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 Dear Reader: 
 
Transfinity is the realm of numbers larger than every natural number: For every natural number k 
there are infinitely many natural numbers n > k. For a transfinite number t there is no natural 
number n ¥ t. 
 
We will first present the theory of actual infinity, mainly sustained by quotes, in chapter I and 
then transfinite set theory as far as necessary to understand the following chapters. In addition the 
attitude of the founder of transfinite set theory, Georg Cantor, with respect to sciences and 
religion (his point of departure) will be illuminated by various quotes of his as well as of his 
followers in chapter IV. Also the set of applications of set theory will be summarized there. All 
this is a prerequisite to judge the social and scientific environment and the importance of set 
theory. Quotes expressing a sceptical attitude against transfinity or addressing questionable points 
of current mathematics based on it are collected in chapter V. For a brief overview see also 
Critics of transfinity. The critique is scrutinized in chapter VI, the main part of this source book. 
It contains over 100 arguments against actual infinity – from doubtful aspects to clear contra-
dictions – among others applying the newly devised powerful method of ArithmoGeometry. 
Finally we will present in chapter VII MatheRealism, a theory that shows that in real 
mathematics, consisting of monologue, dialogue, and discourse between real thinking-devices, 
via necessarily physical means, infinite sets cannot exist other than as names. This recognition 
removes transfinity together with all its problems from mathematics – although the application of 
mathematics based on MatheRealism would raise a lot of technical problems. 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Critics of Transfinity.pdf
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Bibliographical references have been given, within square brackets, in the plain text. The only 
exception, because of its frequent appearance throughout this source book, is Cantor's collected 
works edited by E. Zermelo: "Georg Cantor – Gesammelte Abhandlungen mathematischen und 
philosophischen Inhalts", Springer, Berlin (1932), quoted as [Cantor, p. n]. Internet links which 
may expire sooner or later, as experience shows, do not always produce the original document.  
 
Cantor's correspondence mainly has been adopted from the following sources: 
Ë E. Noether, J. Cavaillès: "Briefwechsel Cantor-Dedekind", Hermann, Paris (1937). 
Ë I. Grattan-Guinness: "The correspondence between Georg Cantor and Philip Jourdain", 
Jahresbericht der Deutschen Mathematiker-Vereinigung 73 (1971) pp. 111-130. 
Ë I. Grattan-Guinness: "The rediscovery of the Cantor-Dedekind correspondence", Jahresbericht 
der Deutschen Mathematiker-Vereinigung 76 (1974) pp. 104-139. 
Ë H. Meschkowski: "Georg Cantor – Leben, Werk und Wirkung", 2nd ed., Bibliographisches 
Institut, Mannheim (1983). 
Ë W. Scharlau: "Rudolf Lipschitz: Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, 
Weierstrass und anderen", Vieweg, Braunschweig (1986). 
Ë W. Purkert, H.J. Ilgauds: "Georg Cantor 1845-1918", Birkhäuser, Basel (1987). 
Ë J.W. Dauben: "Georg Cantor: His mathematics and philosophy of the infinite", Princeton 
University Press, Princeton (1990). 
Ë H. Meschkowski, W. Nilson: "Georg Cantor – Briefe", Springer, Berlin (1991). 
Ë C. Tapp: "Kardinalität und Kardinäle", Franz Steiner Verlag, Stuttgart (2005). 
 
Quotes that were not or not in sufficient quality available in English have been translated by 
myself. When different sources deviated, the most comprehensive version has been quoted. My 
own remarks, notes, and comments within quotes are included in double curly brackets 
{{comment}}.  
 
I am indebted to David Petry, Norman Wildberger, and Doron Zeilberger who have kindly agreed 
to include complete essays of theirs in this source book. 
 
For comments use wolfgang[dot]mueckenheim[at]hs[minus]augsburg[dot]de. 
 
        
 Regards, WM 
        : 
 
 
 
 

https://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN237853094&DMDID=DMDLOG_0002
https://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN237853094&DMDID=DMDLOG_0002
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I   Distinguishing actual and potential infinity 
 
During the history of mankind the infinite nearly unanimously has been accepted as potential. 
[W. Mückenheim: "Die Mathematik des Unendlichen", Shaker-Verlag, Aachen (2006) chapter 8] 
This situation has been reversed with the rise of transfinite set theory. But many mathematicians 
and many set theorists are not sure what the difference is and whether it is important for pursuing 
mathematics. Many set theorists even proudly boast not to know the difference. Others claim that 
the term "actual infinity" is not a term of set theory. In fact, set theorists try to avoid it in order to 
keep set theory attractive for newcomers who could be repulsed by words like "finished infinity". 
"You use terms like completed versus potential infinity, which are not part of the modern 
vernacular." [P.L. Clark in "Physicists can be wrong", tea.MathOverflow (2 Jul 2010)] This is the 
typical reproach to be expected when the different kinds of infinity are analyzed and taught. 
 But set theory clearly needs actual, i.e., completed infinity and uses it heavily. "Cantor's 
work was well received by some of the prominent mathematicians of his day, such as Richard 
Dedekind. But his willingness to regard infinite sets as objects to be treated in much the same 
way as finite sets was bitterly attacked by others, particularly Kronecker. There was no objection 
to a 'potential infinity' in the form of an unending process, but an 'actual infinity' in the form of a 
completed infinite set was harder to accept." [H.B. Enderton: "Elements of set theory", Academic 
Press, New York (1977) p. 14f] Therefore we will meticulously distinguish the two types of 
infinity in the following. This cannot be done better than by quoting those scholars who have 
been concerned with this topic. 
 
The first known scholar who in great detail dealt with the infinite in written text was Aristotle 
(384-322). He denied the actual infinite (αϕωρισμενον) in philosophy and mathematics 
ascribing it only to the Gods. Addition or division repeated without end could only happen in 
potential infinity (απειρον). With respect to mathematics he concluded: "Our account does not 
rob the mathematicians of their science, by disproving the actual existence of the infinite in the 
direction of increase, in the sense of the untraversable. In point of fact they do not need the 
infinite and do not use it. They postulate only that the finite straight line may be produced as far 
as they wish. It is possible to have divided in the same ratio as the largest quantity another 
magnitude of any size you like. Hence, for the purposes of proof, it will make no difference to 
them to have such an infinite instead, while its existence will be in the sphere of real 
magnitudes." [Aristotle: "Physics", Book III, Part 7 (º350 BC)] 
 
Before Cantor only a small minority of scholars believed in actual infinity. Robert Grosseteste, 
Bishop of Lincoln in the 13th century, claimed: "The number of points in a segment one ell long 
is its true measure." Also John Baconthorpe in the 14th century, called Doctor resolutus, brought 
honour on his epithet and courageously opposed the contemporary scholastic opinion "infinitum 
actu non datur" by stating: "There is the actual infinite in number, time, quantity." 
 
Carl Friedrich Gauß like Augustin-Louis Cauchy opposed actual infinity. Concerning a proof of 
Schumacher's for the angular sum of 180° in triangles with two infinitely long sides Gauß wrote: 
"I protest firstly against the use of an infinite magnitude as a completed one, which never has 
been allowed in mathematics. The infinite is only a mode of speaking, when we in principle talk 
about limits which are approached by certain ratios as closely as desired whereas others are 
allowed to grow without reservation." [C.F. Gauß, letter to H.C. Schumacher (12 Jul 1831)] 
 

http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-5587-9
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Physicists can be wrong.pdf
https://books.google.de/books?id=JlR-Ehk35XkC&pg=PA14
http://classics.mit.edu/Aristotle/physics.3.iii.html
http://www.sgipt.org/wisms/geswis/mathe/gsb396.htm
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Gauß' last doctoral student Richard Dedekind, although contributing a lot to set theory and 
accepting the actual infinite, tended to potential infinity nevertheless. "Every time when there is a 
cut (A1, A2) which is not produced by a rational number, we create a new, an irrational number α 
which we consider to be completely defined by this cut (A1, A2);" [R. Dedekind: "Stetigkeit und 
irrationale Zahlen", 6th ed., Vieweg, Braunschweig (1960) p. 13] This is clearly potential 
infinity, because never more than a finite number of cuts can have been created. 
 "There are infinite systems. Proof (a similar reflection can be found in § 13 of the 
Paradoxien des Unendlichen by Bolzano (Leipzig 1851))1. The world of my thoughts, i.e., the 
collection S of all things which can be objects of my thinking, is infinite. For, if s is an element of 
S, then the thought s' that s can be an object of my thinking is itself an object of my thinking." [R. 
Dedekind: "Was sind und was sollen die Zahlen?", 8th ed., Vieweg, Braunschweig (1960) p. 14] 
This is potential infinity too, because never more than a finite number of thoughts can have been 
thought. 
 "A system S is called infinite, if it is similar to a proper part of itself; otherwise S is called 
a finite system. [...] S is called infinite if there is a proper part of S into which S can distinctly 
(similarly) be mapped." [R. Dedekind: "Was sind und was sollen die Zahlen?", 8th ed., Vieweg, 
Braunschweig (1960) p. 13] A complete infinite system S means actual infinity. But a mapping at 
Dedekind's times could be incomplete. Not all elements of a set need exist. It is sufficient when 
every element of one set has a partner in the other set, and vice versa. (Note that every element of 
an infinite set is followed by infinitely many other elements whereas no element follows upon all 
elements.) 
 
Bernard Bolzano, referred to by Dedekind, explained the different types of the infinite: "A 
multitude which is larger than every finite one, i.e., a multitude which has the property that every 
finite set is only part of it, I shall call an infinite multitude. [...] If they, like Hegel, Erdmann, and 
others, imagine the mathematical infinite only as a magnitude which is variable and only has no 
limit in its growth (like some mathematicians, as we will see soon, have assumed to explain their 
notion) so I agree in their reproach of this notion of a magnitude only growing into the infinite 
but never reaching it. A really infinite magnitude, for instance the length of the line not ending 
on both sides (i.e., the magnitude of that spatial object containing all points which are determined 
by the purely mentally imagined relation with respect to two points) need not be variable, as 
indeed it is not in this example. And a magnitude that only can be considered to be larger than 
imagined before and being capable of becoming larger than every given (finite) magnitude, may 
as well permanently remain a merely finite magnitude, like each of the numbers 1, 2, 3, 4 ....." 
[Bernard Bolzano: "Paradoxien des Unendlichen", Reclam, Leipzig (1851) p. 6ff] 
 

                                                 
1 "Die Menge der Sätze und Wahrheiten an sich ist, wie sich sehr leicht einsehen läßt, unendlich; denn 
wenn wir irgend eine Wahrheit, etwa den Satz, daß es Wahrheiten überhaupt gebe, oder sonst jeden 
beliebigen, den ich durch A bezeichnen will, betrachten: finden wir, daß der Satz, welchen die Worte "A 
ist wahr" ausdrücken, ein von A selbst verschiedener sei; denn dieser hat offenbar ein ganz anderes 
Subject als jener. Sein Subject nämlich ist der ganze Satz A selbst. Allein nach eben dem Gesetze, wie wir 
hier aus dem Satz A diesen von ihm verschiedenen, den ich B nennen will, ableiten, läßt sich aus B wieder 
ein dritter Satz C ableiten, und so ohne Ende fort. Der Inbegriff all dieser Sätze, deren jeder folgende zu 
dem nächst vorhergehenden in dem nur eben angegebenen Verhältnisse steht, daß er denselben zu seinem 
Subjecte erhebt und von demselben aussagt, daß er ein wahrer Satz sei, dieser Inbegriff – sage ich – 
umfaßt eine Menge von Theilen (Sätzen), die größer als jede endliche Menge ist." [Bernard Bolzano: 
"Paradoxien des Unendlichen", Reclam, Leipzig (1851) p. 13f] 

https://gdz.sub.uni-goettingen.de/id/PPN23569441X?tify=%7b%22pages%22:%5b329%5d,%22panX%22:0.46,%22panY%22:0.345,%22view%22:%22info%22,%22zoom%22:0.909%7d
https://gdz.sub.uni-goettingen.de/id/PPN23569441X?tify=%7b%22pages%22:%5b329%5d,%22panX%22:0.46,%22panY%22:0.345,%22view%22:%22info%22,%22zoom%22:0.909%7d
https://gdz.sub.uni-goettingen.de/id/PPN23569441X?tify=%7b%22pages%22:%5b361%5d,%22panX%22:0.439,%22panY%22:0.609,%22view%22:%22info%22,%22zoom%22:0.589%7d
https://gdz.sub.uni-goettingen.de/id/PPN23569441X?tify=%7b%22pages%22:%5b360%5d,%22panX%22:0.46,%22panY%22:0.949,%22view%22:%22info%22,%22zoom%22:0.6%7d
https://archive.org/stream/paradoxiendesune00bolz#page/6/mode/1up
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Most statements on the two types of infinity have been given by Georg Cantor who did not get 
tired to explain the difference and the importance of the actual infinite over and over again.  
 
Cantor gained his first ideas from the teachings of St Augustin and from the Holy Bible. "Every 
single finite cardinal number (1 or 2 or 3 etc.) is contained in the divine intellect (from St 
Augustin: De civitate Dei, lib. XII, ch. 19)." [G. Cantor, letter to I. Jeiler (20 May 1888, 
Whitsun)] "Dominus regnabit in infinitum (aeternum) et ultra." {{The Lord rules in eternity and 
beyond, from Exodus 15,18.}} [G. Cantor, letter to R. Lipschitz (19 Nov 1883)] 
 
"To the idea to consider the infinite large not only in the form of the unlimited growing and the 
closely connected form of the convergent infinite series, introduced first in the seventeenth 
century, but also to fix it by numbers in the definite form of the completed-infinite I have been 
forced logically almost against my own will, because in opposition to highly esteemed tradition, 
by the development of many years of scientific efforts and attempts, and therefore I do not 
believe that reasons could be raised which I would not be able to answer." [Cantor, p. 175] 
 
"In spite of significant difference between the notions of the potential and actual infinite, where 
the former is a variable finite magnitude, growing above all limits, the latter a constant quantity 
fixed in itself but beyond all finite magnitudes, it happens deplorably often that the one is 
confused with the other." [Cantor, p. 374] 
 
"By the actual infinite we have to understand a quantity that on the one hand is not variable but 
fixed and definite in all its parts, a real constant, but at the same time, on the other hand, exceeds 
every finite size of the same kind by size. As an example I mention the totality, the embodiment 
of all finite positive integers; this set is a self-contained thing and forms, apart from the natural 
sequence of its numbers, a fixed, definite quantity, an αϕωρισμενον, which we obviously have 
to call larger than every finite number." [G. Cantor, letter to A. Eulenburg (28 Feb 1886)] 
 
"It is even allowed to comprehend the newly created number ω as a limit which the numbers ν 
converge to, if thereby nothing else is seen but that ω is the first whole number following upon 
all numbers ν, i.e., which has to be called greater than each of the numbers ν." [Cantor, p. 195] 
 
"Here α is the number following by magnitude next upon all numbers αν." [Cantor, p. 331] 
 
Therefore Cantor condemned Gauß' rejection of the actual infinite in several places: 
 "The erroneous in Gauss' letter consists in his sentence that the finished infinite could not 
become an object of mathematical consideration. [...] The finished infinite can be found, in a 
sense, in the numbers ω, ω + 1, ..., ωω, ..." [G. Cantor, letter to R. Lipschitz (19 Nov 1883)] 
 "My opposition to Gauss consists in the fact that Gauss rejects as inconsistent (I mean he 
does so unconsciously, i.e., without knowing this notion) all multitudes with exception of the 
finite and therefore categorically and basically discards the actual infinite which I call 
transfinitum, and together with this he declares the transfinite numbers as impossible, the 
existence of which I have established." [G. Cantor, letter to D. Hilbert (27 Jan 1900)] 
 "it seems that the ancients haven't had any clue of the transfinite, the possibility of which 
is even strongly rejected by Aristotle and his school like in newer times by d'Alembert, Lagrange, 
Gauss, Cauchy, and their adherents." [G. Cantor, letter to G. Peano (21 Sep 1895)] 
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While normally numbers are created by the first creation principle, namely addition of 1, "the 
logical function which has supplied the two numbers ω and 2ω does obviously differ from the 
first creation principle. Therefore I call it the second creation principle of whole real numbers 
and define it more closely as follows: If there is a definite succession of defined whole numbers, 
none of which is the greatest, then, based on the second creation principle, a new number is 
created which can be understood as the limit of those numbers, i.e., defined as the next greater 
number to all of them." [Cantor, p. 196] 
 
"The notion of ω, for example, contains nothing shaky, nothing indefinite, nothing varying, 
nothing potential, it is not an απειρον but an αϕωρισμενον, and the same is true for all other 
transfinite numbers. [...] Wundt's treatise shows that he has no clear grasp of the fundamental 
difference of 'improper infinite = variable finite = syncategorematice infinitum (απειρον)', and 
'proper infinite = transfinitum = completed infinite = being infinite = categorematice infinitum 
(αϕωρισμενον)'. Otherwise he would not call the former as well as the latter a limit; limit is 
always something fixed, invariable. Therefore of the two notions of infinity only the transfinitum 
can be thought of as being and in certain circumstances and in some sense as a fixed limit. [...] 
 There is no further justification necessary when I in the 'Grundlagen', just at the 
beginning, distinguish two notions toto genere different from each other, which I call the 
improper-infinite and the proper-infinite; they need not be considered as in any way compatible 
with or related to each other. The often, at all times, admitted union or confusion of these two 
completely disparate notions causes, to my firm conviction, innumerable errors; in particular I see 
herein the reason why the transfinite numbers have not been discovered before. 
 To exclude this confusion from the outset, I denote the smallest transfinite number by the 
symbol ω which differs from the ordinary symbol corresponding to the improper-infinite ¶.  
 Indeed ω can be considered, so to speak, as the limit which the variable integer ν 
converges to beyond all limits, albeit only in the sense that ω is the smallest transfinite ordinal 
number, i.e., the smallest firmly determined number which is greater than all finite numbers ν; 
just as ◊2 is the limit of certain variable, growing rational numbers. But here we have in addition 
that the difference of ◊2 and the approximating fractions gets arbitrarily small, whereas ω - ν is 
always equal to ω; but this difference does not change the fact that ω is just as determined and 
completed as ◊2, and it does not change the fact that ω carries as little traces of the converging 
numbers ν as ◊2 carries anything of the rational approximating fractions." [G. Cantor, letter to K. 
Laßwitz (15 Feb 1884). Cantor, pp. 390f & 395. (The sources differ in many places.)] 
 
"On account of the matter I would like to add that in conventional mathematics, in particular in 
differential- and integral calculus, you can gain little or no information about the transfinite 
because here the potential infinite plays the important role, I don't say the only role but the role 
emerging to surface (which most mathematicians are readily satisfied with). Even Leibniz with 
whom I don't harmonize in many other respects too, has [...] fallen into most spectacular 
contradictions with respect to the actual infinite." [G. Cantor, letter to A. Schmid (26 Mar 1887)]  
 
"Allow me to remark that the reality and the absolute principles of the integers appear to be much 
stronger than those of the world of sensations. And this fact has precisely one very simple reason, 
namely that the integers separately as well as in their actually infinite totality exist as eternal 
ideas in intellectu Divino in the highest degree of reality." [G. Cantor, letter to C. Hermite (30 
Nov 1895)] 
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"Nevertheless the transfinite cannot be considered a subsection of what is usually called 
'potentially infinite'. Because the latter is not (like every individual transfinite and in general 
everything due to an 'idea divina') determined in itself, fixed, and unchangeable, but a finite in the 
process of change, having in each of its current states a finite size; like, for instance, the temporal 
duration since the beginning of the world, which, when measured in some time-unit, for instance 
a year, is finite in every moment, but always growing beyond all finite limits, without ever 
becoming really infinitely large." [G. Cantor, letter to I. Jeiler (13 Oct 1895)] 
 
It remains true for transfinite ordinal numbers too that every subset (α') – Cantor did not add the 
phrase "non-empty" – has a smallest element: "Among the numbers of the set (α') there is always 
a smallest one. In particular, if we have a sequence of numbers {{of the second number class}} 
α1, α2, ..., αβ, ..., which continuously decrease in magnitude (such that αβ > αβ' if β' > β), then 
the sequence will necessarily terminate after a finite number of terms and finish with the smallest 
of the numbers. The sequence cannot be infinite." [Cantor, p. 200] 
 
"That in every set (α') of transfinite numbers there is a smallest one, can be shown as follows." 
[Cantor, p. 208, footnote by E. Zermelo] Also Zermelo did not add the phrase "non-empty". 
 
