  
      / \   / \    / \   / \       / \   / \   / \   / \  
    3   0 ...               a7 ...   . 

 
Remove all nodes of finite paths from the complete infinite Binary Tree. What remains? If 
nothing remains, all paths are countable. If more remains (tails of uncountably many infinite 
paths), these nodes must have dark indexes. 
 
 
 Dark real numbers between sequence and limit 
 
Every strictly monotonic infinite sequence converging to a real limit does not assume this limit 
before ω. ¡0 dark terms are following upon every defined term before ω. They are neither 
suitable for counting nor for proofs of uncountability. 
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For diagonalization of the folklore Cantor-list 
 
 a11, a12, a13, a14, a15, ...  
 a21, a22, a23, a24, a25, ...  
 a31, a32, a33, a34, a35, ...  
 a41, a42, a43, a44, a45, ...  
 a51, a52, a53, a54, a55, ...  
  ...   .  
 
only the digit sequences (an1, an2, an3, ..., ann) between the left edge and the diagonal are used. 
The list 
 
 a11,   0 ,   0 ,  0 ,   0 ,  ...  
 a21, a22,   0 ,  0 ,   0 ,  ...  
 a31, a32, a33,  0 ,   0 ,  ...  
 a41, a42, a43, a44,  0 ,  ...  
 a51, a52, a53, a54, a55, ...  
  ...   .  
 
yields the same diagonal number. Therefore the diagonal number can contain only as many 
digits, namely less than ¡0. A digit sequence with ¡0 digits would require ¡0 dark digits in 
addition. 
 
 
 Dark points on the real axis 
 
What hinders the complete covering of the interval (0, 1] by individually definable intervals 
[1/(n+1), 1/n]? The interval (0, 1] touches zero such that no point fits in between. But no 
definable point x of (0, 1] touches 0. All definable points satisfy [x, 1] Õ (0, 1]. 
 
If every definable point is in some distance from zero, then all definable points are in some 
distance from zero. The static character of geometry excludes quantifier tricks. But there is no 
gap, not nothing touching zero. Therefore something else must be between zero and all defined 
points: a part free of defined points. Moving from 1 to 0 the cursor encounters, before reaching 0, 
a last shrinking interval. This is made of dark points. It is the advantage of dark points that they 
collectively undistinguishable can touch zero. For definable points this could not happen. 
 
 
 Dark unit fractions in the interval (0, 1] 
 
The interval (0, 1] is the union of all intervals [1/(n+1), 1/n] 
 

 
IN

1 1[ , ] (0,
1n n n∈

=
+∪ 1]  .         (10) 
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The complete covering of the half-open interval (0, 1] by closed intervals [1/(n+1), 1/n] would 
not be possible, if every interval left infinitely many unit fractions uncovered between 0 and its 
left endpoint. But all definable intervals [1/n, 1] leave actually infinitely many unit fractions 
between zero and their left endpoint uncovered. For every definable natural number k we have 
 

 "k œ Ù: 
1

1 1[ , ] (0,
1

k

n n n=

≠
+∪ 1]   or 

defIN

1 1[ , ] (0,
1n n n∈

≠
+∪ 1]  .  (11) 

 
In (10) no point is missing. But every identified number n splits the interval in two parts, [1/n, 1] 
and the remainder (0, 1/n). It is impossible to have less than ¡0 individually not identified unit 
fractions in (0, 1/n) since its measure is never zero 
 
 "n œ Ùdef: [1/n, 1] Õ ((0, 1/n) » [1/n, 1]) = (0, 1] = «nœÙ [1/n, 1] . 
 
The interval (0, 1/n) contains ¡0 unit fraction and remains uncovered. Therefore in (10) there 
must be more intervals than in (11). This surplus consist of dark intervals. 
 