"Every embodiment of different numbers of the first and the second number class has a smallest 
number, a minimum." [Cantor, p. 332] 
 
"Here we use again and again the theorem [...] that every embodiment of numbers, i.e., every 
partial multitude of Ω has a minimum, a smallest number." [Cantor, p. 445] 
 
"Cantor's belief in the actual existence of the infinite of Set Theory still predominates in the 
mathematical world today." [A. Robinson: "The metaphysics of the calculus", in I. Lakatos (ed.): 
"Problems in the philosophy of mathematics", North Holland, Amsterdam (1967) p. 39] 
 
"Should we briefly characterize the new view of the infinite introduced by Cantor, we could 
certainly say: In analysis we have to deal only with the infinitely small and the infinitely large as 
a limit-notion, as something becoming, emerging, produced, i.e., as we put it, with the potential 
infinite. But this is not the proper infinite. That we have for instance when we consider the 
entirety of the numbers 1, 2, 3, 4, ... itself as a completed unit, or the points of a line as an entirety 
of things which is completely available. That sort of infinity is named actual infinite." [D. 
Hilbert: "Über das Unendliche", Mathematische Annalen 95 (1925) p. 167] 
 
A recent report by the author about the infinite in mathematics was concerned with excluding 
actually infinite magnitudes from the limit methods, in particular from infinitesimal calculus. The 
present continuation "should show that this exclusion does in no way mean to refrain from 
considering actual infinity in mathematics. On the contrary, the example of nondenumerability of 
the continuum should show the possibility to distinguish different cardinalities, and Cantor's 
resulting proof of the existence of transcendental numbers should show the practical importance 
of this distinction. [...] it has been shown that neither in the elementary chapters of mathematics 
nor in those denoted by 'infinitesimal calculus' a really infinite 'magnitude' occurs, but that rather 
the word 'infinite' is merely used as an abbreviating description of important facts of the finite." 
[G. Hessenberg: "Grundbegriffe der Mengenlehre", offprint from Abhandlungen der Fries'schen 
Schule, Vol. I. no. 4, Vandenhoeck & Ruprecht, Göttingen (1906) Preface and § 1] 

https://books.google.de/books?id=wwkxwA8sX74C&pg=PA39&#v=onepage&q&f=false
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0095?tify=%7b%22pages%22:%5b165%5d,%22view%22:%22toc%22%7d
http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11171763_00004.html


 16

"We'll have to state that the mathematicians in considering the notion of infinity tend toward two 
different directions. For the first group the infinite flows out of the finite, for them there exists 
infinity only because there is an unlimited number of limited possible things. For the others the 
infinite exists prior to the finite, the finite constituting a small sector of the infinite." [H. 
Poincaré: "Dernières pensées: Les mathématiques et la logique", Flammarion, Paris (1913) p. 
144f] 
 
"In order to obtain something absolutely nondenumerable, we would have to have either an 
absolutely nondenumerably infinite number of axioms or an axiom that could yield an absolutely 
nondenumerable number of first-order propositions. But this would in all cases lead to a circular 
introduction of the higher infinities; that is, on an axiomatic basis higher infinities exist only in a 
relative sense." [T. Skolem: "Some remarks on axiomatized set theory" (1922) quoted in J. van 
Heijenoort: "From Frege to Gödel – A source book in mathematical logic, 1879-1931", Harvard 
University Press, Cambridge (1967) p. 296] 
 
Ernst Zermelo claims "that in contrast to the notion of natural number the field of analysis needs 
the existence of infinite sets: 'As a consequence, those who are really serious about rejection of 
the actual infinite in mathematics should stop at general set theory and the lower number theory 
and do without the whole modern analysis.' [...] Infinite domains 'can never be given empirically; 
they are set ideally and exist only in the sense of a Platonic idea' [...] in general they can only be 
defined axiomatically; any inductive or 'genetic' way is inadequate. [...] 'The infinite is neither 
physically nor psychologically given to us in the real world, it has to be comprehended and set as 
an idea in the Platonic sense'." [H.-D. Ebbinghaus: "Ernst Zermelo: An approach to his life and 
work", Springer (2007) pp. 64 & 153f] 
 
"But in order to save the existence of 'infinite' sets we need yet the following axiom, the contents 
of which is essentially due to Mr. R. Dedekind. Axiom VII. The domain contains at least one set 
Z which contains the null-set as an element and has the property that every element a of it 
corresponds to another one of the form {a}, or which with every of its elements a contains also 
the corresponding set {a} as an element." [E. Zermelo: "Untersuchungen über die Grundlagen der 
Mengenlehre I", Math. Ann. 65 (1908) p. 266f] 
 
"The statement limnØ¶ 1/n = 0 asserts nothing about infinity (as the ominous sign ¶ seems to 
suggest) but is just an abbreviation for the sentence: 1/n can be made to approach zero as closely 
as desired by sufficiently increasing the positive integer n. In contrast herewith the set of all 
integers is infinite (infinitely comprehensive) in a sense which is 'actual' (proper) and not only 
'potential'. (It would, however, be a fundamental mistake to deem this set infinite because the 
integers 1, 2, 3, ..., n, ... increase infinitely, or better, indefinitely.)" [A.A. Fraenkel, A. Levy: 
"Abstract set theory", North Holland, Amsterdam (1976) p. 6] 
 
"From the axiomatic viewpoint there is no other way for securing infinite sets but postulating 
them, and we shall express an appropriate axiom in several forms. While the first corresponds to 
Zermelo's original axiom of infinity, the second implicitly refers to von Neumann's method of 
introducing ordinal numbers." [A.A. Fraenkel, Y. Bar-Hillel, A. Levy: "Foundations of set 
theory", 2nd ed., Elsevier, Amsterdam (1973) p. 46] 
 

https://archive.org/details/dernirespen00poin/page/144
https://books.google.de/books?id=pDkLizKAQZQC&pg=PA64&lpg
https://books.google.de/books?id=pDkLizKAQZQC&pg=PA64&lpg
https://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002262002&physid=PHYS_0277
https://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002262002&physid=PHYS_0277
https://archive.org/stream/in.ernet.dli.2015.134723/2015.134723.Abstract-Set-Theory-Fourth-Revised-Edition_djvu.txt
https://books.google.de/books?id=ah2bwOwc06MC&pg=PA46&lpg
https://books.google.de/books?id=ah2bwOwc06MC&pg=PA46&lpg
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"We introduce numbers for counting. This does not at all imply the infinity of numbers. For, in 
what way should we ever arrive at infinitely-many countable things? [...] In philosophical 
terminology we say that the infinite of the number sequence is only potential, i.e., existing only 
as a possibility." [P. Lorenzen: "Das Aktual-Unendliche in der Mathematik", Philosophia 
naturalis 4 (1957) p. 4f] 
 
"Until then, no one envisioned the possibility that infinities come in different sizes, and 
moreover, mathematicians had no use for 'actual infinity'. The arguments using infinity, including 
the Differential Calculus of Newton and Leibniz, do not require the use of infinite sets. [...] 
Cantor observed that many infinite sets of numbers are countable: the set of all integers, the set of 
all rational numbers, and also the set of all algebraic numbers. Then he gave his ingenious 
diagonal argument that proves, by contradiction, that the set of all real numbers is not countable. 
A consequence of this is that there exists a multitude of transcendental numbers, even though the 
proof, by contradiction, does not produce a single specific example." [T. Jech: "Set theory", 
Stanford Encyclopedia of Philosophy (2002)] 
 
"Numerals constitute a potential infinity. Given any numeral, we can construct a new numeral by 
prefixing it with S. Now imagine this potential infinity to be completed. Imagine the 
inexhaustible process of constructing numerals somehow to have been finished, and call the 
result the set of all numbers, denoted by Ù. Thus Ù is thought to be an actual infinity or a 
completed infinity. This is curious terminology, since the etymology of 'infinite' is 'not finished'." 
[E. Nelson: "Hilbert's mistake" (2007) p. 3] 
 
According to (Gödel's) Platonism, objects of mathematics have the same status of reality as 
physical objects. "Views to the effect that Platonism is correct but only for certain relatively 
'concrete' mathematical 'objects'. Other mathematical 'objects' are man made, and are not part of 
an external reality. Under such a view, what is to be made of the part of mathematics that lies 
outside the scope of Platonism? An obvious response is to reject it as utterly meaningless." [H.M. 
Friedman: "Philosophical problems in logic" (2002) p. 9] 
 
"A potential infinity is a quantity which is finite but indefinitely large. For instance, when we 
enumerate the natural numbers as 0, 1, 2, ..., n, n+1, ..., the enumeration is finite at any point in 
time, but it grows indefinitely and without bound. [...] An actual infinity is a completed infinite 
totality. Examples: Ù, —, C[0, 1], L2[0, 1], etc. Other examples: gods, devils, etc." [S.G. 
Simpson: "Potential versus actual infinity: Insights from reverse mathematics" (2015)] 
 
"Potential infinity refers to a procedure that gets closer and closer to, but never quite reaches, an 
infinite end. For instance, the sequence of numbers 1, 2, 3, 4, ... gets higher and higher, but it has 
no end; it never gets to infinity. Infinity is just an indication of a direction – it's 'somewhere off in 
the distance'. Chasing this kind of infinity is like chasing a rainbow or trying to sail to the edge of 
the world – you may think you see it in the distance, but when you get to where you thought it 
was, you see it is still further away. Geometrically, imagine an infinitely long straight line; then 
'infinity' is off at the 'end' of the line. Analogous procedures are given by limits in calculus, 
whether they use infinity or not. For example, limxØ0(sinx)/x = 1. This means that when we 
choose values of x that are closer and closer to zero, but never quite equal to zero, then (sinx)/x 
gets closer and closer to one. 

http://www.sgipt.org/wisms/geswis/mathe/ulorenze
https://plato.stanford.edu/archives/fall2014/entries/set-theory/
https://web.math.princeton.edu/~nelson/papers/hm.pdf
http://u.osu.edu/friedman.8/files/2014/01/Princeton532-1pa84c4.pdf
http://personal.psu.edu/t20/talks/uconn1504/talk.pdf
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 Completed infinity, or actual infinity, is an infinity that one 
actually reaches; the process is already done. For instance, let's put 
braces around that sequence mentioned earlier: {1, 2, 3, 4, ...}. With this 
notation, we are indicating the set of all positive integers. This is just one 
object, a set. But that set has infinitely many members. By that I don't 
mean that it has a large finite number of members and it keeps getting 
more members. Rather, I mean that it already has infinitely many 
members. 
 We can also indicate the completed infinity geometrically. For 
instance, the diagram at right shows a one-to-one correspondence 
between points on an infinitely long line and points on a semicircle. 
There are no points for plus or minus infinity on the line, but it is natural 
to attach those 'numbers' to the endpoints of the semicircle. 
 Isn't that 'cheating', to simply add numbers in this fashion? Not really; it just depends on 
what we want to use those numbers for. For instance, f(x) = 1/(1 + x2) is a continuous function 
defined for all real numbers x, and it also tends to a limit of 0 when x 'goes to' plus or minus 
infinity (in the sense of potential infinity, described earlier). Consequently, if we add those two 
'numbers' to the real line, to get the so-called 'extended real line', and we equip that set with the 
same topology as that of the closed semicircle (i.e., the semicircle including the endpoints), then 
the function f is continuous everywhere on the extended real line." [E. Schechter: "Potential 
versus completed infinity: Its history and controversy" (5 Dec 2009)] 
 
Here are some simple examples of potential infinity: 
 
The sequence of increasing circumferences (or diameters, or areas) of circles is potentially 
infinite because the circumference of a circle can become arbitrarily long, but it cannot be 
actually infinite because then it would not belong to a circle. An infinite "circumference" would 
have curvature zero, i.e., no curvature, and it could not be distinguished what is the inner side and 
what is the outer side of the circle. 
 
The length of periods of decimal representations of rational numbers is potentially infinite. The 
length is always finite although it has no upper bound. The decimal representation is equal to a 
geometric series, like 0.abcabcabc... = abcÿ(10-3 + 10-6 + 10-9 + ...) which converges to the limit 

3
310

1 10 999
−

− =
−
abc abc . A never repeating decimal sequence has an irrational limit. 

 
An interval of natural numbers without any prime number is called a prime gap. The sequence of 
prime gaps assumes arbitrarily large intervals but it cannot become actually infinite. None of the 
numbers n! + 2, n! + 3, n! + 4, ..., n! + n can be prime because n! = 1ÿ2ÿ3ÿ... ÿn contains 2, 3, ..., n 
as factors already. Therefore the set of gaps has no upper bound. It is potentially infinite. It is not 
actually infinite however, because there does not exist a gap with no closing prime number 
because there is no last prime number. 
 
Finally, the most familiar example is this: The (magnitudes of) natural numbers are potentially 
infinite because, although there is no upper bound, there is no infinite (magnitude of a) natural 
number. 

https://math.vanderbilt.edu/schectex/courses/thereals/potential.html
https://math.vanderbilt.edu/schectex/courses/thereals/potential.html
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Based on the statements collected in this chapter we can characterize the infinities of the set of 
countable cardinal numbers as follows: 
 
 Potential infinity: "n $m: n < m . 
 
For every countable cardinal number n, there exists a greater countable cardinal number m.  
 
 Actual infinity: $m "n: n § m . 
 
There exists a countable cardinal number1 m = ¡0 which is not less than any countable cardinal 
number n (or which is greater than every other countable cardinal number). 
 
Briefly, in potential infinity every natural number has a successor, in actual infinity all natural 
numbers have a non-natural number ω, with |ω| = ¡0, as their successor, namely "an ordinal 
number lim aν which is following next upon all aν by magnitude". [Cantor, p. 324] 
 
Generally, we can give the following formal definitions for the two alternatives: 
 
 A collection C is potentially infinite (is a proper class) ñ "A Œ C $B Œ C: A Õ B .  
 A collection C is finite or actually infinite (is a ZF-set) ñ $A Œ C: A = C . 
 
The distinction between potential infinity of analysis and actual infinity of set theory can best be 
understood by the sequence 0.1, 0.11, 0.111, ... of approximations to 1/9. The potentially infinite 
sequence is never complete, never reaching the limit. A gap of infinitely many missing terms of 
the sequence is always yawning before the limit. The actually infinite sequence 0.111... of all ¡0 
indexed digits however contains more than any natural number of digits because "n œ Ù: n < ¡0. 
No digit is missing between 0.1 and 1/9. The limit is determined by the sequence of digits. 
 
In analysis of classical mathematics an infinite sequence of digits 0.d1d2d3... is never considered 
complete and, therefore, cannot define a real number. But that is not required. Here the limit of 
the sequence is defined as a real number a such that the sequence (an) of rational partial sums or 
terms an approaches a as closely as desired. For every positive real number ε there exists an 
index nε such that for every index n ¥ nε the distance of the term an to the limit a is |a - an| < ε. 
For this definition it is not necessary that all terms exist. Therefore famous digit sequences like 
3.14... or such with a short period like 0.111... can be used as an abbreviation to denote the limit. 
As a general rule, the term a3 = 0.d1d2d3 is used to express the formula a = 0.d1d2d3... This is a 
bit sloppy though because the correct formula reads 0.d1d2d3... Ø a. 
 
In actual infinity, on the other hand, the limit is the term following next upon all terms with finite 
indices. Since there the complete digit sequence 0.d1d2d3... represents the sum of the complete 
sequence of partial sums, it cannot simultaneously denote the limit a in case of a strictly 
increasing or decreasing sequence. (For more detail cp. the section "Sequences and limits".) 
                                                 
1 The numerical character of all cardinal numbers is not only implied by the generic term "number" but 
also by their trichotomy properties: "Let a and b be any two cardinal numbers, then we have either a = b 
or a < b or a > b." [Cantor, p. 285] 
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 1.1 Cantor's original German terminology on infinite sets 
 
The reader fluent in German may be interested in the subtleties of Cantor's terminology on actual 
infinity the finer distinctions of which are not easy to express in English. While Cantor early used 
"vollständig" and "vollendet" to express "complete" and "finished", the term "fertig", expressing 
"finished" too but being also somewhat reminiscent of "ready", for the first time appeared in a 
letter to Hilbert of 26 Sep 1897, where all its appearances had later been added to the letter. 
 But Cantor already knew that there are incomplete, i.e., potentially infinite sets like the set 
of all cardinal numbers. He called them "absolutely infinite". The details of this enigmatic notion 
are explained in section 1.2 (see also section 4.1. – Unfortunately it has turned out impossible to 
strictly separate Cantor's mathematical and religious arguments.) 
 
 
 1.1.1 Vollständig 
 
"Wenn zwei wohldefinierte Mannigfaltigkeiten M und N sich eindeutig und vollständig, Element 
für Element, einander zuordnen lassen (was, wenn es auf eine Art möglich ist, immer auch noch 
auf viele andere Weisen geschehen kann), so möge für das Folgende die Ausdrucksweise 
gestattet sein, daß diese Mannigfaltigkeiten gleiche Mächtigkeit haben, oder auch, daß sie 
äquivalent sind." [Cantor, p. 119] 
 
"gegenseitig eindeutige und vollständige Korrespondenz" [Cantor, p. 238] 
 
"Die sämtlichen Punkte l unsrer Menge L sind also in gegenseitig eindeutige und vollständige 
Beziehung zu sämtlichen Punkten f der Menge F gebracht," [Cantor, p. 241] 
 
"Zwei wohlgeordnete Mengen M und N heissen von gleichem Typus oder auch von gleicher 
Anzahl, wenn sie sich gegenseitig eindeutig und vollständig unter beidseitiger Wahrung der 
Rangfolge ihrer Elemente auf einander beziehen, abbilden lassen;" [G. Cantor, letter to R. 
Lipschitz (19 Nov 1883)] 
 
"Zwei bestimmte Mengen M und M1 nennen wir äquivalent (in Zeichen: M ~ M1), wenn es 
möglich ist, dieselben gesetzmäßig, gegenseitig eindeutig und vollständig, Element für Element, 
einander zuzuordnen." [Cantor, p. 412] 
 
"doch gibt es immer viele, im allgemeinen sogar unzählig viele Zuordnungsgesetze, durch welche 
zwei äquivalente Mengen in gegenseitig eindeutige und vollständige Beziehung zueinander 
gebracht werden können." [Cantor, p. 413] 
 
"eine solche gegenseitig eindeutige und vollständige Korrespondenz hergestellt [...] irgendeine 
gegenseitig eindeutige und vollständige Zuordnung der beiden Mengen [...] auch eine 
gegenseitig eindeutige und vollständige Korrespondenz" [Cantor, p. 415] 
 
"Zwei n-fach geordnete Mengen M und N werden 'ähnlich' genannt, wenn es möglich ist, sie 
gegenseitig eindeutig und vollständig, Element für Element, einander so zuzuordnen," [Cantor, p. 
424] 
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 1.1.2 Vollendet 
 
"Zu dem Gedanken, das Unendlichgroße [...] auch in der bestimmten Form des Vollendet-
unendlichen mathematisch durch Zahlen zu fixieren, bin ich fast wider meinen Willen, weil im 
Gegensatz zu mir wertgewordenen Traditionen, durch den Verlauf vieljähriger wissenschaftlicher 
Bemühungen und Versuche logisch gezwungen worden," [Cantor, p. 175] 
 
"In den 'Grundlagen' formulire ich denselben Protest, indem ich an verschiedenen Stellen mich 
gegen die Verwechslung des Uneigentlich-unendlichen (so nenne ich das veränderliche 
Endliche) mit dem Eigentlich-unendlichen (so nenne ich das bestimmte, das vollendete 
Unendliche, oder auch das Transfinite, Überendliche) ausspreche. Das Irrthümliche in jener 
Gauss'schen Stelle besteht darin, dass er sagt, das Vollendetunendliche könne nicht Gegenstand 
mathematischer Betrachtungen werden; dieser Irrthum hängt mit dem andern Irrthum 
zusammen, dass er [...] das Vollendetunendliche mit dem Absoluten, Göttlichen identificirt, [...] 
Das Vollendetunendliche findet sich allerdings in gewissem Sinne in den Zahlen ω, ω + 1, ..., 
ωω, ...; sie sind Zeichen für gewisse Modi des Vollendetunendlichen und weil das 
Vollendetunendliche in verschiedenen, von einander mit der äussersten Schärfe durch den 
sogenannten 'endlichen, menschlichen Verstand' unterscheidbaren Modificationen auftreten 
kann, so sieht man hieraus deutlich wie weit man vom Absoluten entfernt ist, obgleich man das 
Vollendetunendliche sehr wohl fassen und sogar mathematisch auffassen kann." [G. Cantor, 
letter to R. Lipschitz (19 Nov 1883)] 
 
"da nun jeder Typus auch im letzteren Falle etwas in sich Bestimmtes, vollendetes ist, so gilt ein 
gleiches von der zu ihm gehörigen Zahl. [...] 'Eigentlichunendlichem = Transfinitum = 
Vollendetunendlichem = Unendlichseiendem = kategorematice infinitum' [...] dieser Unterschied 
ändert aber nichts daran, daß ω als ebenso bestimmt und vollendet anzusehen ist, wie ◊2," [G. 
Cantor, letter to K. Laßwitz (15 Feb 1884). Cantor, p. 395] 
 
"Wir wollen nun zu einer genaueren Untersuchung der perfekten Mengen übergehen. Da jede 
solche Punktmenge gewissermaßen in sich begrenzt, abgeschlossen und vollendet ist, so 
zeichnen sich die perfekten Mengen vor allen anderen Gebilden durch besondere Eigenschaften 
aus." [Cantor, p. 236] 
 
 
 1.1.3 Fertig 
 
"Die Totalität aller Alefs ist nämlich eine solche, welche nicht als eine bestimmte, wohldefinirte 
fertige Menge aufgefaßt werden kann. [...] 'Wenn eine bestimmte wohldefinirte fertige Menge 
eine Cardinalzahl haben würde, die mit keinem der Alefs zusammenfiele, so müßte sie 
Theilmengen enthalten, deren Cardinalzahl irgend ein Alef ist, oder mit anderen Worten, die 
Menge müßte die Totalität aller Alefs in sich tragen.' Daraus ist leicht zu folgern, daß unter der 
eben genannten Voraussetzung (einer best. Menge, deren Cardinalzahl kein Alef wäre) auch die 
Totalität aller Alefs als eine best. wohldefinirte fertige Menge aufgefaßt werden könnte." [G. 
Cantor, letter to D. Hilbert (26 Sep 1897)] 
 
"In meinen Untersuchungen habe ich, allgemein gesprochen, 'fertige Mengen' im Auge und 
verstehe darunter solche, bei denen die Zusammenfassung aller Elemente zu einem Ganzen, zu 
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einem Ding für sich möglich ist, so daß eine 'fertige M.' eventuell selbst als Element einer andern 
Menge gedacht werden kann. [...] Derartige Mengen, die die Bedingung 'fertig' nicht erfüllen, 
nenne ich 'absolut unendliche' Mengen. 
 Nehmen wir einmal an, es könnten alle Alefs coexistieren, so führt uns dies zu einem 
Widerspruch. Denn alsdann würden alle Alefs, wenn wir sie nach ihrer Größe geordnet denken, 
eine wohlgeordnete, fertige Menge M bilden. Mit jeder wohlgeordneten fertigen Menge M von 
Alefs ist aber nach dem Bildungsgesetz der Alefs ein bestimmtes Alef gegeben, welches der 
Größe nach auf alle Individuen von M nächstfolgt. 
 Hier hätten wir also den Widerspruch eines Alefs, das größer wäre als alle Alefs, folglich 
auch größer als es selbst. Ich schließe also, daß alle Alefs nicht coexistent sind, nicht zu einem 
'Ding für sich' zusammengefasst werden können, daß sie mit anderen Worten keine 'fertige 
Menge' bilden. 
 Der Widerspruch erscheint mir so, als wenn wir von einer 'endlichen Zahl' sprechen 
wollten, die größer wäre als 'alle endlichen Zahlen'. Nur ist hier der Unterschied, daß alle 
endlichen Zahlen eine fertige Menge bilden, die nach oben von der kleinsten transfiniten 
Cardinalzahl ¡0 gewissermaßen begrenzt wird. Die absolute Grenzenlosigkeit der Menge aller 
Alefs erscheint als Grund der Unmöglichkeit, sie zu einem Ding für sich zusammenzufassen. 
 In dem von Ihnen vorgetragenen Beispiele wird aber die Menge aller Alefs als eine 
'fertige M.' vorausgesetzt und damit löst und erklärt sich der Widerspruch, auf den Sie durch 
Anwendung von Sätzen geführt werden, die nur für fertige Mengen bewiesen und gültig sind." 
[G. Cantor, letter to D. Hilbert (6 Oct 1898)] 
 
"Aus der Definition: 'Unter einer fertigen Menge verstehe man jede Vielheit, bei welcher alle 
Elemente ohne Widerspruch als zusammenseiend und daher als ein Ding für sich gedacht werden 
können.' ergeben sich mancherlei Sätze, unter Anderm diese: 
I 'Ist M eine fert. Menge, so ist auch jede Theilmenge von M eine fert. Menge.' 
II 'Substituirt man in einer fert. M. an Stelle der Elemente fertige Mengen, so ist die hieraus 
resultirende Vielheit eine fertige M.' 
III 'Ist von zwei aequivalenten Vielheiten die eine eine fert. M., so ist es auch die andere.' 
IV 'Die Vielheit aller Theilmengen einer fertigen Menge M ist eine fertige Menge.' Denn alle 
Theilmengen von M sind 'zusammen' in M enthalten; der Umstand, daß sie sich theilweise 
decken, schadet hieran nichts. 
 Daß die 'abzählbaren' Vielheiten {αν} fertige Mengen sind, scheint mir ein axiomatisch 
sicherer Satz zu sein, auf welchem die ganze Functionentheorie beruht. Dagegen scheint mir der 
Satz 'Das Linearcontinuum ist eine fertige Menge' ein beweisbarer Satz zu sein und zwar so: Das 
Linearcont. ist aequivalent der Menge S = {f(ν)} wo f(ν) die Werthe 0 oder 1 haben kann. [...] Ich 
behaupte also S ist eine 'fertige Menge'. [...] Nach Satz IV ist aber die Vielheit aller Theilmengen 
von {ν} eine fertige Menge; dasselbe gilt also nach Satz III auch für S und für das 
Linearcontinuum. 
 Ebenso dürfte das Prädicat 'fertig' für die Mengen ¡1, ¡2, ... beweisbar sein." [G. Cantor, 
letter to D. Hilbert (10 Oct 1898)] 
 
"Unter Bezugnahme auf mein Schreiben v. 10ten, stellt sich bei genauerer Erwägung heraus, daß 
der Beweis des Satzes IV keineswegs so leicht geht. Der Umstand, daß die Elemente der 'Vielheit 
aller Theilmengen einer fertigen Menge' sich theilweise decken, macht ihn illusorisch. In die 
Definition der fert. Menge wird die Voraussetzung des Getrenntseins resp. Unabhängigseins der 
Elemente als wesentlich aufzunehmen sein." [G. Cantor, letter to D. Hilbert (12 Oct 1898)] 
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"Ich habe mich jetzt daran gewöhnt, das was ich früher 'fertig' genannt, durch den Ausdruck 
'consistent' zu ersetzen;" [G. Cantor, letter to D. Hilbert (9 May 1899)] 
 
"Die Totalität der Alefs lässt sich nicht als eine bestimmte fertige Menge auffassen." [G. Cantor, 
letter to A. Schönflies via D. Hilbert (28 Jun 1899)] 
 
"Eine Vielheit kann nämlich so beschaffen sein, daß die Annahme eines 'Zusammenseins' aller 
ihrer Elemente auf einen Widerspruch führt, so daß es unmöglich ist, die Vielheit als eine 
Einheit, als 'ein fertiges Ding' aufzufassen. Solche Vielheiten nenne ich absolut unendliche oder 
inkonsistente Vielheiten." [G. Cantor, letter to R. Dedekind (3 Aug 1899)] 
 
"Zu Elementen einer Vielheit, können nur fertige Dinge genommen werden, nur Mengen, nicht 
aber inconsistente Vielheiten, in deren Wesen es liegt, daß sie nie als fertig und actuell existirend 
gedacht werden kann." [G. Cantor, letter to P. Jourdain (9 Jul 1904)] 
 
"'Unter einer Menge verstehen wir jede Zusammenfassung von ... zu einem Ganzen', worin doch 
liegt, daß Vielheiten, denen das Gepräge des fertigen Ganzen oder der Dinglichkeit nicht 
nachgesagt werden kann, nicht als 'Mengen' im eigentlichen Sinne des Wortes anzusehen sind." 
[G. Cantor, letter to G. Chisholm-Young (9 Mar 1907)] 
 
 
 1.2 Cantor's notion of the absolute infinite 
 
We find the first appearance of the term "absolute" in relation with the infinite in Cantor's paper 
on trigonometric series [G. Cantor: "Über die Ausdehnung eines Satzes aus der Theorie der 
trigonometrischen Reihen", Math. Annalen 5 (1872) pp. 123-132] where it simply denotes a 
potentially infinite extension of the number domain. "The notion of number as far as developed 
here bears the seed of an in itself necessary and absolutely infinite extension." [Cantor, p. 95] 
 
Cantor uses the notion of absolute infinity to address God as well as the transfinite hierarchy. For 
instance in his paper "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", Leipzig (1883) he 
writes that "the true infinite or absolute is God which cannot be determined."1 Simultaneously he 
uses the term "absolute" already for the infinite hierarchy of infinities when he talks about 
"natural sections in the absolutely infinite sequence of real whole numbers."23 
 
With respect to God "the absolute can only be acknowledged but never be recognized. [...] The 
absolutely infinite number sequence appears to me in some sense as an appropriate symbol of the 
absolute compared to which the infinity of the first number class [...] appears like a vanishing 
nothing. [...] The different cardinalities form an absolutely infinite sequence." [Cantor, p. 205] 
 

                                                 
1 "daß andrerseits das wahre Unendliche oder Absolute, welches Gott ist, keinerlei Determination 
gestattet. Was den letzteren Punkt anbetrifft, so stimme ich, wie es nicht anders sein kann, demselben 
völlig bei," [Cantor, p. 175]. 
2 "so daß wir natürliche Abschnitte in der absolut unendlichen Folge der realen ganzen Zahlen erhalten, 
welche Abschnitte ich Zahlenklassen nenne." [Cantor, p. 167] 
3 Cantor addresses his transfinite numbers as "real whole numbers". 
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"As I see, you use the expression 'absolute' in the same sense as I use 'proper'1. I however use the 
word 'absolute' only for that which cannot further be increased or completed, in analogy to the 
'absolute' in metaphysics. My proper infinite or, if you prefer, transfinite numbers ω, ω + 1, ... are 
not 'absolute', because, although not being finite, they can be increased. The absolute however is 
incapable of being increased, and therefore also is inaccessible to us. 
 As far as I remember, Hegel does not have my intermediate notion of 'proper infinite' but 
distinguishes only between the 'bad infinite' which I call 'improper infinite' and the 'absolute 
infinite' which cannot be increased. Kant, I definitely know that, does not have a clue of my 
intermediate notion. He always makes the mistake to believe that the limits of the finite cannot be 
extended, which leads to a lot of false conclusions." [G. Cantor, letter to W. Wundt (5 Oct 1883)] 
 
In a letter to Eneström Cantor confesses his belief in the actually infinite God outside of the 
world and accuses Gauss, because of his opinion (see Gauss in section V), of short-sightedness 
and of supporting the horror infinity which, according to Cantor, is a feature of the modern 
materialistic view of things.2 
 
Cantor acknowledges "an 'Infinitum aeternum increatum sive Absolutum', which is related to 
God and his attributes," [G. Cantor, letter to J.B. Franzelin (22 Jan 1886). Cantor, p. 399] "A.-U. 
{{actual infinite}} that can be increased or Transfinitum. A.-U. that cannot be increased or 
Absolutum." [G. Cantor, letter to A. Eulenburg (28 Feb 1886). Cantor, p. 405] 
 
Cantor deplores that the traditional view of the infinite, come down from Aristotle, distinguishes 
between potential infinity and the absolute infinite in God, but misses his transfinitum which is 
between both.3 "When I deal with the 'transfinite', the absolute infinite is not meant, which as 
actus purus and ens simplicissimum4 neither can be increased nor decreased and only exists in 
Deo or rather as Deus optimus maximus." [G. Cantor, letter to I. Jeiler (13 Oct 1895)] 
 
In later years Cantor often pointed out that there are absolute infinities which cannot be consistent 
(fertige) sets. But we have seen above that he knew about this fact in earlier years already. 
 

                                                 
1 eigentlich 
2 "Deo extramundano aeterno omnipotenti sive natura naturante, wo es das Absolute heißt, [...] Wenn 
aber aus einer berechtigten Abneigung gegen solche illegitime A.-U. sich in breiten Schichten der 
Wissenschaft, unter dem Einflusse der modernen epikureisch-materialistischen Zeitrichtung, ein 
gewisser Horror Infiniti ausgebildet hat, der in dem erwähnten Schreiben von Gauß seinen klassischen 
Ausdruck und Rückhalt gefunden, so scheint mir die damit verbundene unkritische Ablehnung des 
legitimen A.-U. kein geringeres Vergehen wider die Natur der Dinge zu sein, die man zu nehmen hat, 
wie sie sind, und es läßt sich dieses Verhalten auch als eine Art Kurzsichtigkeit auffassen, welche die 
Möglichkeit raubt, das A.-U. zu sehen, obwohl es in seinem höchsten, absoluten Träger uns geschaffen 
hat und erhält und in seinen sekundären, transfiniten Formen uns allüberall umgibt und sogar unserm 
Geiste selbst innewohnt." [G. Cantor, letter to G. Eneström (4 Nov 1885). Cantor, pp. 372 & 374f] 
3 "liegt in der Hauptsache an der Mangelhaftigkeit der von Aristoteles (oder von noch älteren Philosophen) 
herrührenden Definition des Unendlichen, die entweder nur auf das potenziale Unendliche oder nur auf 
das absolut Vollkommene in Gott passen, die aber nicht auf dasjenige Unendliche genügend Rücksicht 
nehmen, welches ich Transfinitum nenne, also auf das, 'was zwar in sich constant und grösser als jedes 
Endliche, aber doch noch unbeschränkt vermehrbar und insofern begrenzt ist'," [G. Cantor, letter to A. 
Schmid (26 Mar 1887)] 
4 Pure act and simplest being are scholastic definitions of God. 
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"Totalities which cannot be comprehended by us as 'sets' (one example being the totality of all 
alephs as has been proven above) I have called 'absolutely infinite' totalities many years ago 
already and have distinguished them sharply from the transfinite sets." [G. Cantor, letter to D. 
Hilbert (26 Sep 1897)] 
 
"Infinite sets however, the totality of which cannot be thought of as 'being together', as 'a thing in 
itself', as an 'αϕωρισμενον', which therefore in this totality cannot be an object of further 
mathematical considerations, I call 'absolutely infinite sets'; the 'set of all alephs' belongs to 
them." [G. Cantor, letter to D. Hilbert (2 Oct 1897)] 
 
"Such sets, which do not satisfy the condition 'fertig' I call 'absolutely infinite sets'. [...] The 
absolute boundlessness of the set of all alephs appears as the reason for the impossibility to 
combine them as a thing in itself." [G. Cantor, letter to D. Hilbert (6 Oct 1898)] 
 
"Starting from the notion of a determined multitude (a system, an embodiment1) of things, I have 
recognized the necessity to distinguish two kinds of multitudes (I always mean determined 
multitudes). A multitude can have a constitution such that the assumption of the 'being together' 
of all its elements leads to a contradiction such that it is impossible to comprehend this multitude 
as a unit, as a 'finished thing'. Such multitudes I call absolutely infinite or inconsistent multitudes. 
As we easily convince ourselves the 'embodiment of all thinkable' is such a multitude. [...] 
 A. The system Ω of all numbers is an inconsistent, an absolutely infinite multitude. [...] 
As we convince ourselves the creation process of the alephs and of their corresponding number 
classes of the system Ω is absolutely unbounded. 
 B. The system 9æ of all alephs ¡0, ¡1, ..., ¡ν, ... ¡ω0

, ¡ω0+1, ... ¡ω1
, ¡ω1+1, ... in their order 

of magnitude forms a sequence similar to the system Ω and therefore is also an inconsistent 
absolutely infinite sequence." [G. Cantor, letter to R. Dedekind (3 Aug 1899). Cantor, p. 443ff2] 
 
"Consistent multitudes I call 'sets'. Every multitude that is not 'consistent' I call 'inconsistent' or 
'absolutely infinite'." [G. Cantor, letter to D. Hilbert (27 Jan 1900)] 
 
"I distinguish two kinds of multitudes, consistent and inconsistent ones (the latter I also call 
absolutely infinite multitudes). [...] It is obvious that cardinal numbers befit only the consistent 
multitudes or sets. An inconsistent multitude has no cardinal number and no order type (just 
because of its inconsistency)." [G. Cantor, letter to P. Jourdain (4 Nov 1903)] 
 
"What lies above all finite and transfinite is not a 'Genus'; it is the only completely individual unit 
within which all is contained, which comprises all, the 'absolute', incomprehensible to human 
intellect, therefore not subject to mathematics, the 'ens simplicissimum', the 'actus purissimus', 
which by many is called 'God'." [G. Cantor, letter to G. Chisholm-Young (20 Jun 1908)] 
 
                                                 
1 Inbegriff 
2 "the final section of {{Dedekind's}} correspondence with Cantor starts only in July 1899. This was the 
part from which extracts were published in the edition of Cantor's papers by Zermelo using the 
transcriptions made by Cavaillès [...] the standard of editing of the extracts is bad. [...] The collection 
begins with a letter from Cantor of 28 July 1899. lt is the most famous of them all [...] There does not 
exist a letter in this form." [I. Grattan-Guinness: "The rediscovery of the Cantor-Dedekind 
correspondence", Jahresbericht DMV 76 (1974) p. 126f] 
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II   Transfinite set theory 
 
Transfinite set theory is based on the possibility to define infinite sets M, N and to prove their 
equinumerosity by bijection, i.e., one-to-one correspondence or surjective one-to-one mapping. 
This is denoted by |M| = |N| or by M ~ N. 
 
"By a 'manifold' or 'set' I understand in general every Many which can be thought as a One, i.e., 
every embodiment of definite elements which by a law can be connected to become a whole," [G. 
Cantor: "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", Leipzig (1883). Cantor, p. 204] 
 
"By a 'set' we understand every collection M of definite well-distinguished objects m of our 
visualization or our thinking (which are called the 'elements' of M) into a whole." [G. Cantor: 
"Beiträge zur Begründung der transfiniten Mengenlehre 1", Math. Annalen 46 (1895) § 1. Cantor, 
p. 282] 
 
"If two well-defined manifolds, M and N, can be related completely, element by element, to each 
other [...], then for the following the expression may be permitted that these manifolds have the 
same cardinality or that they are equivalent."1 
 
"Every well-defined set has a definite cardinality; two sets are ascribed the same cardinality if 
they mutually uniquely, element by element, can be mapped onto each other."2 
 
"Two sets are called 'equivalent' if they mutually uniquely, element by element, can be mapped 
onto each other."3 
 
This definition has not been changed since Cantor's days and opinions: 
 
"Bijection: A transformation which is one-to-one and a surjection (i.e., 'onto')." [E.W. Weisstein: 
"Bijection", Wolfram MathWorld] Obviously here "one-to-one" means "element by element". 
 
"In mathematics, a bijection, bijective function or one-to-one correspondence is a function 
between the elements of two sets, where each element of one set is paired with exactly one 
element of the other set, and each element of the other set is paired with exactly one element of 
the first set. There are no unpaired elements." ["Bijection", Wikipedia] 
 
Whereas a bijection is obviously sufficient to prove the equinumerosity of finite sets, Cantor has 
expanded its domain to include infinite sets. The proof of equinumerosity by bijection between 
infinite sets, M and N, is justified by mathematical induction: If every element of set M can be 
                                                 
1 "Wenn zwei wohldefinierte Mannigfaltigkeiten M und N sich eindeutig und vollständig, Element für 
Element, einander zuordnen lassen (was, wenn es auf eine Art möglich ist, immer auch noch auf viele 
andere Weisen geschehen kann), so möge für das Folgende die Ausdrucksweise gestattet sein, daß diese 
Mannigfaltigkeiten gleiche Mächtigkeit haben, oder auch, daß sie äquivalent sind." [Cantor, p. 119] 
2 "Jeder wohldefinierten Menge kommt danach eine bestimmte Mächtigkeit zu, wobei zwei Mengen 
dieselbe Mächtigkeit zugeschrieben wird, wenn sie sich gegenseitig eindeutig, Element für Element 
einander zuordnen lassen." [Cantor, p. 167] 
3 "Zwei Mengen werden hierbei 'äquivalent' genannt, wenn sie sich gegenseitig eindeutig, Element für 
Element, einander zuordnen lassen." [Cantor, pp. 380 & 441] 

http://mathworld.wolfram.com/Bijection.html
https://en.wikipedia.org/wiki/Bijection
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related to one and only one corresponding element of set N and vice versa, and if there is never 
an obstacle or halt1 in this process of assignment, then both infinite sets are in bijection. 
 
Since the relation of the elements mk and nk is tantamount to the relation of finite initial segments, 
we can state: If a bijection "¨" holds for all finite initial segments, then it holds for the whole 
sets: 
 "k œ Ù: mk ¨ nk ‹ "k œ Ù: (m1, m2, ..., mk) ¨ (n1, n2, ..., nk) ‹ M ~ N . 
 
"The equivalence of sets is the necessary and unmistakable criterion for the equality of their 
cardinal numbers. [...] If now M ~ N, then this is based on a law of assigning, by which M and N 
are mutually uniquely related to each other; here let the element m of M be related to the element 
n of N." [Cantor, p. 283f] 
 
"As 'cardinality' or 'cardinal number' of M we denote the general notion which, aided by our 
active intellectual capacity, comes out of the set M by abstracting from the constitution of its 
different elements m and of the order in which they are given." [G. Cantor: "Beiträge zur 
Begründung der transfiniten Mengenlehre", Math. Annalen 46 (1895). Cantor, p. 282] 
 
All well-ordered2 sets can be compared. They have the same number if they, by preserving their 
order, can be uniquely mapped or counted onto each other.3 "Therefore all sets are 'countable' in 
an extended sense, in particular all 'continua'." [G. Cantor, letter to R. Dedekind (3 Aug 1899)] 
 
"'Infinite definitions' (that do not happen in finite time) are non-things. If König's theorem was 
true, according to which all 'finitely definable' real numbers form an embodiment of cardinality 
¡0, this would imply that the whole number-continuum was countable, which is certainly false. 
 The question is: which error underlies the alleged proof of his wrong theorem? 
 The error (which also can be found in a note by a Mr. Richard in the last issue of the Acta 
Mathematica, which note Mr. Poincaré is keen to emphasize in the last issue of the Revue de 
Métaphysique et de Morale) is, as it appears to me, this one: 
 It is presupposed that the system {B} of notions B, which possibly have to be used to 
define real number-individuals is finite or at most countably infinite. 
 This assumption must be an error because otherwise this would imply the wrong theorem 
'the number-continuum has cardinality ¡0'. 
 Am I mistaken, or am I right?" 
[G. Cantor, letter to D. Hilbert (8 Aug 1906)] 
 
Note: To apply the notion of "cardinality" or "number" requires different elements, i.e., elements 
that are distinct and can be distinguished and well-ordered. Only definable elements can be 
uniquely related to each other. One-to-one requires to distinguish each "one". 
                                                 
1 "und es erfährt daher der aus unsrer Regel resultierende Zuordnungsprozeß keinen Stillstand." [Cantor, p. 
239] 
2 "Der Begriff der wohlgeordneten Menge weist sich als fundamental für die ganze Mannigfaltigkeitslehre 
aus." [Cantor, p. 169] 
3 "Dabei nenne ich zwei wohlgeordnete Mengen von demselben Typus und schreibe ihnen gleiche Anzahl 
zu, wenn sie sich unter Wahrung der festgesetzten Rangordnung ihrer Elemente gegenseitig eindeutig 
aufeinander abbilden, oder wie man sich gewöhnlich ausdrückt, aufeinander abzählen lassen." [G. Cantor, 
letter to W. Wundt (5 Oct 1883)] 
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 2.1 Countable sets 
 
If a bijection between the set Ù of natural numbers and a set M is possible, M is called "countably 
infinite" or briefly "countable". (Note: finite sets are usually called countable too.) This is written 
as |M| = |Ù| = ¡0 or Card(M) = Card(Ù). The elements of a countable set can be arranged in form 
of an infinite sequence (mn) = m1, m2, m3, ... . 
 
So the set of all positive rational numbers is countable as was shown by Cantor [Cantor, p. 126. 
G. Cantor, letter to R. Lipschitz (19 Nov 1883)] by this sequence 
 
 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, ... 
 
where the sum s of numerator and denominator grows stepwise by 1, and for fixed sum the 
numerator grows stepwise by 1 from minimum 1 to maximum s - 1. If repeating values of 
fractions are eliminated, every positive rational number appears exactly once, if not, we get the 
sequence of all positive fractions where k = (m + n - 1)ÿ(m + n - 2)/2 + m is the index or position 
of fraction m/n. [Cantor, p. 132] Inserting the corresponding negative fraction immediately before 
or after the positive one (and starting with zero) shows the countability of the set – of all rational 
numbers, |–| = ¡0, or of the set of all fractions, |{m/n | m œ Ÿ, n œ Ù}| = ¡0. 
 
It is also possible to write all positive fractions in an infinite matrix in 
order to string them together as is shown in the figure at right. Every 
fraction appears only once, every value appears infinitely often in the 
string. But this does not damage countability. The rational numbers are 
countable, independently of their multiplicity. If desired, all the 
repetitions can be eliminated by hand. This method, adopted from 
Cauchy, is sometimes called Cantor's first diagonal method. 
 