It is obvious that all those intervals [1/n, 1] which are leaving ¡0 unit fractions in (0, 1/n) 
uncovered, cannot cover (0, 1]. Collectively however always infinitely many more unit fractions, 
namely all, can be covered. [10] 
 
Briefly: When all unit fractions 1/n are removed from the interval (0, 1] then none remains. This 
proves the existence of all. If only instantiated unit fractions are removed, then ¡0 remain. ¡0 unit 
fractions cannot be addressed and of course cannot be applied in any mapping. 
 
A simple picture: Let a cursor run from 1 to 0. Every passed accessible unit fraction has infinitely 
many smaller unit fractions as successors. When the cursor passes 0 all unit fractions have been 
passed. None remains, not even the infinitely many following upon every accessible unit fraction. 
They are not accessible. They are dark. This prevents that the last unit fraction passed by the 
cursor can be determined and put in order. 
 
One could claim that the linearity of the problem requires that the cursor never passes two or 
more unit fractions at one position. Therefore a last one must have been passed. But we don't 
know about the structure of dark points. We only have to assume that a unit fraction has 1 as its 
numerator a natural number as its denominator. 
 
Alas if all unit fractions had ¡0 smaller unit fractions as successors the cursor could never 
diminish the number of unit fractions between itself and zero to less than ¡0 and could never 
reach zero. Even if every unit fraction had only one successor, the physical movement would be 
hampered by this philosophical assumption. That is impossible. 
 
When the cursor moves from 0 to 1, what is the first unit fraction 1/n encountered? How many 
smaller unit fractions populate the interval (0, 1/n)? Why were they not met by the curser before? 
These questions remain in the darkness of dark points and numbers. 
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 Dark states solve Zeno's paradox 
 
Achilles and the tortoise run a race. The tortoise gets a start and the race begins (state 0). When 
Achilles reaches this point, the tortoise has advanced further already (state 1). When Achilles 
reaches that point, the tortoise has advanced again (state 2). And so on (state 3, 4, 5, ...). Since 
Achilles runs much faster than the tortoise, he will overtake (state ω), but only after infinitely 
many finitely indexed states of the described kind. Their number must be completed. Otherwise 
Achilles will not overtake. But there must not be a last visible finitely indexed state. (The last 
1000 states Achilles remembers have indices much smaller than ω.) This can only be realized by 
means of dark states. 
 
According to set theory, all states can be put in bijection with all natural numbers. This is 
impossible as completeness and well-order require a last mark. The three notions "all" and 
"infinite" and "well-ordered" do not match. This dilemma can only be solved by refraining from 
well-order of the dark set Y of states. 
 
 
 The basic relation between infinities 
 
Consider a ruler with all unit fractions between 0 and 1 marked. Two such rulers cannot deviate 
by any mark: If Ù is a completed set, then |Ù| is invariable. But only definable elements n can be 
treated as individuals. All mappings, including Hilbert's hotel, occur in this potential infinity ¶. 
Collectively always more, namely all the ¡0 remaining elements can be treated. Therefore, using  
¡0 as the "elastic" rest, we obtain 
 
 |Ù| = ¡0 = n + ¡0 = ¶ + ¡0 
but 
 |Ù| ≠ |Ù| + 1 . 
 
Infinite sets can only then be completed, if all elements are existing such that their number is 
fixed and invariable. 
 
Cantor's "bijections" cover only the potentially infinite initial segments of the concerned sets. 
That is the natural explanation why all countable sets have the same cardinal number. 
 
 
Conclusion 
 
We can remove collectively all natural numbers from Ù such that none remains; we cannot repeat 
the same individually since this would include a last one. Individual processing happens in linear 
order. If all terms of a sequence have been processed then necessarily a last one has been 
processed. This undermines the definition of countability. We cannot scrutinize every pair of a 
bijection, but every pair must be available for individually scrutinizing it. Individually 
scrutinizing however is necessarily a linear process that either ends with a last pair (when nothing 
remains to be scrutinized) or never ends (when always something remains to be scrutinized). But 
it is impossible that nothing remains and nevertheless no last pair can be scrutinized. 
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