There are many other methods to enumerate all fractions or to show an 
injective mapping into all integers which also proves their countability. 
When mapping the fraction ≤m/n to the integer ≤2m3n then this mapping 
is injective because of the uniqueness of prime factor decomposition. 
 
The figure also shows that a set of ¡0ÿ¡0 elements is countable, i.e., it has the cardinal number 
¡0ÿ¡0 = ¡0

2 = ¡0. From that it is easy to see that for every n œ Ù: ¡0
n = ¡0. 

 
It is even possible to enumerate the set ¿ of all algebraic numbers, i.e., all solutions of 

polynomial equations ν
ν

ν 0

0
n

a x
=

=∑  with integer coefficients aν and finite degree n, i.e., an ≠ 0. 

Ordering the polynomials as usual according to their degree, it is impossible to leave the first 
degree (and thus the rational numbers), because the coefficients a0 already exhaust the whole set 
of integers. But when ordering the polynomials by their height H, i.e., the sum of their degree n 
and all absolute values of their coefficients aν 
 
 H = n + |a0| + |a1| + |a2| + ... + |an| 
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then for every height H there is a finite number of polynomials. Every polynomial gets its place 
in the enumeration, and since every polynomial of degree n has at most n different roots, every 
root can be inserted into a sequence containing all of them. So the set of roots of all polynomials 
is countable. It is the set ¿ of all algebraic numbers. [R. Dedekind, private note (29 Nov 1873). 
Cantor, p. 116)] 
 

 Height                     Equations 
              Algebraic Numbers 
    1       – 
    2             1x1 = 0 
            0 
    3        1x2 = 0     2x1 = 0     1x1 ± 1 = 0 
                     0       0            ±1 
    4  1x3 = 0     2x2 = 0     3x1 = 0     1x2 ± 1 = 0     2x1 ± 1 = 0     1x1 ± 2 = 0 
             0  0      0             ±1    ±i                ±1/2                  ±2 

 
We note that it is obvious from the table that all algebraic numbers will appear infinitely often. If 
desired, all repetitions can be eliminated by hand (up to every chosen height). 
 
König knew already in 1905 that the set of all finite definitions is countable. [Julius König: "Über 
die Grundlagen der Mengenlehre und das Kontinuumproblem", Math. Ann. 61 (1905) p. 157] 
Obviously it is possible to enumerate all finite strings of text. With no restriction to generality we 
can write every text using a binary alphabet {0, 1} (otherwise it could not be published via 
internet). Then the sequence of all finite expressions is 0, 1, 00, 01, 10, 11, 000, ... . 
 
Of course all infinite subsets of a countable set are infinite countable sets. [Cantor, p. 293] This is 
a special case of the Schröder-Bernstein Theorem [E. Borel: "Leçons sur la théorie des 
fonctions", Gauthier-Villars, Paris (1898) p. 103ff]: If |M| § |N| and |N| § |M|, then |M| = |N|. 
 
Proof: According to M ~ N1 Õ N and N ~ M1 Õ M we define disjoint subsets: 
 
    M := A » B » C and M1 := A » B such that 
  (A » B » C) ~ A := (A1 » B1 » C1) where A ~ A1 and C ~ C1  
  (A1 » B1 » C1) ~ A1 := (A2 » B2 » C2) where A1 ~ A2 and C1 ~ C2  
  (A2 » B2 » C2) ~ A2 := (A3 » B3 » C3) where A2 ~ A3 and C2 ~ C3  
  and so on. 
 
By definition C ~ C1 ~ C2 ~ C3 ~ ... . 
Define D := A … A1 … A2 … A3 … ... . 
 
Then  M = A » B » C =  B » C » B1 » C1 » B2 » C2 » ... » D      (*) 
and   M1 =     A » B     = B » C1 » B1 » C2 » B2 » C3 » ... » D . 
 
All sets are disjoint. The sets directly beneath those of eq. (*) are equivalent to them. É 
 

http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0061/PPN235181684_0061___LOG_0016.pdf
http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0061/PPN235181684_0061___LOG_0016.pdf
https://archive.org/details/leconstheoriefon00borerich/page/n115
https://archive.org/details/leconstheoriefon00borerich/page/n115
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This theorem has a remarkable history. Repeatedly stated (and claimed as proven) between 1882 
[G. Cantor, letter to R. Dedekind (5 Nov 1882)]1 and 1895 [Cantor, p. 285] but never really 
proved by Cantor, this theorem is called after Ernst Schröder and Felix Bernstein, because both 
proved it. Alwin Korselt however discovered a flaw in Schröder's proof in 1902. Alas the 
Mathematische Annalen did not publish the correction before 1911. [A. Korselt: "Über einen 
Beweis des Äquivalenzsatzes", Math. Ann. 70 (1911) p. 294] Nevertheless it took some time 
until this correction received public attention. Ernst Zermelo noted in his edition of Cantor's 
collected works as late as in 1932: "The theorem, here mentioned without proof [...] has been 
proved only in 1896 by E. Schröder and 1897 by F. Bernstein.2 Since then this 'equivalence-
theorem' is considered of the highest importance in set theory." [Cantor, p. 209] We learn from 
this story that wrong proofs can survive in mathematics over many decades. 
 
 
 2.2 Uncountable set of transcendental numbers 
 
The set Ù of all natural numbers as well as all its infinite subsets have cardinality ¡0. The set of 
all rational numbers and the set of all fractions and even the set of all algebraic numbers have 
cardinality ¡0. This recognition would not have been exciting and would not have stirred up so 
much ado, if ¡0 had remained the only infinite cardinal number. In 1874 however Cantor showed 
by his first uncountability proof that the set — of all real numbers is not countable but has a 
greater cardinality. This could only be understood because shortly before Joseph Liouville had 
shown the existence of transcendental numbers [J. Liouville: "Sur des classes trés étendues de 
quantités dont la valeur n'est ni rationnelle ni même réductible à des irrationnelles algébriques", 
Comptes Rendus Acad. Sci. Paris, 18 (1844) pp. 883-885 & 910-911]. Therefore Cantor's result 
was considered a non-constructive proof of the existence of transcendental numbers. 
 
 
 2.2.1 Transcendental numbers 
 
Theorem   If α is an algebraic number of degree3 n then the inequality  
 

 1

1α n

u
v v +− <          (*) 

 
has only a finite set of solutions. See "History of the infinite", Lesson HI10. 
 
Proof: The minimal polynomial p(x) of an irrational number α has no rational zero. Otherwise 
p(x) could be divided by the linear factor (x - u/v) resulting in a polynomial of smaller degree with 
root α. Therefore p(x) ≠ 0 for rational x = u/v (with u œ Ÿ and v œ Ù). 
                                                 
1 Cantor claims, in colloquial German, M Õ M' ⁄ M' Õ M'' ⁄ M ¨ M'' fl M ~ M' ~ M''. This "intermediate-
set theorem" is equivalent to the Schröder-Bernstein equivalence theorem. 
2 It was proved, but not published by Dedekind in 1887 already. ["Satz von Cantor-Bernstein-Schröder", 
Wikipedia] 
3 The minimal polynomial with root α is of the form p(x) = 

0

n
k

k
k

a x
=
∑ with ak œ Ÿ and an ≠ 0. 

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0070?tify=%7b%22pages%22:%5b306%5d,%22panX%22:0.469,%22panY%22:0.485,%22view%22:%22scan%22,%22zoom%22:0.383%7d
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0070?tify=%7b%22pages%22:%5b306%5d,%22panX%22:0.469,%22panY%22:0.485,%22view%22:%22scan%22,%22zoom%22:0.383%7d
https://archive.org/details/1Liouville
https://archive.org/details/1Liouville
https://www.hs-augsburg.de/homes/mueckenh/HI/HI10.PPT
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1
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because the numerator is a non-zero integer. We get (see figure) 
 

 
0

α

up
v Cu

v

⎛ ⎞ −⎜ ⎟
⎝ ⎠ =

−
 

 
with a finite positive constant C, the absolute value of the slope of the secant. 
 
Inserting this into (**) supplies 
 

 1 αn

u up C
v v v

⎛ ⎞≤ = − ⋅⎜ ⎟
⎝ ⎠

. 

 
Together with the stated inequality (*) we obtain 
 

 1

1 1αn n

u
C v v v +≤ − <

⋅
. 

 
This restricts the possible natural denominators of fractions satisfying (*) to v < C. The stated 
inequality (*) can only be satisfied by fractions in the proximity of α which have denominators 
less than C. There can be only a finite number of such fractions. É 
 
In addition Liouville constructed a number 
 

 !
1

1
10k

k

L
∞

=

= ∑  

 
such that (*) has infinitely many solutions for every n.  
 

For every m œ Ù there exist infinitely many rational numbers !

1
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10-(n+m)!(n+1) is always greater than the whole remaining series starting with 10-(n+m)!(n+m+1). 
Therefore there are infinitely many solutions of Liouville's inequality for Liouville's number L. 
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 2.2.2 Cantor's first uncountability proof 
 
Consider an infinite sequence of different real numbers (aν) = a1, a2, a3, ... which is given by any 
rule, then we can find in any open interval (α, β) a number η (and, hence, infinitely many of such 
numbers) which is not a member of the sequence (aν). 
 
Take the first two members of sequence (aν) which fit into the given interval (α, β). They form 
the interval (α', β'). The first two members of sequence (aν) which fit into this interval (α', β') 
form the interval (α'', β'') and so on. The result is a sequence of nested intervals. Now there are 
only two possible cases. 
 
Either the number of intervals is finite. Inside the last one (α(ν), β(ν)) there cannot be more than 
one member of the sequence. Any other number of this interval (α(ν), β(ν)) can be taken as η. 
 
Or the number of intervals is infinite. Then both, the strictly increasing sequence α, α', α'', ... and 
the strictly decreasing sequence β, β', β'', ... converge to different limits α¶ and β¶ or they 
converge to the same limit α¶ = β¶ (a case which always occurs in — if the sequence contains all 
rational numbers; due to the denumerability of – this is possible). α¶ = β¶ = η is not a member 
of sequence (aν). If α¶ < β¶, then any number of (α¶, β¶) satisfies the theorem. [G. Cantor: 
"Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen", Crelles Journal f. 
Mathematik 77 (1874) pp. 258-262. Cantor, p. 117] 
 
So far Cantor's proof. It is an existence proof for transcendental numbers, since all algebraic 
numbers have been shown countable. We note that the "either"-case cannot occur if sequence (aν) 
contains at least all rational numbers because any interval (α(ν), β(ν)) Õ – contains infinitely 
many and so at least two rational numbers forming the next interval (α(ν+1), β(ν+1)) Õ –. 
 
 
 
 2.2.3 Cantor's second uncountability proof 
 
Much better known is Cantor's second uncountability proof, his diagonal argument, also denoted 
as Cantor's second diagonal method. It is assumed that all binary sequences can be enumerated. 
This assumption is then contradicted. If all real numbers can be represented by infinite binary 
sequences, this proof is tantamount to proving the non-denumerability of the set of real numbers. 
Cantor, in his original version [G. Cantor: "Über eine elementare Frage der Mannigfaltigkeits-
lehre", Jahresbericht der DMV I (1890-91) pp. 75-78. Cantor, p. 278ff], applied binary sequences 
built from the letters m and w, probably taken from the German words männlich (male) and 
weiblich (female). No limits for these infinite sequences have been defined. So it only shows the 
uncountability of all infinite bit sequences. Nowadays the proof is usually applied to the set of 
real numbers of the unit interval (0, 1) represented by infinite sequences of decimal digits. The 
set of all real numbers of any given real interval cannot be written as a sequence. 
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For proof assume that the set of all real numbers rn = 0.an1an2an3... of the real interval (0, 1) has 
been enumerated, i.e., has been written as a sequence or list:  
 
    n        rn 
  
       1 0.a11a12a13... 
    2 0.a21a22a23... 
    3 0.a31a32a33... 
    ...  ... 
 
 
If the diagonal digit ann of each real number rn is replaced by  
 
 bn ∫ ann     with     1 § bn § 8 
 
(in order to avoid problems with 0.0999... and 0.1000...)1 we construct the antidiagonal number 
 
 d = 0.b1b2b3...  
 
belonging to the real interval (0, 1) but differing from any rn of the list. This shows that this list 
and every such list must be incomplete. An example is the list 
 

    n  rn 
  
       1 0.000111199999... 
    2 0.123456789123... 
    3 0.555555555555... 
    4 0.314159265358... 
    5 0.101001000100... 
    ...  ... 
 
with the diagonal sequence of digits 0.02510... and the antidiagonal number d = 0.13621... . 
(Here every digit ann differs from 8 and 9 and therefore could be replaced by ann + 1. Diagonal 
digits 8 and 9 could be replaced by 1, for instance.) 
 
By the bijection 1/r ¨ r for 1 § r < ¶ it is proven that the cardinality of the unit interval is the 
same as that of the whole real line from 1 to infinity. 1/r ¨ (r - 1) for 1 § r < ¶ proves that the 
unit interval has the same cardinality as the whole positive real axis. 
 
 

                                                 
1 This precaution has been mentioned first by Felix Klein. [Felix Klein: "Vorträge über ausgewählte 
Fragen der Elementargeometrie", Teubner, Leipzig (1895) p. 42] 
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 2.3 The halting problem 
 
The so-called halting problem, going back to Alan Turing, is a variant of the diagonal argument. 
[Alan Turing: "On computable numbers, with an application to the Entscheidungsproblem", Proc. 
London Math. Soc., Ser. 2, 42 (1937) pp. 230-265] (The expression "halting problem" does not 
appear in Turing's paper.) 
 
Turing defines the "computable" numbers "as the real numbers whose expressions as a decimal 
are calculable by finite means"; the digit sequences can be written down by a machine equipped 
with a program. This implies that the set of computable numbers is enumerable. 
 
The machine M scans a square on a tape and writes or erases a symbol on that tape which then 
can be shifted one place to right or left. The action depends on the "m-configuration" qk of the 
machine and the symbol Sj in the square just scanned. This m-configuration qk, Sj, and all 
symbols written on the tape describe the complete configuration of the machine. 
 
The machine can be circular. Then it writes never more than a finite sequence of bits. Otherwise 
the infinite sequence of bits, prepended by a decimal point, is a computable real number. 
 
The description of the machine, expressed entirely by seven characters1 {A C D L R N ;}, is 
called the standard description (S.D). It can be encoded as an integer, containing only digits from 
1 to 7, the so-called description number (D.N). The machine whose D.N is n may be described as 
M(n). Every such S.D computes one and only one sequence or real number. Instead of different 
machines a universal machine U can be used. When fed with the S.D of machine M(n) (on the 
beginning of its tape) U computes the same real number as M(n). 
 
If there is a complete sequence of computable sequences, then let an be the nth computable 
sequence, and let anm be the mth bit in an. Let d be the sequence which has 1 - ann as its nth bit 
(i.e., the complement 0 of 1 or 1 of 0). Since the antidiagonal sequence d is computable, there 
exists a number k such that 1 - ann = akn for all n. Putting n = k, we have 1 = 2akk, i.e., 1 is even. 
This is impossible. Therefore a complete sequence of computable sequences cannot exist. 
 
Turing concludes: The fallacy in this argument lies in the assumption that d is computable. It 
would be true if we could enumerate the computable sequences by finite means, but the problem 
of enumerating the sequences is equivalent to the problem of finding out whether a given number 
n is the D.N of a circle-free machine, and we have no general process for doing this in a finite 
number of steps. There cannot be any such general process. The simplest proof is that, if this 
general process exists, then there is a machine which computes d. 
 
Finally Turing supplies another proof, showing that the sequence (ann)nœÙ, the complement of the 
antidiagonal number d, cannot be calculated. 
 

                                                 
1 Letters D and A are used for m-configurations; for instance q3 = DAAA. The symbols S0 = blank, S1 = 0, 
and S2 = 1 are encoded by the letters D, DC, and DCC respectively. Further there are L, R, N for "shift to 
left", "shift to right", and "no shift", and finally the semicolon as the separator of commands. 

https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
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Suppose there is a machine T which can test every S.D on circularity and can calculate the 
sequence (ann) from the real numbers produced by circle-free S.D. In the first N - 1 sections, 
among other things, the integers 1, 2, 3, ..., N - 1 have been written on the tape. The circular S.D 
have been sorted out as undefined by marking them with u. Let there remain T(N - 1) description 
numbers D.N of S.D which yield computable numbers. In the Nth section T tests the number N. 
If N is the D.N of a circle-free S.D, then T(N) = 1 + T(N - 1) and the first n = T(N) digits of the 
corresponding computable sequence are calculated. The nth digit ann is written down. If N is not 
the D.N of a circle-free S.D, then the next number N + 1 is tested. 
 
From the construction of T we can see that T is circle-free. Each section of the motion of T 
comes to an end after a finite number of steps. For, by assumption about T, the decision is 
reached in a finite number of steps. 
 
Now let K be the D.N of T. Since T is circle free, the machine cannot print u and move on. On 
the other hand the T(K)th digit of the sequence, computed by the machine with K as its D.N, 
cannot be found because it has to be taken from a calculation that cannot be performed: the only 
advice given by the S.D of T is to take the calculated number. Therefore T is not circle free, and 
we have obtained a contradiction from the assumption that all computable numbers can be 
enumerated. 
 
 
 
 2.3.1 A brief account  
 
Consider a complete enumeration of all programs P(i). Assume there is a total computable 
function h such that 
  

  h(i, x) = 
1 if ( ) halts on input
0 else

P i x⎧
⎨
⎩

  .  

 
In order to show that such a function cannot exist, consider an arbitrary total computable function 
f and a partial function g of f computed by a program e such that 
 

      g(i) = 
0 if ( , ) 0
otherwise loop forever

f i i =⎧
⎨
⎩

.  

 
If f(e, e) = 0 then g(e) = 0. In this case h(e, e) = 1, because program e halts on input e. 
 
If f(e, e) ≠ 0 then g(e) is undefined and does not halt. Therefore h(e, e) = 0. 
 
In either case, f cannot be the same function as h. Since f was an arbitrary total computable 
function with two arguments, all such functions must differ from h. ["Halting problem", 
Wikipedia] 
 
 

https://en.wikipedia.org/wiki/Halting_problem
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 2.3.2 An uncomputable real number 
  
Make a list of all possible computer programs. Order the programs by their size, and within those 
of the same size, order them alphabetically. The easiest thing to do is to include all the possible 
character strings that can be formed from the finite alphabet of the programming language, even 
though most of these will be syntactically invalid programs.  
 
Here's how we define the uncomputable diagonal number 0 < r < 1. Consider the kth program in 
our list. If it is syntactically invalid, or if the kth program never outputs a kth digit, or if the kth 
digit output by the kth program isn't a 3, pick 3 as the kth digit of r. Otherwise, if the kth digit 
output by the kth program is a 3, pick 4 as the kth digit of r. 
 
This r cannot be computable, because its kth digit is different from the kth digit of the real 
number that is computed by the kth program, if there is one. Therefore there are uncomputable 
reals, real numbers that cannot be calculated digit by digit by any computer program. [Gregory J. 
Chaitin: "How real are real numbers?", arXiv (2004)] 
 
 
 
 2.4 Uncountable power set of Ù 
 
The power set P(S) of S contains as its elements all subsets of S. A proof by Hessenberg [G. 
Hessenberg: "Grundbegriffe der Mengenlehre", offprint from Abhandlungen der Fries'schen 
Schule, Vol. I, no. 4, Vandenhoeck & Ruprecht, Göttingen (1906) § 24] shows that there is no 
bijection between Ù and its power set P(Ù). If Ù could be bijected with its power set P(Ù), then 
some n œ Ù could be mapped on subsets s(n) not containing them. The subset M of all such 
numbers n, may it be empty, may it be Ù, or may it be some other subset of Ù, 
 
 M = {n | n Ø s(n) ⁄ n – s(n)}  
 
belongs to P(Ù) as an element. But the set M together with the mapping s cannot exist. If M does 
not contain the element m which is mapped on it by s: m Ø M, then m belongs to M, but exactly 
then M must not contain m: m œ M fl m – M fl m œ M and so on. 
 
This proof can easily be extended to show that the power set of a set always has larger cardinality 
than the set: 
 
 |P(S)| > |S| . 
 
For finite sets we find immediately 
 
 |P(S)| = 2|S| . 
 
Ë The power set of the empty set « = { } contains 20 = 1 element {«} = {{ }}. 
Ë The power set of the singleton set {a} contains 21 = 2 elements {{ }, {a}}. 
Ë The power set of the set {a, b} contains 22 = 4 elements {{ }, {a}, {b}, {a, b}}. 

http://arxiv.org/abs/math.HO/0411418
http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11171763_00048.html
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If we add one element c to the set {a, b}, then we double the number of its subsets because the 
former subsets remain as they were and, in addition, have to be taken with c added. 
 
Representing all reals of the unit interval by infinite bit sequences like t = 0.11101000110...2, we 
can construct a bijection between subsets s of Ù and infinite bit-sequences t mapped on s. We 
interpret the nth bit 1 of the sequence t as indicating that the natural number n belongs to the 
subset s whereas the nth bit 0 indicates that n does not belong to s. For example put 
 
 {1} ¨ 0.12 
 {2, 3, 4, ...} ¨ 0.0111...2  
 {1, 3, 4} ¨ 0.10112 
 {all even natural numbers} ¨ 0.010101...2 
 {1, 3, 4, 6, 8, 14, 17} ¨ 0.101101010000010012 . 
 
This bijection shows that — and P(Ù) have same cardinal number. Since Ù has ¡0 elements, 
P(Ù) has |P(Ù)| = 2|Ù| = 2¡0 elements. This is called the cardinality of the continuum and is 
denoted also by C. In case we use decimal digits, we obtain |P(Ù)| = 10|Ù| = 10¡0. This results in 
2¡0 = 10¡0. 
 
 
 
 2.5 Higher infinite cardinal numbers 

In his 1891 paper [Cantor, p. 280f] Cantor also proved that there are higher infinities. Try to set 
up a bijection between the points of the unit interval and the set F of all real functions f(x) 
 
 y ¨ fy(x) 
 
where y œ [0, 1]. 
 
In order to get a picture assume functions like 
 
 f0(x) = x 
 f1/n(x) = 4xÿn + 4711 (for n œ Ù) 
 f2/3(x) = 1234 if x œ –, otherwise 1/x 
 f1/◊2(x) = sinx + 1/cos◊x 
 fL(x) = 1/x! 
 f1/π(x) = eetanx 
 fe-◊3(x) = 0 if 1/x is prime, otherwise x15/8 
 

with L = Σ1/10ν! = 0.110001... being Liouville's number (cp. sect. 2.2.1). Consider the function 
fy(x), related to y, calculate its value at position x = y, namely fy(y), and increase it by 1, resulting 
in fy(y) + 1. Combine all the values obtained in that way to create the function g(y) = fy(y) + 1. 
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This is a function in the real interval [0, 1] which differs from every fy(x) œ F at least in one 
point, namely for x = y. So there is no bijection; the set F has a cardinality |F| > C. (That the set F 
of all real functions has at least cardinality C is shown by its subset of functions fy(x) = y.) 
 
Since |P(S)| = 2|S| we get, by always taking the power set of an infinite set, an infinite sequence 
of infinitely increasing infinite cardinal numbers ¡0, 2¡0, 22¡0, 222¡0

, ... . In contrast to the finite 
case however, 0, 1, 2, 3, 22, 5, 6, 7, 23, 9, 10, 11, 12, 13, 14, 15, 222, 17, ..., there are no cardinal 
numbers accessible in between (cp. section 3.2). 
 
 
 
 2.6 Cardinality of multidimensional continua 
 
Cantor found yet another surprising result. He proved that the 
area of a square or the volume of an n-dimensional cube 
contains as many points as one of its edges, i.e. the real 
interval. In a letter to Dedekind he wrote "Je le vois, mais je 
ne le crois pas" {{I see it but I can't believe it}}. [G. Cantor, 
letter to R. Dedekind (29 Jun 1877)] 
 
A bijection between the square [0, 1]2 and the Interval [0, 1] can be constructed by merging the 
Cartesian coordinates x = 0.x1x2x3... and y = 0.y1y2y3... of a point of the square (x | y) œ [0, 1]2 
according to the scheme 
     
 (0.x1x2x3... | 0.y1y2y3...) Ø 0.x1y1x2y2x3y3... . 
 
The point (x | y) = (0.111 | 0.222) of the unit square, for example, is mapped on the point 
0.121212 of the unit interval. Of course, same can be accomplished with more dimensions. 
 
This mapping has a disadvantage however. Of two coordinates like x = 0.1000... and x = 0.0999... 
only one must be used because the fusion with the other coordinate must yield only one result, 
either 0.1y10y20y30y4... or 0.0y19y29y39y4... . An undoubtedly bijective mapping however can be 
accomplished with continued fractions. Another possibility, according to an idea of König, is the 
dissection of the digit sequences always till the next digit which differs from zero. An example is 
 
 (0.30005709... | 0.04685...) ¨ 0.3040005678095... . 
 
The mapping between sets of different dimension is never continuous though; two very closely 
neighbouring points in one set can be mapped on very distant points in the other set. But that does 
not spoil the equicardinality of the sets. 
 
The above example can obviously be extended to every number of dimensions by merging many 
coordinates or by repeating the process. Therefore the unit cube (and, as is easily demonstrated, 
also the unit sphere) contain as many points as the unit interval. 
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A bijection from (0, 1] to [0, ¶) can be accomplished by the mapping 1/r ¨ (r - 1) for 1 § r < ¶. 
Inversion of all three coordinate axes of the unit sphere yields a sphere with infinite radius. So the 
tiniest linear interval contains as many points as the infinite space. 
 
 
 
 2.7 Cardinal arithmetic 
 
Arithmetic in the actual infinite obeys the following rules: 
 
 ¡0 = ¡0 + n = ¡0 + ¡0 = nÿ¡0 = ¡0ÿ¡0 = ¡0

n   for every n œ Ù . 
 
But contrary to the potential infinite of calculus we have: 
 
 ¡0 < 2¡0 = 10¡0 = n¡0 = ¡0

¡0   for every natural number n > 1 . 
 
Using a convention introduced by Hausdorff [F. Hausdorff: "Grundzüge der Mengenlehre", Veit, 
Leipzig (1914); reprinted: Chelsea Publishing Company, New York (1965) p. 69] we put as an 
abbreviation 2¡0 = ¡ and get 
 
 1 = 1¡0 = 1¡ 
 ¡ = ¡ + n = ¡ + ¡0 = ¡ + ¡ = nÿ¡ = ¡0ÿ¡ = ¡ÿ¡ = ¡n = ¡¡0   for every n œ Ù . 
 
Larger is nothing before 

 
 2¡ = 10¡ = n¡ = ¡0

¡ = ¡¡   for every natural number n > 1 . 

 
The equicardinality of different continua can also be shown by cardinal arithmetic. The plane has 
the same cardinality as the axis because of 
 
 ¡0 = ¡0 + ¡0   fl   2¡0 = 2¡0+¡0 = 2¡0ÿ2¡0   fl   ¡ÿ¡ = ¡ . 
 
Instead of only two ¡ we can also multiply countably many ¡ with the same result. 
 
The continuum hypothesis assumes that there is no cardinal number between ¡0 and ¡. So ¡ can 
be named ¡1. It is impossible to prove this or the contrary from the axioms of ZFC (cp. sect. 3.2). 
 
An application is the addition of all natural numbers and other divergent infinite series. [G. 
Cantor, letter to G. Mittag-Leffler (10 Feb 1883) & (3 Mar 1883)]1  
 
 1 + 2 + 3 + ... = ¡0 
 1 + 1/2 + 1/3 + ... = ¡0 . 
 
                                                 
1 Cantor wrote ω instead of ¡0 because in 1883 he had not yet invented cardinal numbers. 

https://books.google.de/books?id=Q20_fm7prAYC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
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 2.8 Inaccessible cardinal numbers 
 
The cardinality |P(M)| of the power set P(M) of the set M is always greater than the cardinality 
|M| of the set itself: 
 
 |P(M)| = 2|M| > |M| . 
 
Gathering the results of an infinite process of power set construction and constructing a sequence 
 
 M = M, P(M), P(P(M)), P(P(P(M))), ... 
 
the limit or union1 «M has a larger cardinality |«M| than every element of M  
 

 |«M| > |M|, 2|M|, 22|M|

, ... . 
 
This cardinality can be surpassed if we construct a sequence from «M and its power sets 
 
 S = «M, P(«M), P(P(«M)), ... . 
 
The limit or union |«S| is again greater than all cardinalities considered so far – and so we can 
continue. 
 
A cardinal number ä is called inaccessible if it can neither be obtained by a sum nor by a product 
of less than ä cardinal numbers κ < ä nor by a power κλ of cardinal numbers κ, λ < ä. Examples 
are 0, 2 (not 1 which is 00 = 1), and ¡0. 
 
An infinite cardinal number ë is called regular, if it is greater than every sum of less than ë 
summands which all are less than ë. An example is ¡0, because it cannot be written as a finite 
sum over finite summands. Another example is ¡1 since (with the axiom of choice, cp. 2.12.9) 
the union of a countable set of countable cardinal numbers is countable. 
 
If a regular cardinal number Ü > ¡0 always satisfies the condition 
 
 Ü > X   fl   Ü > 2X 
 
then it is called strongly inaccessible. 
 
If strongly inaccessible cardinal numbers exist, then already the smallest one Ü0 must be very 
large, namely larger than |«(S)| and all cardinal numbers constructible from it. And by means of 
power set and union as shown above, even larger cardinal numbers Ü1, Ü2, ... can be constructed. 
In the Zermelo-Fraenkel axiom system (cp. section 2.12) the existence of inaccessible cardinal 
numbers can neither be proved nor be disproved. 

                                                 
1 The union of two sets, M1 » M2, is the set containing all elements of M1 and M2. For the infinite union, 
henceforth denoted by «, the symbol is prepended to the general term: «Mk = M1 » M2 » M3 » ... . 
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 2.9 Ordinal numbers 
 
A set is well-ordered if every non-empty subset contains a least element with respect to the order. 
The set Ù of all natural numbers is well-ordered, if the natural "smaller than" relation is applied 
as the order relation, because 1 < 2 < 3 < ... . The sets (1, 1/2, 1/3, ...) and (a, aa, aaa, ...) are also 
well-ordered by obvious orderings. The set of all positive rational numbers can be well-ordered 
(cp. section 2.1) but is not well-ordered by size because there is no smallest rational number 
larger than a given rational number. Same is true for the algebraic numbers. Also the set of all 
integers can be well-ordered, for instance as 0, 1, -1, 2, -2, 3, -3, ..., but is not well-ordered by 
size because the whole set does not contain a least (smallest) element. 
 
A well-ordered set that can be written as a sequence, in particular it has a least (first) and no last 
element, has the order type ω. The ordered set Ù itself is an example: OÙ = O{1, 2, 3, ...} = ω. 
To indicate that order plays a role, sets are usually not included in curly brackets (because they 
are destroying any order) but in parentheses.1 Then the order symbol O can be dropped and we 
write briefly (1, 2, 3, ...) = ω. [Cantor, p. 299] 
 
Order types of well-ordered sets like OÙ are called ordinal numbers. All ordinal numbers, like all 
cardinal numbers, are in trichotomy with each other, i.e., for two ordinal numbers a and b always 
one and only one of the relations is satisfied: a < b or a = b or a > b. [Cantor, p. 321] 
 
Pairwise combining the elements of two sets with ordinal number ω each, yields one set with 
ordinal number ω, i.e., an infinite sequence of pairs 
 
 (1, a, 2, b, 3, c, ...) = 2ÿω = ω . 
 
Combining them as whole sets yields another ordinal number, namely two infinite sequences 
 
 (1, 2, 3, ..., a, b, c, ...) = ωÿ2 ∫ ω .  
 
Now an inner element without predecessor exists. ωÿ2 ∫ 2ÿω shows that ordinal multiplication is 
not commutative. 
 
The ordinal numbers of (0, 1, 2, 3, ...) and (1, 2, 3, ..., 0) are also different. The second set has a 
last element, the first set does not: (0, 1, 2, 3, ...) = 1 + ω = ω while (1, 2, 3, ..., 0) = ω + 1 ∫ ω. 
All above sets have the cardinal number |Ù| = ¡0 because the cardinal numbers of sets are not 
changed by reordering. 
 
The set of all real numbers of the interval [0, 1] ordered by size or, as Cantor [Cantor, p. 310f] 
called it, the linear continuum X = {x œ — | 0 § x § 1}, is an order type but not an ordinal 
number. It is characterized by two properties. (1) In every ε-neighbourhood, however small, of a 
number of X there are uncountably many numbers of X. (2) X contains a countable set of rationals 
q such that between every two elements x1 and x2 of X there is at least one rational number q. 

                                                 
1 In pure set theory ordered pairs (x, y) are expressed after Kuratowski by {x, {x, y}}. This method can be 
extended inductively to triples, (x, y, z) = {x, {x, {y, {y, z}}}}, quadruples, and so on. 
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 2.10 Number classes 
 
Two ordered sets are similar to each other, if there exists a bijection such that the order of the 
elements is preserved: a Ä b ‹ f(a) Ä f(b). [Cantor, p. 297] They have the same order type. That 
kind of bijection is called an isomorphism. Similarity implies equivalence, i.e., equicardinality or 
equinumerosity. To every order type γ of a well-ordered set, i.e., to every ordinal number γ there 
is a corresponding cardinal number. The cardinal numbers which correspond to the transfinite 
numbers of the sequence Ω of ordinal numbers were called "Alefs" by Cantor [Cantor, p. 292] 
(today we write "Alephs"), denoted by the first letter ¡ of the Hebrew alphabet.  
 
The system of all ordinal numbers γ belonging to one and the same cardinal number ¡(γ) is called 
"number class". In every number class there exists a smallest number γ0, and there exists a 
number γ1 outside, such that for every γ of this number class we have γ0 § γ < γ1. 
 
"The system Ω in its natural order constitutes a 'sequence'. Adding 0 at the first place we get a 
sequence Ω' = 0, 1, 2, 3, ..., ω, ω + 1, ..., γ, ... {{Cantor wrote ω0}} where we easily convince 
ourselves that every number γ appearing there is the type of the sequence of all its preceding 
elements. [...] The system Ω of all numbers is an inconsistent, an absolutely infinite multitude. [...] 
Every number class is a certain 'section' of the sequence Ω. [...] Certain numbers of the system Ω 
form their own number class each, these are the 'finite' numbers 1, 2, 3, ..., ν, ... corresponding to 
the different 'finite' cardinal numbers". [Cantor, p. 445] These numbers are taken together as the 
first number class. All ordinal numbers α with cardinal number ¡0 belong to the second number 
class Z(¡0). They obey the condition ω § α < ω1 where ω with |ω| = ¡0 is the smallest transfinite 
number and ω1 is the smallest uncountable transfinite number, the cardinal number of which is 
not ¡0 but ¡1. Some ordinal numbers of the beginning of the sequence (with k, m, n œ Ù) are: 
 
0, 1, 2, 3, ..., ω, ω + 1, ..., ω + k, ..., ω + ω (= ωÿ2), ωÿ2 + 1, ..., ωÿk, ..., ωÿk + m, ..., ωÿω (= ω2), 
ω2 + 1, ..., ω2 + ω, ..., ω2 + ωÿk + m, ..., ω2ÿ2, ..., ω2ÿk + ωÿm + n, ..., ω3 + ω2ÿk + ωÿm + n, ..., ωk, 

..., ωω, ωω + 1, ..., ωωÿk, ..., ωω+1, ωω+1 + 1, ..., ωωÿk, ..., ωω2
, ..., ωωω

, ..., ωωω...
 (= ε0), ε0 + 1, ..., 

ε0
ε0, ..., ε0

ε0
ε0, ..., ε0

ε0
ε0

...
 (= ε1), ε1 + 1, ..., ε1

ε1
ε1

...
 (= ε2), ..., ω1, ... . 

 
All the ordinal numbers 2ω (= ω), ωω (> ω), ωωω, ε0, ε1, ... less than ω1 belong to the second 
number class because they are countable. A representation of 2ω is the set of all pairs of natural 
numbers. A model of ωω is the set of all finite sequences of natural numbers or, according to 
Hessenberg [G. Hessenberg: "Grundbegriffe der Mengenlehre", offprint from Abhandlungen der 
Fries'schen Schule, Vol. I, no. 4, Vandenhoeck & Ruprecht, Göttingen (1906) § 20], the ordering 
of the natural numbers by the number of prime factors and then by sizes of the factors. 
 
ε0 = lim(ω, ωω, ωωω

, ...) has the property ωε0 = ε0; it is the first ordinal number which cannot be 
represented in finite notation, starting off with ω and using addition, multiplication and 
exponentiation; therefore a new name is necessary. Cantor called it the smallest giant of the 
second number class. [G. Cantor, letter to F. Goldscheider (11 Oct 1886)] Cantor wrote γ1. 

http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11171763_00042.html
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 2.11 Cantor's construction of the natural numbers 
 
Cantor was the first to construct the natural numbers on a set theoretic basis. [Cantor, p. 289f. G. 
Cantor: "Beiträge zur Begründung der transfiniten Mengenlehre 1", Math. Annalen 46 (1895) § 
5] He promised to supply "the most natural, shortest, and strictest foundation of the finite number 
theory". To a single thing e0, if we take it by the notion of a set E0 = (e0), there corresponds as a 
cardinal number, that what we call "one". We have 1 = |E0|. Now combine another thing e1 with 
E0. The sum set be called E1, such that E1 = (E0, e1) = (e0, e1). Note that Cantor does not yet 
correctly use the singleton ((e0), e1). The cardinal number |E1| of E1 is called "two" and is denoted 
by 2 = |E1|. By adding new elements we obtain the sequence of sets E2 = (E1, e2), E3 = (E2, e3), ... 
which in an unbounded sequence successively supply the other so-called finite cardinal numbers 
denoted by 3, 4, 5, ... . The auxiliary employment of the defined numbers as indices in the 
definition is justified by the fact that a number is used as an index only after it has been defined: 
 
 ν = |Eν-1|     Eν = (Eν-1, eν) = (e0, e1, ..., eν)     |Eν| = |Eν-1| + 1 . 
 
Every finite cardinal number (with the exception of 1) is the sum of its predecessor and 1. All 
terms of the unbounded sequence of all finite cardinal numbers 1, 2, 3, ..., ν, ... are different. 
Every number is larger than its predecessors and smaller than its successors. There is no number 
between ν and ν + 1. 
 
 
 
 2.12 ZFC-axioms of set theory 
 
Zermelo-Fraenkel (ZF) set theory, often including the axiom of choice (ZFC), is the only 
axiomatization of set theory that appears attractive also outside of the narrow world of set 
theorists. The axioms create the Cumulative Hierarchy: From a given set of sets (in fact only the 
empty set is necessary) other sets can be constructed and from those other sets without disturbing 
any of the predecessors. This creates a hierarchy by accumulating sets. 
 
The details of axioms and notation change from author to author1, but the nine axioms explained 
below are very frequently applied. 
 
The axioms are neither independent of each other nor do they present the shortest formulation of 
the foundations. They have been selected by aspects of convenience. The axiom of separation for 
instance follows from the axiom of replacement together with the axiom of empty set. If A is a 
set, then the axiom of replacement guarantees the existence of the set B for the function f: A Ø B, 
e.g. the set of squares by the function f: n Ø n2. The axiom of separation allows to separate the 
same set of squares from the set of natural numbers. The empty set follows from the axiom of 
infinity. Nevertheless often the additional axiom 
 
                                                 
1 Often sets are distinguished by capital letters from elements denoted by lower case letters. Since in ZFC 
there are no "urelemente" but "everything is a set" and can be an element of another set, the following 
formal statements will contain only capital letters besides the logical symbols. 
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 2.12.0 Axiom of empty set 
 
is added: There exists an empty set 
 
  $X "Y (Y – X) . 
 
The empty set is denoted by « or by { } or by {X | X ≠ X} . 
 
 
 
 2.12.1 Axiom of extensionality 
 
The first axiom defines the extension of a set, its external properties. Every set is defined by its 
elements and by nothing else. This axiom is an attempt to formalize Cantor's definition of a set as 
"every collection of definite well-distinguished objects of our visualization or thinking". 
 
If sets A and B have the same elements X, then A = B: 
 
 "A "B ("X (X œ A ‹ X œ B) fl A = B) . 
 
Sets are completely defined by their elements. Lists or graphs are extensional objects in contrast 
to intensional objects like formulas or programs. The latter give reasons for membership. The 
former are arbitrary collections without any hint why an element has been chosen. 
 
 
 
 2.12.2 Axiom of separation 
 
This axiom is also called axiom of subsets or axiom of restricted1 comprehension: If the formula 
ϕ describes a predicate, i.e., a property (with parameter p), then there exists (for every parameter 
p) a set B = {X œ A | ϕ(X, p)} that contains all X œ A that have the property (described by) ϕ. 
 
 "A "p $B "X (X œ B ‹ (X œ A ⁄ ϕ(X, p))) . 
 
As an example consider the set A of all cars X and the property ϕ of a car having a colour, for 
instance being red (p). The set B of red cars exists; it is a subset of A. 
 
The axiom is also called an axiom schema because in first-order logic it is not possible to 
quantify over formulas or functions. Therefore every predicate ϕ requires its own axiom of 
separation.2 In Zermelo's original work [E. Zermelo: "Untersuchungen über die Grundlagen der 
Mengenlehre I", Math. Ann. 65 (1908) 261-281] this had not yet been distinguished. 

                                                 
1 Restricted comprehension collects in B only the elements X of the given, i.e., already existing set A with 
predicate ϕ. Unrestricted comprehension collects all suitable objects satisfying the predicate ϕ. This has 
lead to Russell's paradox or better Russell's antinomy (cp. section 3.1.3). 
2 To put it in other words, every predicate has to be enumerated. This is possible because there are only 
countably many finite expressions which can serve as predicates. 

http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002262002&physid=PHYS_0274
http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PID=GDZPPN002262002&physid=PHYS_0274
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 2.12.3 Axiom of pairing 
 
For any sets A and B there exists a set S = {A, B} that contains A and B as elements and nothing 
else. 
 
 "A "B $S "X (X œ S ‹ (X = A ¤ X = B)) . 
 
Alternatively: Every pair of elements can be considered as a set. In case of A = B, the set 
containing the "pair" is called a singleton {A}. 
 
 
 
 2.12.4 Axiom of union 
 
also called axiom of sum set. For any set A there exists the union B = «A of all elements of A. 
 
 "A $B "Y (Y œ B ‹ $X (Y œ X ⁄ X œ A)) . 
 
Since every element of A is a set X, the elements Y of these sets can be put together into set B. 
They are elements of elements of A and elements of B. 
 
 
 
 2.12.5 Axiom of power set 
 
For any set A there exists the set B = P(A) of all subsets of A. 
 
 "A $B "X (X Œ A ‹ X œ B) . 
 
All subsets of A are elements of its power set P(A). 
 
 
 
 2.12.6 Axiom of infinity 
 
There exists an infinite set S. S contains the empty set « and with X also the successor of X. 
 
 $S (« œ S ⁄ "X (X œ S fl {X} œ S))   (Zermelo's version of successorship). 
 
According to Zermelo his axiom of infinity goes back to Dedekind (see chapter I). Instead of 
Zermelo's successor-definition today usually von Neumann's version is applied because of its 
easy construction of the natural numbers as initial segments n = {0, 1, 2, ..., n - 1} Õ Ù. 
 
 $S (« œ S ⁄ "X (X œ S fl (X » {X}) œ S))   (von Neumann's version of successorship). 
 
In both versions the minimal set S can be identified with the finite cardinal numbers, i.e., Ù0, the 
natural numbers including zero. Constructed from Zermelo's version we get 

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0065?tify=%7b%22pages%22:%5b276%5d,%22panX%22:0.502,%22panY%22:1.135,%22view%22:%22info%22,%22zoom%22:0.884%7d
https://en.wikipedia.org/wiki/Natural_number
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 0 = { } = « 
 1 = {{ }} = {«} = {0} 
 2 = {{{ }}} = {{«}} = {{0}} = {1} 
 3 = {{{{ }}}} = {{{«}}} = {{{0}}} = {{1}} = {2} 
 ... . 
 
 The cardinal numbers constructed from von Neumann's version are 
 
 0 = { } = «  
 1 = { } » {{ }} = « » {«} = {«} = {0} 
 2 = { } » {{ }} » {{ } » {{ }}} = « » {«} » {« » {«}} = {«, {«}} = {0, 1} 
 3 = {«, {«}} » {{«, {«}}} = {«, {«}, {«, {«}}} = {0, 1, 2} 
 ... . 
 
 
 
 2.12.7 Axiom of replacement 
 
If F is a function, then for any set A there exists a set B = F[A] = {F(X) | X œ A}. 
 
 "X "Y "Z (ϕ(X, Y) ⁄ ϕ(X, Z) fl Y = Z) fl "A $B "Y ($X ((X œ A) ⁄ ϕ(X, Y)) ‹ Y œ B) . 
 
The left-hand side shows that in the two-valued predicate ϕ for every X there is only one Y as is 
required in functions. The right-hand side shows that B is the image of A under ϕ. 
 
Example: Let ϕ(X, Y) be the function Y = 2X. If also Z = 2X, we have Y = Z. From this premise 
the existence of B follows, such that for every element Y of B an element X of A exists with the 
property Y = 2X and vice versa. 
 
The axiom of replacement facilitates the construction of sets which cannot be constructed by 
other axioms, for instance {Ù, P(Ù), P(P(Ù)), P(P(P(Ù))), ...} with the function F(n) = Pn(Ù). 
ω + ω = ωÿ2 is already an example, because the axiom of infinity only guarantees the existence of 
ω. The axiom of replacement guarantees that the function F(n) = ω + n generates a set. 
 
Like the axiom of separation the axiom of replacement is an axiom schema. 
 
 
 
 2.12.8 Axiom of foundation 
 
or axiom of regularity: Every nonempty set has an œ-minimal element. 
 
 "S (S ∫ « fl $X œ S: (S … X) = «) . 
 
No set can be an element of itself. As an example consider the set {X} which has only the 
element X. X œ {X} but X – X. This implies the difference between "contained as an element" 
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and "contained as a subset". Always X Œ X and « Œ X but never X œ X and rarely « œ X. Since 
the intersection of two sets A and B contains only all elements which are as well in A as in B, the 
intersection {X} … X is empty, since, whatever elements X may have, there is no element in X 
which is also in {X} as an element, i.e., as the only element X of {X}. 
 
This axiom guarantees that every nonempty set S contains an element X which has no element in 
common with S. It excludes the formation of sets which contain themselves, in order to avoid 
Russell's antinomy (cp. section 3.1.3). There is no infinite sequence (Sk) of sets Sk such that each 
Sk+1 œ Sk. There is no set that contains a set that contains a set that ... is the set. Such a set would 
not be contradicted by the other axioms. The set of all abstract notions is an abstract notion too, 
so it contains itself. "Since {{this axiom}} is not essential for mathematics, it cannot be regarded 
as fundamental by the traditional axiomatic attitude." [A.A. Fraenkel, Y. Bar-Hillel, A. Levy: 
"Foundations of set theory", 2nd ed., Elsevier, Amsterdam (1973) p. 89] 
 
 
 
 2.12.9 Axiom of choice 
 
Every set T of nonempty sets X has a choice function F. 
 
 "T (« – T fl ($F: T Ø «T ⁄ "X œ T: F(X) œ X)) 
 
The axiom of choice is the most controversial axiom of mathematics. It has been introduced, first 
in the form of so-called "γ-sets", in 1904. [E. Zermelo: "Beweis, daß jede Menge wohlgeordnet 
werden kann", Math. Ann. 59 (1904) pp. 514-516] In 1908 Zermelo specified: "Let T be a set of 
nonempty sets which have no common elements, then the union «T contains at least one subset S 
which has with every element of T one and only one element in common." It is always possible to 
choose from every element of T one element and to combine the chosen elements in a set S. [E. 
Zermelo: "Untersuchungen über die Grundlagen der Mengenlehre I", Math. Ann. 65 (1908) p. 
266] 
 
The axiom of choice is equivalent to the assertion that for every set of nonempty sets the 
Cartesian product is not empty. Let » be an index set. The Cartesian product of the set {Xi | i œ »} 
of nonempty sets Xi contains all ordered »-tuples of elements of the sets Xi. If the Cartesian 
product is not empty (this could be the case for uncountable sets in the absence of the axiom of 
choice) every »-tuple can serve as the choice function. 
 
Example: Let » = {1, 2}, X1 = {a, b, c}, X2 = {1, 2}. Then the Cartesian 
product is given by the pairs {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)}. 
 
Example: Let » = Ù, Xi = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} for all i œ Ù. Then the 
Cartesian product is the set of all Ù-tuples, i.e., all infinite digit sequences. 
 
Example: Let » = {1, 2, 3}, X1 = X2 = X3 = —. Then the Cartesian product is the set of all triples of 
real numbers, i.e., the Cartesian coordinates of the points of the space —3. 
 

https://books.google.de/books/about/Foundations_of_Set_Theory.html?id=ah2bwOwc06MC&redir_esc=y
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
https://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002262002&physid=PHYS_0277
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The axiom of choice is further equivalent to Zorn's Lemma: If a partially ordered set S has the 
property that every chain1 has an upper bound in S, then the set S contains at least one maximal 
element2. Without this feature, every element would have another next element. This 
successorship would not stop at natural indices but would run through all ordinal numbers. Alas 
"all ordinal numbers" do not exist as a set. There is no set that could contain them all. 
Contradiction. (The axiom of choice comes into the play when choosing the successor, the other 
next element.) 
 
These nine ZFC-axioms facilitate the elementary operations intersection, difference, and union of 
sets. According to the axiom of separation there exists for every set A = {X | X œ A} a subset the 
elements of which simultaneously belong to set B, {X | X œ A ⁄ X œ B} = A … B, and a subset the 
elements of which do not to belong to B, {X | X œ A ⁄ X – B} = A \ B. The axiom of pairing 
makes of two sets A and B the set {A, B}. The axiom of union or sum set builds from these the set 
that contains all elements of the pair {X | X œ A ¤ X œ B} = A » B. 
 
It is remarkable that contrary to Cantor's naive set theory there is not explanation of what a set is 
but merely that sets exist and when two sets are the same set. The latter is accomplished by the 
axiom 1 of extensionality. The set of all negative natural numbers, the set of all prime numbers 
which are divisible by their square, and the set of all real roots of the equation x2 + 1 = 0 are 
identical. According to the axiom of extensionality there is only one single empty set.3 
 
After fixing the identity of sets in this way, axiom 2 of separation allows to diminish a set by 
forming a subset, and axioms 3, 4, and 5 show how to enlarge sets by pairing, summing, and 
power set operation. Axiom 2 is a restricted version of Cantor's definition of set and Gottlob 
Frege's axiom of unrestricted comprehension Mϕ = {X | ϕ(X)} which have lead to the Russell-
antinomy (cp. section 3.1.3): X can have any definable property ϕ. 
 
Two of the axioms are controversial: The axiom of infinity and the axiom of choice. The former, 
because it is assumed to establish the existence of an actually infinite set, the latter because it 
leads to some paradoxes or antinomies in case of uncountable sets (cp. chapters III and VI). 
 
The refusal of different degrees of infinity cannot be contradicted, "the attitude of the (neo-) 
intuitionists that there do not exist altogether non-equivalent infinite sets is consistent, though 
almost suicidal for mathematics," [A.A. Fraenkel, A. Levy: "Abstract set theory", North Holland, 
Amsterdam (1976) p. 62] According to Hilbert the axiom of choice rests on a logical principle of 
general validity which already is indispensable for the first steps of mathematical concluding. [D. 

                                                 
1 A chain is a totally ordered subset, i.e., besides transitivity A Œ B ⁄ B Œ C fl A Œ C any two elements of 
the chain satisfy A Œ B or B Œ A. An example is the chain of finite initial segments (1, 2, 3, ..., n) of the 
sequence of natural numbers 
2 An element M œ S is called maximal if there is no other element X œ S such that it follows in order upon 
M. 
3 Therefore the habit to automatically exclude the empty set often appears as meaningless. For instance the 
statement every non-empty set of real numbers can be well-ordered is inappropriate, since there cannot be 
an empty set of real numbers. Every set of real numbers is not empty. Every empty set is empty of all 
elements including real numbers. To emphasize that it is empty of real numbers only is not useful let alone 
necessary. 

https://archive.org/stream/in.ernet.dli.2015.134723/2015.134723.Abstract-Set-Theory-Fourth-Revised-Edition_djvu.txt
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Hilbert: "Die logischen Grundlagen der Mathematik", Math. Ann. 88 (1923) p. 152] "In the 
opinion of Russell and Whitehead these axioms are not logically provable and can be accepted or 
rejected as well, according to subjective discretion." [A. Fraenkel: "Einleitung in die 
Mengenlehre", 2nd ed., Springer, Berlin (1923) p. 182] Since the axiom of choice is logically 
independent of the other ZF-axioms, there is an analogy to Euclid's parallel axiom. Non-
Cantorian set theories have become possible like non-Euclidean geometries. 
 
 
 2.13 Well-ordering theorem 
 
The axiom of choice is further equivalent to the well-ordering theorem. The possibility of well-
ordering of sets is essential because only well-ordered sets can be compared with respect to their 
ordinal number. Either both have the same ordinal number or one is an initial segment of the 
other. Zermelo produced in 1904 a proof that every set can be well-ordered.1 [E. Zermelo: 
"Beweis, daß jede Menge wohlgeordnet werden kann", Math. Ann. 59 (1904) pp. 514-516] 
 
Before that it was usual to argue as follows: From the set A to be well-ordered take by arbitrary 
choice an element and denote it as a0, then from the set A \ {a0} an element a1, then an element 
from the set A \ {a0, a1} and so on. If the set {a0, a1, a2, ...} is not yet the complete set A, we can 
choose from A \ {a0, a1, a2, ...} an element aω, then an element aω+1, and so on. This procedure 
must come to an end, because beyond the set W of ordinal numbers which are mapped on 
elements of A, there are greater numbers; these obviously cannot be mapped on elements of A. 
 
This naiveté is reported as late as in 1914 by Felix Hausdorff, obviously without reservations 
because he remarks: "We cannot share most of the doubts which have been raised against this 
method." Hausdorff only deplores the undesired impression of a temporal process but confirms 
that the element aω is fully determined in the sense of transfinite induction (see section 2.14) and 
claims that every single action of choosing an element as well as their order has to be understood 
as timeless. "In order to support this timeless approach E. Zermelo has got the lucky idea to 
choose from the scratch from every non-empty subset A' of A one of its elements a' = f(A'), such 
that we do no longer have to wait until it is the turn of A' but for every set, whether or not it will 
come up, an element is available prae limine. The system of successive choices has been replaced 
by a system of simultaneous choices which in practical thinking of course is as unfeasible." [F. 
Hausdorff: "Grundzüge der Mengenlehre", Veit, Leipzig (1914); reprinted: Chelsea Publishing 
Company, New York (1965) p. 133f] 
  
The first to point out that Cantor's method is blatantly wrong was Adolf Fraenkel. Zermelo called 
it a "well-known primitive attempt" [Cantor, p. 352]. Hausdorff remained convinced of its truth. 
 
"With respect to such a procedure Cantor has called the well-ordering theorem a 'fundamental 
and momentous and by its general truth particularly remarkable law of thinking'; [...] But he has 
not given a proof. The above train of thought cannot be considered as a proper – not even 
halfway strict – proof, in particular because in no way it is shown that [...] the given set can really 
be exhausted. The inadmissibility of this method as a proof becomes obvious from the following: 
                                                 
1 This is a direct translation. Zermelo does not claim that there exists a well-ordering of every set but he 
claims that it can be done! 

http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002269139&physid=PHYS_0156
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
https://archive.org/stream/grundzgedermen00hausuoft#page/132/mode/2up
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It seems not only to establish the possibility of well-ordering but to give a real way how this can 
be accomplished for every set. That is contradicted by the fact [...] that the real construction of a 
well-ordering until today has not even been accomplished with certain simplest uncountable 
sets." [A. Fraenkel: "Einleitung in die Mengenlehre", 2nd ed., Springer, Berlin (1923) p. 141f] 
 
Zermelo's proof is this [E. Zermelo: "Beweis, daß jede Menge wohlgeordnet werden kann", 
Math. Ann. 59 (1904) pp. 514-516]: 
 
Let M be any set of cardinality |M|, the elements of which may be denoted by m. Let M' be any 
subset of cardinality |M'| which contains at least one element m but may contain also all elements 
of M. The set of all subsets M' is called M (here Zermelo addresses the power set without the 
empty set). By M - M' the complement of M' in M is denoted. 
 
To every M' may be attached an arbitrary element m'1 which is a member of M'. It is called the 
distinguished element of M'. In this way we get a covering (Belegung) γ of the set M of a special 
kind. The number of coverings γ is equal to the product Πm' over all subsets M' and therefore is 
not 0. 
 
Example: Let M = {a, b}. Then there are 1ÿ1ÿ2 = 2 coverings of M = {{a}, {b}, {a, b}}, namely 
a, b, a and a, b, b. 
 
Example: Let M = {a, b, 1, 2, 3, ...} then a, b, a, 1, 1, 1, ..., 2, 2, 2, ..., 3, 3, 3, ... is a possible 
covering. As distinguished elements of {a}, {b}, {a, b} choose a, b, a respectively; for all subsets 
M' containing 1 this 1 is chosen as distinguished element, for all subsets not containing 1 but 
containing 2 this 2 is chosen; for all subsets not containing 1 and 2 but containing 3 this 3 is 
chosen and so on. Since the subsets M' are not empty, there is always an element that can be 
chosen as distinguished element. 
 
Now we choose an arbitrary covering in order to derive a certain well-ordering γ of the elements 
of M. 
 
Definition: A "γ-set" is every well-ordered set Mγ of different elements of M with the following 
property: If a is an arbitrary element of Mγ and A is the corresponding segment that consists of 
the preceding elements x Ä a of Mγ, then a is always the distinguished element of M - A. 
 
There are γ-sets in M. The distinguished element m1 of M' = M is a γ-set itself (here Zermelo does 
not yet distinguish between an element m1 and a singleton {m1}), and similarly is the (ordered) 
set M2 = (m1, m2), where m2 is the distinguished element of M - m1.  
 
Example: The γ-set of M = {a, b, 1, 2, 3, ...} is Mγ = (a, b, 1, 2, 3, ...). 
 
Zermelo concludes: If M'γ and M''γ are any two different γ-sets (which however belong to the 
fixed covering γ, chosen once and for all) then always one of them is identical with a segment of 
the other. In both cases m1 is the distinguished element of M since the corresponding segment A 
does not contain an element: M - A = M. If there existed a first element m' of M'γ that differed 

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
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from the corresponding element m'' of M''γ, the segments A' and A'' must be identical and with 
them also the complements M - A' and M - A'' and because of identical covering also their 
distinguished elements m' and m'' such that m' cannot differ from m''. 
 
Finally every element of M appears in the γ-set because for every element there exists a subset M' 
that contains only this element. 
 
Concluding, to every covering γ corresponds a well-ordering of the set M, although different 
coverings can result in the same well-ordering. So there must exist at least one well-ordering. 
 
Two sets none of which is equivalent to an initial segment of the other cannot be compared by 
size. This case and therewith the possible incomparability is excluded by the well-ordering 
theorem which is a direct consequence of the axiom of choice. It cannot be proven without this 
axiom. Two well-ordered sets are always comparable. Either they are equivalent or one is 
equivalent to an initial segment of the other. 
 
Without the axiom of choice it cannot even be excluded that the set of real numbers is a 
countable set of countable sets. "Feferman and Levy showed that one cannot prove that there is 
any non-denumerable set of real numbers which can be well ordered; [...] Moreover, they also 
showed that the statement that the set of all real numbers is the union of a denumerable set of 
denumerable sets cannot be refuted." [A.A. Fraenkel, Y. Bar-Hillel, A. Levy: "Foundations of set 
theory", 2nd ed., Elsevier, Amsterdam (1973) p. 62] 
 
If a set is well-ordered then it contains no, by order, strictly decreasing infinite sequence, because 
such a sequence has no smallest element by definition. An example is the set Ÿ of integers. In its 
natural order (..., -3, -2, -1, 0, 1, 2, 3, ...) it contains the reversed sequence (-n). Of course Ÿ can 
be well-ordered, for instance as (0, -1, 1, -2, 2, -3, 3, ...), where also the subsequence of negative 
integers is ascending in order. 
 
 
 2.14 Transfinite induction 
 
In order to prove that a property or theorem P is valid for every natural number, we use 
mathematical induction. First we have to show that P is true for 1. Then we have to show that if 
P is true for the natural number n (without fixing any natural number) then it is also true for the 
natural number n + 1. If both steps are valid, then P is true for 1 by the first step, P is true for 2 
by choosing n = 1, P is true for 3 by choosing n = 2, and so on. Since we can reach every natural 
number by this unbounded sequence of steps, P is true for every natural number. 
 

Example: Prove the formula 
=1

n

k
k∑  = ( +1)

2
n n  . 

In the first step verify 
1

=1k
k∑  = 1 . 

 
In the second step prove that if the formula is valid for n, then it is also valid for n + 1 (= m). 
 

https://books.google.de/books/about/Foundations_of_Set_Theory.html?id=ah2bwOwc06MC&redir_esc=y
https://books.google.de/books/about/Foundations_of_Set_Theory.html?id=ah2bwOwc06MC&redir_esc=y
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This technique has been extended as transfinite induction to transfinite ordinal numbers. It holds 
only for well-ordered sets, but by Zermelo's well-ordering theorem (cp. 2.13) every set can be 
well-ordered. A property P that is defined for all ordinal numbers can be proven, analogously to 
the method of mathematical induction on natural numbers, for all ordinal numbers although the 
ordinal numbers do not form a set (cp. chapter III). The property P is proven in three steps. First 
P must be shown to hold for 0. Second, from the truth of P for the ordinal number ξ it must be 
possible to conclude that P holds for the ordinal number ξ + 1. And third, the truth of P for all 
ordinal numbers ξ of a section must be shown to imply the truth of P for the limit ordinal number 
completing this section. 
 
As an example consider Cantor's first application of transfinite induction in order to determine 
the power function in the second number class [G. Cantor: "Beiträge zur Begründung der 
transfiniten Mengenlehre 2", Math. Annalen 49 (1897) § 18. Cantor, p. 336ff]: Let ξ be a variable 
of the first or second number class including 0. Let γ > 1 be a constant. 
 
Theorem   There is only one completely determined function γξ satisfying the conditions: 
 
 (1) γ0 = 1 . 
 (2) If ξ' < ξ'' then γξ' < γξ'' . 
 (3) For every ξ: γξ+1 = γξγ . 
 (4) If (ξν) is an arbitrary fundamental sequence, then (γξν) is a fundamental sequence too 
        and for ξ = Limνξν we have γξ = Limνγξν . 
 
Proof for the natural numbers. According to (1) and (3) we have γ1 = γ, γ2 = γγ, γ3 = γγγ, ... and 
because of γ > 1 it follows γ1 < γ2 < γ3 < ... < γν < γν+1 < ... . Therefore the function is completely 
determined for ξ < ω. 
 
Proof for the second number class: Assume that the theorem is true for all ξ < α where α is some 
number of the second number class. Then it holds also for ξ § α. If α has a predecessor α1, then 
(3) supplies γα = γα1γ > γα1. If α has no predecessor (being a limit ordinal like ω) and (αν) is a 
fundamental sequence with Limναν = α, then it follows from (2) that (γαν) is a fundamental 
sequence too and from (4) that γα = Limνγαν. Considering another fundamental sequence (α'ν) 
such that Limνα'ν = α, then these fundamental sequences are corresponding, i.e., they have the 
same limit, such that γα = Limνγαν = Limνγα'ν is uniquely determined. 
 
In case α' < α obviously γα' < γα. So conditions (2), (3), (4) are satisfied for ξ § α too, and the 
theorem is valid for all values of ξ. If there were exceptions, then one of them would be the 
smallest, call it α, such that the theorem would be valid for all ξ < α but not for ξ § α, in 
contradiction with the proof. 
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 2.15 Goodstein sequences 
 
The expansion of a number like 13 in base 2 is 
 
 13 = 23 + 22 + 20 = 23 + 22 + 1 . 
 
Expressing the exponents larger than 2 also in base 2, we obtain the pure expansion in base 2: 
 
 13 = 2(2+1) + 22 + 1 . 
 
The expansion in base 3 would already be pure: 
 
 13 = 32 + 3 + 1 . 
 
The Goodstein sequence 
 
 G(n) = n1, n2, n3, ... 
 
of a natural number n evolves when in the pure base-2 expansion every 2 is replaced by 3 and the 
resulting number is decreased by 1. Then in the pure base-3 expansion every 3 is replaced by 4 
and the resulting number is decreased by 1. And so on. [R.L. Goodstein: "On the restricted 
ordinal theorem", Journal of Symbolic Logic 9,2 (1944) pp. 33-41] 
 
Example: The first term of the sequence G(2) 
 
 n1 = 2 = 21 
 
supplies the second term 
 
 n2 = 31 - 1 = 2 
 
and the third term 
 
 n3 = 21 - 1 = 1 
 
because the base 3, to be replaced by 4 in the next step, is not existing. The fourth term is n4 = 0 
where the sequence ends by definition. The Goodstein sequence of 2 is 
 
 G(2) = 2, 2, 1, 0 . 
 
Example: The first term of the sequence G(13)  
 
 n1 = 2(2+1) + 22 + 1 = 13 
 
supplies the second term 

http://fa.its.tudelft.nl/~hart/onderwijs/verzamelingenleer/materiaal/goodstein.pdf
http://fa.its.tudelft.nl/~hart/onderwijs/verzamelingenleer/materiaal/goodstein.pdf
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 n2 = 3(3+1) + 33 + 1 - 1 = 3(3+1) + 33 = 108 . 
 
The next step nibbles at the right exponent 
 
 n3 = 4(4+1) + 44 - 1 = 4(4+1) + 3ÿ43 + 3ÿ42 + 3ÿ41 + 3 = 1279 . 
 
After three further steps the 3 has been used up, and 3ÿ8 becomes 2ÿ8 + 7: 
 
 n4 = 5(5+1) + 3ÿ53 + 3ÿ52 + 3ÿ51 + 2 
 n5 = 6(6+1) + 3ÿ63 + 3ÿ62 + 3ÿ61 + 1 
 n6 = 7(7+1) + 3ÿ73 + 3ÿ72 + 3ÿ71 
 n7 = 8(8+1) + 3ÿ83 + 3ÿ82 + 3ÿ81 - 1 = 8(8+1) + 3ÿ83 + 3ÿ82 + 2ÿ81 + 7 . 
  
Great numbers n create rapidly increasing sequences. Nevertheless Goodstein's theorem says that 
every sequence G(n) will terminate at 0 after a finite number of steps. As soon as the base has 
become larger than the number, nothing remains to be replaced, and repeated subtraction of 1 
pulls the sequence to 0. 
 
For proof replace the base immediately by ω. 
 
 n1 = 2(2+1) + 22 + 1 
 
then becomes 
 
 t1 = ω(ω+1) + ωω + 1 . 
 
The sequence 
 
 G(t) = t1, t2, t3, t4, ... 
 
of transfinite ordinal numbers, which is a majorante (i.e., an upper bound) of G(n), is strictly 
monotonically decreasing because in every step 1 is subtracted whereas base ω, being already 
strictly greater than any natural number appearing in G(n), is not increased. 
 
 t2 = ω(ω+1) + ωω 
 
is followed by 
 
 t3 = ω(ω+1) + ωω - 1 . 
 
How can we accomplish that? It is a general rule, forced by the well-foundedness (see 2.12.8) of 
the sequence of ordinal numbers, that every strictly decreasing sequence of ordinal numbers 
reaches its smallest element after a finite number of steps. Since limit ordinals have no direct 
predecessors, we have to jump down from them to some predecessor. 
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 2.16 Set-theoretical limits of sequences of sets 
 
A supremum of a sequence (Sn) of sets Sn contains all elements which are in the union of all sets 
of the sequence beginning with index n: «k=n

¶ Sk. Limit superior is the intersection of all 
suprema, i.e., the smallest supremum 
 

 
1

LimSup n k
n k n

S S
∞ ∞

= =

= ∩∪ . 

 
An infimum of a sequence (Sn) of sets Sn contains all elements which are in the intersection of all 
sets of the sequence beginning with index n: »k=n

¶ Sk. Limit inferior is the union of all infima, 
i.e., not less than any infimum 
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A sequence (Sn) of sets Sn has a limit, Lim Sn for n Ø ¶, if and only if 
 
 LimSup LimInf Limn n nS S S= = . 
 
Example 1: Sn = {n}, Lim {n} = { }. 
«k=n

¶ Sk = {n, n+1, n+2, ...}. The intersection of all unions is empty since no natural number is in 
all unions but for every natural number there is a last union containing it. 
»k=n

¶ Sk = {n} … {n+1} … {n+2} … ... = { } and so is the union of all intersections. 
 
Example 2: Sn = {1/n}, Lim {1/n} = { }. 
«k=n

¶ Sk = {1/n, 1/(n+1), 1/(n+2), ...}. The intersection of all unions is empty since no unit 
fraction is in all unions but for every unit fraction there is a last union containing it. 
»k=n

¶ Sk = {1/n} … {1/(n+1)} … {1/(n+2)} … ... = { } and so is the union of all intersections. 
 
Example 3: Sn = {1, 2, 3, ..., n}, Lim {1, 2, 3, ..., n} = {1, 2, 3, ... } = Ù. 
«k=n

¶ Sk = {1, 2, ..., n} » {1, 2, ..., n+1} » {1, 2, ..., n+2} » ... = Ù. The intersection of all 
unions Ù is Ù. 
»k=n

¶ Sk = {1, 2, ..., n} … {1, 2, ..., n+1} … {1, 2, ..., n+2} … ... = {1, 2, ..., n}. The union of all 
intersections is Ù. 
 
Example 4: Sn = {n, n+1, n+2, ..., 2n}, Lim {n, n+1, n+2, ..., 2n} = { }. 
«k=n

¶ Sk = {n, n+1, ..., 2n} » {n+1, n+2, ..., 2n+2} » {n+2, n+3, ..., 2n+4} » ... = {n, n+1, ...}. 
The intersection of all unions is { }. 
»k=n

¶ Sk = {n, n+1, ..., 2n} … {n+1, n+2, ..., 2n+2} … {n+2, n+3, ..., 2n+4} … ... = { } and so is 
the union of all intersections. 
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Example 5: The sequence of real intervals Sn = [0, 1-1/n] has the limit Lim [0, 1-1/n] = [0, 1). 
«k=n

¶ Sk = [0, 1-1/n] » [0, 1-1/(n+1)] » [0, 1-1/(n+2)] » ... = [0, 1). The intersection is [0, 1). 
»k=n

¶ Sk = [0, 1-1/n] … [0, 1-1/(n+1)] … [0, 1-1/(n+2)] … ... = [0, 1-1/n], yielding the union [0, 1). 
The point 1 is neither in intersections nor in unions. 
 
Example 6: The sequence of real intervals Sn = [-1/n, 0] has the limit point Lim [-1/n, 0] = [0]. 
«k=n

¶ Sk = [-1/n, 0] » [-1/(n+1), 0] » [-1/(n+2), 0] » ... = [-1/n, 0]. The intersection is [0]. 
»k=n

¶ Sk = [-1/n, 0] … [-1/(n+1), 0] … [-1/(n+2), 0] … ... = [0], yielding the union [0]. 
 
Example 7: The sequence of real intervals Sn = [(-1)n/n, 1] has no limit. LimSup Sn ∫ LimInf Sn. 
«k=n

¶ Sk = [(-1)n/n, 1] » [(-1)n+1/(n+1), 1] » [(-1)n+2/(n+2), 1] » ... = [-1/n, 1] or [-1/(n+1), 1]. 
The intersection of all unions does not contain any unit fraction -1/n but 0, therefore it is [0, 1]. 
»k=n

¶ Sk = [(-1)n/n, 1] … [(-1)n+1/(n+1), 1] … [(-1)n+2/(n+2), 1] … ... = (0, 1]. Since the 
intersections never contain 0 their union is (0, 1] ∫ [0, 1]. 
 
 
 
 2.17 Partial models of ZFC 
 
"Is there a model of ZFC? A consequence of Gödel's Second Incompleteness Theorem is that one 
cannot hope to prove the existence of a model of ZFC working just from the axioms of ZFC." 
[W.H. Woodin "The continuum hypothesis", Part I, Notices of the AMS (2001) p. 568] 
 
A theory is a set of (first-order) axioms formulated in a language made up from symbols, strings, 
or words for relations, functions, and constants. (The language of set theory consists of the 
relations "equality, =" and "contained as an element, œ".) A model of the theory is a structure, 
i.e., a collection of objects with interpretations for each symbol that satisfy all axioms of the 
theory. A group like (Ÿ, +) is a model of the group axioms, and a set like Ù is a model of the 
axiom of infinity. A model satisfying all axioms of ZFC, M £ ZFC, is unknown (a model of ZFC 
would prove the consistency of ZFC and if shown in ZFC would violate Gödel's incompleteness 
theorem) but we can construct partial models of ZFC, i.e., models that satisfy some of the axioms 
described in section 2.12; henceforth they are briefly called models of ZFC. 
 
A model containing only well-founded sets, i.e., sets not being members of themselves, and the 
relation œ of ordinary set membership is called a standard model. It is a submodel of the universe 
of all sets which is too large to be a set (cp. section 3.1). A model is called an inner model of ZFC 
if it contains all the ordinal numbers of the von Neumann universe V (cp. section 2.17.1) and has 
no sets beyond those in V. 
 
"Well-founded sets are sets that are built up inductively from the empty set, using operations such 
as taking unions, subsets, powersets, etc. Thus the empty set { } is well-founded, as are {{ }} and 
the infinite set {{ }, {{ }}, {{{ }}}, ...}. They are called 'well-founded' because the nature of their 
inductive construction precludes any well-founded set from being a member of itself. We 
emphasize that if M is standard, then the elements of M are not amorphous 'atoms', as some of us 
envisage the elements of an abstract group to be, but are sets. Moreover, well-founded sets are 

http://www.ams.org/notices/200106/fea-woodin.pdf


 57

not themselves built up from 'atoms'; it's 'sets all the way down'. [...] A standard model M of ZFC 
is transitive if every member of an element of M is also an element of M. (The term transitive is 
used because we can write the condition in the suggestive form 'x œ y and y œ M implies x œ M'.) 
[...] a concept in V is absolute if it coincides with its counterpart in M. For example, 'the empty 
set', 'is a member of', 'is a subset of', 'is a bijection', and '¡0' all turn out to be absolute for 
standard transitive models. On the other hand, 'is the powerset of' and 'uncountable' are not 
absolute. For a concept that is not absolute, we must distinguish carefully between the concept 'in 
the real world' (i.e., in V) and the concept in M." [Timothy Y. Chow: "A beginner's guide to 
forcing", arXiv (2008) p. 4ff] 
 
 
 2.17.1 The von Neumann universe V 
 
The universe V is the class of hereditary well-founded sets, the transfinite hierarchy of sets. It was 
described in [John von Neumann: "Über eine Widerspruchsfreiheitsfrage in der axiomatischen 
Mengenlehre", Journal für die reine und angewandte Mathematik 160 (1929) pp. 227-241]. 
 
Every stage of the hierarchy contains the power set of the preceding stage, starting with the 
empty set: V0 = «, V1 = {«}, V2 = {«, {«}}, V3 = {«, {«}, {{«}}, {«, {«}}}. 
 
Since the power set of M contains 2|M| elements (cp. section 2.4) V4 contains 16, V5 contains 216, 
and V6 contains already 2216 = 265536 elements, i.e., much more than there are atoms in the 
universe (cp. chapter VII), and therefore cannot be written down or distinguished. 
 
The general definition is given by transfinite recursion 
 
 V0 = «     Vα+1 = P(Vα)     λ α

α< λ

= ∪V V  

 
where α is an ordinal number and λ is a limit ordinal number. The index is also called rank of the 
stage. Since for α < β, Vα Õ Vβ the universe is also called cumulative hierarchy. 
 
For every set S there is a first stage with S Œ Vα and S œ Vα+1. This α is the rank of the set S. Vω 
is the set of hereditarily finite sets, i.e., all its elements are finite. Vω is a model of ZFC without 
the axiom of infinity. It contains only well-founded sets but not sets like, for instance, the set of 
abstract notions or the set of elephants. 
 
 
 2.17.2 Gödel's constructible universe L 
 
Gödel shows that the axiom of choice (AC, cp. section 2.12.9) and the generalized continuum 
hypothesis (GCH, cp. section 3.2.4) are consistent with the usual axiom system of ZF (cp. section 
2.12) if this is consistent. [Kurt Gödel: "The consistency of the continuum hypothesis", Princeton 
University Press, Princeton (1940); reprinted by Ishi Press, New York (2009)] 
 

http://arxiv.org/pdf/0712.1320.pdf
http://arxiv.org/pdf/0712.1320.pdf
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0160&DMDID=dmdlog19
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0160&DMDID=dmdlog19
https://www.amazon.de/Consistency-Continuum-Hypothesis-Kurt-G%C3%B6del/dp/0923891536
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The primitive notions are class Cls, set M, and the diadic element-of-relation ε, which is applied 
to both sets and classes. [loc cit p. 3] Gödel uses the logical symbols 
 
 (X), ($X), ~, ÿ, ¤,  , ª, =, (E!X) 
 
denoting respectively: for all X, there is an X, not, and, or, implies, equivalence, identity, there is 
exactly one X. [loc cit p. 2] Gödel uses uppercase letters only for classes and lowercase letters for 
sets, no italics, of course, because the paper is typewritten, and lots of Greek and German letters. 
Elements of sets and classes are not separated by commas. Henceforth we will adopt modern 
notation and use italic capital letters for sets and classes. 
  
Gödel uses the special axiom system Σ essentially taken from Bernays. [loc cit p. 7] The axiom of 
extensionality is assumed for sets and classes. A proper class (that is: not a set) cannot be an 
element of a set. 
 
From the axiom of foundation A ≠ « fl $X: (X œ A ⁄ (X … A) = «) Gödel concludes Ÿ(X œ X) 
and Ÿ(X œ Y ⁄ Y œ X). [loc cit p. 6] 
 
Further we note the presence of the axiom of power set "X $Y: U Œ X fl U œ Y. [loc cit p. 5] 
 
In order to describe the structure of his constructible model Δ Gödel needs ordered tuples defined 
in the usual way [loc cit p. 4] 
 
 ‚X, YÚ = {{X}, {X, Y}},   ‚X, Y, ZÚ = ‚X, ‚Y, ZÚÚ,   ‚X1, X2, ..., XnÚ = ‚X1, ‚X2, ..., XnÚÚ . 
 
Although X ≠ {X} = {X, X}, Gödel defines for the ordered set X = ‚XÚ.  
 
A primitive propositional function (ppf) is "a meaningful formula containing only variables, 
symbols for special classes A1, ..., Ak, ε, and logical operators, and such that all bound variables 
are set variables." [loc cit p. 8] Gödel proves the General Existence Theorem: If ϕ(X1, X2, ..., Xn) 
is a ppf containing no other variables than X1, X2, ..., Xn then there exists a class A such that for 
any sets X1, X2, ..., Xn 
 
 ‚X1, X2, ..., XnÚ œ A ñ ϕ(X1, X2, ..., Xn) . 
 
After defining ordinal numbers and cardinal numbers, Gödel explains the fundamental operations 
like pairset, difference, function from A to B, etc. for his constructible model Δ with the class L of 
constructible sets. The operation intersection is left out because X … Y = X \ (X \ Y). [loc cit p. 35] 
 
A class A is constructible if all its elements are constructible sets and if the intersection of A with 
any constructible set is a constructible set. [loc cit p. 38] Operations, notions, and special sets and 
classes defined for Σ can be relativized, i.e. applied to the model Δ (sets and classes appropriately 
marked by horizontal bars but leaving the logical symbols as they stand). The axioms of Σ hold 
for Δ. An object that exists in Δ as well as in Σ is called absolute. The relations œ, Œ, Õ are 
absolute as well as the empty set «, the class L of constructible sets, ordered tuples and other 
functions of constructible sets. Only V itself and the power set are not absolute. [loc cit p. 42ff] 
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Summarizing, Gödel constructs his universe L by starting with the empty set too, but contrary to 
von Neumann extending the model on subsequent stages by the following rules: Only subsets of 
the previous stages α may be used that are definable by a first-order formula in the language of 
ZFC with parameters from the previous stage and quantifiers ranging over the previous stage  
 
 L0 = «     Lα+1 = {X Œ Lα | X definable in Lα}     λ α

α< λ

L L= ∪  

 
where α is an ordinal number and λ is a limit ordinal number. « is constructible [loc cit p. 40] 
and therefore absolute [loc cit p. 44], but since by the axiom of infinity the model must contain 
the minimal inductive set ω we could have started from Lω instead of L0 as well. 
 
Gödel's universe L = «αLα where α extends over the class of all ordinals, is an inner model. It is 
part of every model of ZFC because only constructible sets are contained (as mentioned above L 
is absolute). It satisfies most axioms but not the power set axiom. Not all subsets of a set in L are 
in L (but only such that are in L). Some subsets of a set in L are missing. Otherwise the model 
would not be constructible by formulas, according to ZFC, also from "outside", i.e., in the 
mathematics of our world. 
 
 
 
 2.18 Forcing 
 
The basic idea, due to Cohen [P.J. Cohen: "The independence of the continuum hypothesis". 
Proc. Nat. Acad. Sciences, USA 50 (1963) pp. 1143-1148 & 51 (1964) pp. 105-110], is to start 
from a (necessarily partial) model M of ZFC and to add a so-called generic set G such that the 
model M[G] satisfies some desired properties, for instance to violate the continuum hypothesis. 
In order to increase the legibility of the different texts collected in this section, we will write 
M[G] without exception, although some cited texts use a or X instead of G. This is in accordance 
with the full scale of modern treatments of this topic from [Tim Chow: "Forcing for dummies", 
sci.math.research (10 Mar 2001)] to [Nik Weaver: "Forcing for mathematicians", World 
scientific (2014)]. 
 
After Cohen's approach we will refer to an alternative and easier accessible version of forcing, 
developed by Scott, Solovay, and Vopenka, which proceeds via Boolean algebra. An example of 
forcing is concluding this section. 
 
 
 
 2.18.1 The discovery of forcing 
 
Listening to Cohen's own narration of his discovery, with some abridgements and some 
additional explanations, may be a good outset. (Here M(a) has been replaced by M[G].) 
 "So we are starting with a countable standard model M, and we wish to adjoin new 
elements and still obtain a model. An important decision is that no new ordinals are to be 
created." Cohen adjoins elements already in M, like sets of integers, and G. "I called such an 

https://groups.google.com/forum/#!searchin/sci.math.research/forcing$20for$20dummies/sci.math.research/pQdPHJYML0E/ZrvqIxpd1sIJ
https://www.amazon.de/FORCING-MATHEMATICIANS-NIK-WEAVER/dp/9814566004/
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element a 'generic' element." What set G may be added such that M[G] is still a model? Since the 
model is countable, there is a countable ordinal I larger than all ordinals of M. "Since I is 
countable, it can be expressed as a relation on the integers and hence coded as a set G of integers. 
Now if by misfortune we try to adjoin this G to M, the result cannot possibly be a model for ZF. 
For if it were, the ordinal I as coded by I would have to appear in M[G]. However, we also made 
the rigid assumption that we were going to add no new ordinals. This is a contradiction, so that 
M[G] cannot be a model." It turns out that the set G cannot be determined completely. Since 
M[G] is constructed by transfinite induction on ordinals, the definition of what is meant by 
saying 'G is generic' must also be given by a transfinite induction. "The answer is this: the set G 
will not be determined completely, yet properties of G will be completely determined on the basis 
of very incomplete information about G." How can we find out whether a statement about G is 
true? There are properties which have to be defined, like the presence of a certain number in G, 
and properties which are true in general, mainly because they are implications like 'if G contains 
the empty set, then G is not empty' or 'if G contains ω then G is infinite'. "Now the definition of 
truth is obvious. It is done by induction on the number of quantifiers" reducing their number step 
by step. Elementary statements which cannot be possibly reduced must be taken as given. "An 
elementary statement (or forcing condition) is a finite number of statements of the form n in G, or 
n not in G, which are not contradictory. It is plausible to conjecture that, whatever the definition 
of truth is, it can be decided by our inductive definition from the knowledge of a finite number of 
elementary statements. This is the notion of forcing. If we denote the elementary conditions by P, 
we must now define the notion 'P forces a statement S'. The name, forcing, was chosen so as to 
draw the analogy with the usual concept of implication, but in a new sense." 
 In a countable model every question can be decided in sequential order, but "the 
enumeration would be done outside the model M, and so one had to be sure that there was no 
contradiction in both working in and out of the model." Consider only statements S which have a 
rank bounded by some ordinal. "All our sets and variables are actually functions of the 'generic' 
set G. So in analogy with field theory, we are actually dealing with the space of all (rational) 
functions of G, not actual sets." An elementary statement P is a finite set of statements n in G, or 
not n in G (which are not contradictory) when these are contained in P. "Suppose a statement 
begins with 'there exists' a set x of rank less than α, such that A(x) holds. If we have an example 
of a set (actually a function of G) such that P does force A(x), clearly we have no choice (forced) 
to say that P forces 'there exists ...'. Emphatically not. For it may very well be that we shall later 
find an elementary condition which does force the existence of such an x. So we must treat the 
two quantifiers a bit differently. Now we must reexamine something about our elementary 
conditions. If P is such, we must allow the possibility that we shall later make further 
assumptions about the set G, which must be consistent with P. This means that we are using a 
natural partial ordering among these conditions. We say P < Q, if all the conditions of P are 
contained in Q. That is, Q is further along in determining the final G. This leads to a formal 
definition of forcing which I give here in a somewhat abbreviated form: 
 (a) P forces 'there exists x, A(x)' if, for some x with the required rank, P forces A(x). 
 (b) P forces 'for all x, A(x)' if no Q > P is such that Q forces the negation, i.e., for some y, 
Q forces not A(y)." 
 In order to construct G we need a complete sequence of P such that every statement S is 
forced by some Pk. This is possible since G is completely determined by statements n in G. 
 Cohen proved the lemma: "For all P and S, there is an extension Q of P such that Q 
forces either S or Q forces not S. [...] It follows that a complete sequence exists. Now if Pn is a 
complete sequence, for each integer k the statement k in G, or k not in G, must be forced by some 
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Pn. Thus it is easy to see that G is determined by Pn." Finally there is a truth lemma: "Let Pn be a 
complete sequence. A statement S is true in M[G] if and only if some Pn forces S." 
 When trying to show that M[G] is a model one encounters basic differences with Gödel's 
result. If x is in M[G] it must be guaranteed, that all its subsets occur before some ordinal β of M 
since "we are dealing with ordinals of M. Yet G is not in M, so we cannot discuss x as a set, but 
only as designated by the ordinal α, a function of G. To work inside M, we consider the set of P 
which forces a given set to lie in G or not lie in G. Because forcing is defined in M, we can look 
at all possibilities of assigning sets of P, which force the members of x to lie in an arbitrary y. 
This set is the 'truth value' of the statement. So, in ordinary set theory a subset of x is determined 
by a two-valued function on the members of x. In our situation, a subset is determined by a 
function taking its values in the subset of the elementary conditions. These values are all in the 
model M. Thus we can quantify over all possible truth values and, by a simple argument, show 
that any subset of x occurs before some ordinal β which is in M. The other axioms are proved in 
essentially the same manner. 
 Now we have a method for constructing interesting new models. How do we know that G 
is a 'new' set not already contained in M? A simple argument shows that, for any G' in M and P, 
we can force G to be not equal to G' by choosing any n, not already determined by P, and simply 
extending P by adding n in G, or n not in G, to prevent G from being equal to G'. In this way we 
see that G is not constructible, and so we have a model with a nonconstructible set of integers." 
 In order to violate the continuum hypothesis distinct sets of integers Gi are adjoined to M 
where i < ¡2. Alas, ¡2 belongs to M, but the statement of CH is that the cardinality of the 
continuum is the first uncountable cardinal. It is therefore necessary to show that ¡2 in M is the 
second uncountable cardinal in the new model. However, "one can show that if two ordinals have 
different cardinality in M, they will have different cardinality in the new model. There is an 
important fact about the elementary conditions which is responsible for it. This is the countable 
chain condition." A partially ordered set (abbreviated as poset) is said to satisfy this condition if 
every set of mutually incompatible elements (see section 2.18.2) is countable. The proof of this 
offers no particular difficulty. [Paul J. Cohen: "The discovery of forcing", Rocky Mountain 
Journal of Mathematics 32,4 (2002) pp. 1071-1100] 
 
 
 
 2.18.2 Boolean forcing 
 
This section is based upon the following literature: [Kenneth Kunen: "Set theory – an 
introduction to independence proofs", Elsevier (2006). Thomas Jech: "The axiom of choice", 
North Holland (1973). Thomas Jech: "Set theory – the third millenium edition", Springer (2006). 
Rowan Jacobs: "Forcing" (2011). J. Donald Monk: "Lectures on set theory" (2017). Clive 
Newstead: "Boolean-valued models and forcing" (2012). Timothy Y. Chow: "A beginner's guide 
to forcing", arXiv (2008)] In order to have a common notation all sets will be denoted by capital 
letters and the model by M. 
 
A Boolean valued model has the advantage that no complete sequences need be chosen. It 
contains the desired new set which may be uncountable since this set is not constructed but only 
"approximated" by a countable poset. So the desired new set cannot be proved to be constructible 
and hence countable. We proceed as follows (the technical terms are explained further below): 

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Jacobs.pdf
http://euclid.colorado.edu/~monkd/setth.pdf
http://math.cmu.edu/~cnewstea/talks/20121112.pdf
http://arxiv.org/pdf/0712.1320.pdf
http://arxiv.org/pdf/0712.1320.pdf
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 Ë A countable poset is constructed to "approximate" the desired new (uncountable) set.  
 Ë Take a filter on this poset and take the union of its elements to construct the new set. 
 Ë Construct a Boolean (B) valued model of ZFC containing the new set. 
 Ë The filter on the poset is used to form an ultrafilter on the Boolean algebra BA. 
 Ë Convert with it the B valued model into a {0, 1}-valued model containing the new set. 
 
We start with a transitive1 model M inside the von Neumann universe or with the whole von 
Neumann universe V (cp. 2.17.1). Sometimes M is called the ground model. If X is a definable 
element of V, then XM is the corresponding set in M, i.e., X is an element of the underlying set 
M, X œ M, and M is a model of X. 
 
A forcing order or notion of forcing is a triple (P, §, 1) in M such that § is reflexive and 
transitive (but not necessarily antisymmetric) on the nonempty poset P. 1 is the largest element: 
"X œ P: X § 1. The elements are called forcing conditions. If X § Y then X is said to be stronger 
than Y; X is a function extending Y; X imposes more restrictions than Y, i.e., X ⁄ Y = X. 1 imposes 
the restrictions defined by the empty set «, namely none. Two elements X, Y œ P are compatible 
if there exists Z œ P with Z § X, Y, i.e., Z is stronger than X and Y. A set of pairwise incompatible 
elements of P is called an antichain.  
 
A subset D Œ P is dense, if for every X œ P there is Y œ D with Y § X. For each X œ P abbreviate 
all stronger forcing conditions by P↓X = {Z | Z § X}. 
A filter F on a poset P is a nonempty subset of P which 
 Ë is upwards closed, i.e., for all X œ F, if X § Y (i.e., X ⁄ Y = X) then Y œ F 
 Ë and if X, Y œ F then exists Z œ F extending both X, Y. 
If this filter F intersects every dense set in the ground model M, F is called M-generic. 
 For any X œ P there exists a filter F containing X. 
 
A Boolean algebra is a poset M with a minimum element 0 and a maximum element 1, in which 
every element has a complement and every pair of elements has a least upper bound and a 
greatest lower bound. The B algebra has the operators OR, AND, NOT which act upon the 
elements of the set M. The following axioms hold for all X, Y, Z œ M: 
 
X OR Y = Y OR X  X AND Y = Y AND X  
X OR (Y OR Z) = (X OR Y) OR Z  X AND (Y AND Z) = (X AND Y) AND Z  
X OR (Y AND Z) = (X OR Y) AND (X OR Z) X AND (Y OR Z) = (X AND Y) OR (X AND Z)  
X OR (X AND Y) = X  X AND (X OR Y) = X  
X OR (NOT X) = 1 X AND (NOT X) = 0 . 
 
The axioms at the right-hand side are the dual forms, obtained by exchanging OR and AND, 0 
and 1 (as well as S and NOT S, but the latter sets have been renamed S in the axioms). Often 
instead of (M, OR, AND, NOT, 0, 1) algebraic, logical, or special operators are used such that the 
B algebra is represented by (M, +, ÿ, -, 0, 1) or (M, ¤, ⁄, Ÿ, 0, 1) or (M, +, *, ~, 0, 1), 
respectively. The prime example is the field of subsets of a given set D: (P(D), », …, c, «, D). 

                                                 
1 M is a transitive model if its underlying set M is a transitive set, i.e., if X œ M then X Õ M. Every 
member of an element of M is also an element of M. 
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Here the equivalence of the dual forms like X » Y = Z ñ Xc … Yc = Zc is obvious. The axioms 
stipulate then for all X, Y, Z œ P(D): 
 
 X » Y = Y » X    (A1) X … Y = Y … X    (A1') 
 X » (Y » Z) = (X » Y) » Z   (A2)  X … (Y … Z) = (X … Y) … Z  (A2') 
 X » (Y … Z) = (X » Y) … (X » Z)  (A3)  X … (Y » Z) = (X … Y) » (X … Z) (A3') 
 X » (X … Y) = X    (A4) X … (X » Y) = X    (A4') 
 X » Xc = D    (A5) X … Xc = « .    (A5') 
 
The axioms at the right-hand side are the dual forms, obtained by exchanging union » and 
intersection …, empty set « and domain D (as well as set S and its complement Sc, but the 
complements have been renamed S in the axioms). 
 
Further we introduce a partial order X Œ Y ñ X » Y = Y on D which is reflexive, X Œ X, 
transitive, X Œ Y ⁄ Y Œ Z fl X Œ Z, and antisymmetric, X Œ Y ⁄ Y Œ X fl X = Y. Since the dual 
form of X Œ Y is Xc û Yc, also Œ and û swap roles when constructing the dual expression. 
 
Definition: Z is an upper bound for a set S of elements X if for all X œ S: X Œ Z. 
Definition: Z is least upper bound for a set S if for all its upper bounds Y œ D: Z Œ Y. 
Definition: Z is a lower bound for a set S of elements X if for all X œ S: Z Œ X. 
Definition: Z is greatest lower bound for a set S if for all its lower bounds Y œ D: Y Œ Z. 
 
By antisymmetry least upper bound and greatest lower bound are unique if they exist. Henceforth 
we call them supremum and infimum, respectively. 
For the pair {X, Y} the supremum is X » Y and the infimum is X … Y. 
 
Some obvious propositions that can easily be proved from the axioms include: 
 
 X » X = X = X … X 
 X » « = X     X … D = X     X » D = D     X … « = «     « Œ X Œ D 
  (X » Y = D ⁄ X … Y = «) ñ Y = Xc ñ Yc = X . 
 
Not all axioms are required, but for convenience the whole set is taken like the redundant axioms 
in ZFC (cp. section 2.12) or the unnecessary implication (fl) which is often added to the set of 
logical operators. As an example we prove that (A3') is redundant. 
 
    X … (Y » Z)  = (X … (X » Z)) … (Y » Z)   by (A4') 
   = X … ((X » Z) … (Y » Z))   by (A2') 
   = X … ((Z » X) … (Z » Y))   by (A1') 
   = X … (Z » (X … Y))    by (A3) 
   = (X » (X … Y)) … (Z » (X … Y))  by (A4) 
   = ((X … Y) » X) … ((X … Y) » Z)  by (A1) 
   = (X … Y) » (X … Z) .    by (A3) 
 
Definition: If M is a subset of P(D), then ΣM = «XkœM Xk is the supremum and ΠM = »XkœM Xk is 
the infimum of M. The B algebra is called complete, if Σ and Π always exist. Then, by duality, 
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(ΣM)c = »XkœM Xk
c and (ΠM)c = «XkœM Xk

c. Further, distribution can be extended to infinite sets 
too: Y … ΣM = Y … «XkœM Xk = «XkœM (Y … Xk) and Y » ΠM = Y » »XkœM Xk = »XkœM (Y » Xk). 
 
A topology (D, T) on a set D is a collection T of open subsets of D (elements of P(D)) including 
« and D, such that arbitrary unions, and finite1 intersections of elements of T are in T. D is 
called a topological space. The sets « and D are always both open and closed. 
 
The interior int(X) of a subset X Œ D is the union of all open sets contained in X. int(X) Œ X, and 
int(X … Y) = int(X) … int(Y) since every open set contained in the intersection is also contained in 
each of the intersecting sets. Obviously int(int(X)) = int(X), int(«) = «, int(D) = D. 
 
Definition: A subset X of D is closed ñ D \ X is open.  
Finite unions2 and arbitrary intersections of closed sets are closed. 
 
The closure of X, denoted by cl(X), is the intersection of all closed sets containing X. Some 
obvious theorems are: cl(X) = D \ int(D \ X), int(X) = D \ cl(D \ X), X Œ cl(X), cl(cl(X)) = cl(X), 
cl(«) = «, cl(D) = D, cl(X » Y) = cl(X) » cl(Y). If X is open, then X Œ int(cl(X)).  
 
Definition: X is regular open ñ X = int(cl(X)). This means in particular that X does not contain 
isolated points which may disappear when forming the interior. 
 
If X and Y are regular open, then (X … Y) is regular open. int(cl(X)) is regular open. If X is open, 
then int(cl(X)) is the smallest regular open set containing X. 
 
Definition: Let RO(D) be the collection of all regular open sets in D. Then the special operations 
X »' Y = int(cl(X » Y)) and Xc' = int(D \ X) make (RO(D), »', …,c', «, D) a complete B algebra.  
 
Theorem   TP = {X Œ P | "Z œ X: (P↓Z) Œ X} is a topology on P. 
Proof: For every X, « Œ X, and P = X is not excluded, so « and P are in TP. 
For the union of any sets X, Y œ TP, let Z œ X » Y, then (P↓Z) Œ X » Y. 
For the intersection assume X, Y œ TP. If Z œ X … Y, then Z œ X, so (P↓Z) Œ X, also if Z œ Y, so 
(P↓Z) Œ Y, hence (P↓Z) Œ X … Y. Concluding: X, Y œ TP fl X » Y œ TP ⁄ X … Y œ TP. 
 
Definition: A subset X Œ P is dense below Y ñ "Z § Y: $V § Z such that V œ X. 
 
Definition of the mapping e(P): Denote the complete B algebra of regular open sets in this 
topology by RO(P). For any X œ P, we define a mapping e(X) := int(cl(P↓X)) that maps P into 
RO(P). Let (P, §, 1) be a forcing order and X, Y œ P, then e(P) is dense in RO(P), i.e., for any 
nonzero X œ RO(P) there is a Y œ P such that e(Y) Œ X. If X § Y then e(X) Œ e(Y). The maps of 
incompatible X, Y œ P have empty intersection: e(X) … e(Y) = «. For e(X) § e(Y), X and Y are 
compatible, cl(P↓X) = {Y | X and Y are compatible}, e(X) = {Y | "Z § Y, Z and X are compatible}. 
 
                                                 
1 An infinite intersection of open intervals like (-1/n, 1/n) can be a closed interval [0, 0] = [0].  
2 The infinite union of closed intervals like [1/n, 1] can be an open interval (0, 1]. The infinite intersection 
is the closed interval [1/1, 1] = [1]. 
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Boolean-valued models MB The general idea is this. Let BA be a complete B algebra. We map 
every sentence X œ M to some element |[X]| of BA. If we wish that X is true, we put |[X]| = 1, if 
we wish that X is false, we put |[X]| = 0. This assignment produces well-defined sets with a BA 
containing only 0 and 1. 
 
The mapping X Ø |[X]| has to satisfy the conditions 
 
  |[X OR Y]| = |[X]| ¤ |[Y]|     |[X AND Y]| = |[X]| ⁄ |[Y]|     |[NOT X]| = |[X]|c . 
 
If a sentence neither is determined to be true nor determined to be false, we put 0 < |[X]| < 1. To 
turn MB into an actual model of ZFC with desired properties, we will take a suitable quotient of 
MB that eliminates the fuzziness. The B-valued model MB is defined by transfinite recursion: 
 
 MB

0 = «     MB
α+1 = [MB

α 4 BA] 1     MB
λ = «α<λ MB

α     MB = «αœOrdMB
α . 

 
Very loosely speaking, it is intuitively helpful to think of elements of MB (which are functions) 
as being names for sets in another model. Then, for X œ MB and Y œ dom(X), X(Y) is the 
probability that the set named Y is a member of the set named X.  
 
For a formula φ(X1, X2, ..., Xn) with variables in MB, its Boolean value |[φ(X1, X2, ..., Xn)]| œ BA 
is defined by recursion on the complexity of φ. The universal quantifier claims that all elements 
have a certain property and the existential quantifier says that at least one element has this 
property. Therefore, with ⁄M = ΣM and ŸM = ΠM: 
 
 |["X φ(X)]| = ŸYœMB|[φ(Y)]| 
 |[$X φ(X)]| = ⁄YœMB|[φ(Y)]| . 
 
The atomic expressions of equality and element-relation are defined in terms of each other 
 
 |[X œ Y]| = ⁄Zœdom(Y) (Y(Z) ⁄ |[Z = X]|) 
 |[X = Y]| = ŸZœdom(X) (X(Z) fl |[Z œ Y]|) ⁄ ŸZœdom(Y) (Y(Z) fl |[Z œ X]|) . 
 
For the following statements it is intuitively helpful to think of the order § in BA as being the 
implication. 
 
 |[X = X]| = 1     X(Y) § |[Y œ X]|     |[X = Y]| = |[Y = X]|     |[X = Y]| ⁄ |[Y = Z]| § |[X = Z]| 
 |[X = Z]| ⁄ |[X œ Y]| § |[Z œ Y]|     |[X = Z]| ⁄ |[Y œ X]| § |[Y œ Z]| 
 |[X = Y]| ⁄ |[φ(X)]| § |[φ(Y)]|     |[($Y œ X)φ(Y)]| = ⁄Yœdom(X) {X(Y) ⁄ |[φ(Y)]|} 
 |[("Y œ X)φ(Y)]| = ŸYœdom(X) {X(Y) fl |[φ(Y)]|} . 
 

A formula φ(X1, X2, ..., Xn) with variables in MB is valid in MB if |[φ(X1, X2, ..., Xn)]| = 1.  
 

                                                 
1 [X 4 Y] denotes the set of functions f with dom(f) Œ X and im(f) Œ Y. 
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Every axiom of the predicate calculus is valid in MB, and if φ is obtained via a rule of inference 
applied to valid formulae, then φ is valid in MB. Every axiom of ZFC is valid in MB. In 
particular, by the previous remark, we also have that every sentence provable from the ZFC 
axioms is valid in MB. And if |[φ]| = 1 and ψ is a logical consequence of φ, then |[ψ]| = 1. 
 
Generic extensions Now we step outside the model M and into the universe V. The goal is to 
extend M to a larger model M[G] obtained by adding to M a special subset G of our complete 
Boolean algebra BA, and throwing in everything else that we need in order for this to be a model 
of ZFC (and nothing more). 
  
A subset G Œ BA is an M-generic ultrafilter if  
Ë G is an ultrafilter, i.e. 
 - G is upwards-closed: for all X œ G, if X § Y (i.e., X ⁄ Y = X) then Y œ G. 
 - G is closed under meets: for all X, Y œ G, X ⁄ Y œ G. 
 - If X œ BA then either X œ G or ŸX œ G, but not both (so, in particular 1 œ G and 0 – G). 
Ë G contains the meets of all its subsets which lie in M, i.e., if X Œ G and X œ M then ŸX œ G.  
 - So G intersects all subsets of BA that are elements of M. 
 
A generic ultrafilter is precisely the special subset we wish to adjoin to M. To construct M[G], 
we go via MB. The subset G contains |[φ]| for every statement φ to hold in the new model of 
ZFC. For every X in BA, G must contain either X or Xc. A subset of a poset P is P-generic if it 
intersects every dense subset D of P. D is dense in P if for every X œ P, there exists Y œ D such 
that Y § X. The poset is BA \ {0}, and the set G intersects every dense subset D Œ BA \ {0} that 
is a member of M. If G Œ BA is M-generic, then M[G] is isomorphic to a standard transitive 
model of ZFC that contains both M and G: M Œ M[G] and G œ M[G]. In the interesting case of 
countable models M, the existence of M-generic ultrafilters is easy to prove. 
 
From a generic ultrafilter we can produce a {0, 1}-valued model M[G] through the following 
process. For all X œ MB, we define XG by induction on rank: «G = «, and XG = {YG | X(Y) œ G} 
(that is, values of BA that are in G are taken to be true, and other values are taken to be false). 
Then, we define M[G] = {XG | X œ MB}. It follows1 
 
 if |[φ(X1, X2, ..., Xn)]| œ G, then M[G] £ φ(X1

G, X2
G, ..., Xn

G) . 
 
Generic Model Theorem   Let M be a transitive model of ZFC, and (P, §, 1) a forcing order in 
M. If G Œ P is generic over P, there is a transitive model M[G] of ZFC with the following 
properties: 
 Ë M[G] £ ZFC. 
 Ë M Œ M[G], where M and M[G] are the universes of M and M[G], respectively. 
 Ë OrdM[G] = OrdM (there are no new ordinal numbers introduced in M[G]). 
 Ë If N is a transitive model of ZF such that M Õ N and G œ N, then M[G] Õ N. 
 Ë G œ M[G]. 
 
                                                 
1 "A £ B" indicates that B is a logical consequence of A, i.e., the sentence B is true in all models of A. A 
satisfies B. 
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The Forcing Relation links statements about M[G] to elements of the forcing order (P, §, 1). 
Given e(P) the forcing relation is defined for X œ P by X forces φ(N1, N2, ..., Nn) if and only if 
e(X) § |[φ(N1, N2, ..., Nn)]|, or formalized1: X I¢ φ(N1, N2, ..., Nn) ñ e(X) § |[φ(N1, N2, ..., Nn)]|. 
 
Proof of the Generic Model Theorem: Let (P, §, 1) be a forcing order in M, with an M-generic 
filter G Õ P. For every P-name X œ MP = MB(P), we define XG inductively, such that «G = « and 
XG = {YG | $Z œ G, e(Z) § X(Y)}. The universe of M[G] be {XG | X œ MP}. The generic filter G 
on P is used to define a generic ultrafilter H on BA such that H = {Y œ BA | $X œ G, e(X) § Y}, 
i.e., H is the set of elements above elements of e(P). H is M-generic because it is generated from 
the M-generic filter G, and it can be easily checked that XG = XH for all X œ MB. Therefore 
M[G] = M[H]. The first four conditions of the theorem follow. To verify that G œ M[G] write G 
as G = {X œ P | e(X) œ H}, which gives G œ M[H] as desired. 
 
The Forcing Theorem   Every statement that is true in the new model M[G] was forced by some 
element of the generic filter G. Let (P, §, 1) be a forcing order in the ground model M. If σ is a 
sentence in the language of set theory with P-names as parameters, then for all G Õ P generic 
over M, M[G] £ σ iff there is X œ G such that X I¢ σ. 
 
Proof: Assume that M[G] £ σ. Using the proof of the Generic Model Theorem, there is an 
ultrafilter H of BA(P) such that M[G] = M[H]. Then M[H] £ σ implies |[σ]| œ H. By the 
construction of H, all elements of H are above some element of e(P), so there is X œ P such that 
e(X) § |[σ]|. By the definition of the forcing relation, we get that X I¢ σ. Now assume that there 
exists X œ P such that X I¢ σ. Then e(X) § |[σ]| by definition, so |[σ]| œ H, implying, as desired, 
that σ is a logical consequence of M[G]: M[H] = M[G] £ σ. 
 
 
 2.18.3 An example 
 
The following excerpt from [K. Hrbacek, T. Jech: "Introduction to set theory", 2nd ed., Marcel 
Dekker, New York (1984) p. 232ff] "reinforces" this topic by a detailed exemplary explanation of 
how the properties of the generic set G (which in the original version is called X) can be defined. 
 
"2¡0 = ¡1 is a distinct possibility (and becomes a provable fact if the Axiom of Constructibility is 
also assumed). In general, it is, therefore, necessary to add 'new' sets to our universe in order to 
get a model for 2¡0 > ¡1. 
 We concentrate our attention on the task of adding just one 'new' set of natural numbers 
G. For the time being G is just a symbol devoid of content, a name for a set yet to be described. 
Let us see what one could say about it. 
 A key to the matter is a realization that one cannot expect to have complete information 
about G. If we found a property P which would tell us exactly which natural numbers belong to 
G, we could set G = {n œ ω | P(n)} and conclude on the basis of the Axiom Schema of 
Comprehension that G exists in our universe, and so is not a 'new' set. Cohen's basic idea was that 
                                                 
1 The symbol I¢ denotes the forcing relation between elements X of a forcing notion P and statements φ 
with parameters (P-names) N1, N2, ..., Nn. X I¢ φ means X forces φ to be the case in M[G] if X is in G. 
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partial descriptions of G are sufficient. He described the set G by a collection of 'approximations' 
in much the same way as irrational numbers can be approximated by rationals. 
 Specifically, we call finite sequences of zeros and ones conditions; for example, «, ‚1Ú, 
‚1, 0, 1Ú, ‚1, 1, 0Ú, ‚1, 1, 0, 1Ú are conditions. We view these conditions as providing partial 
information about G in the following sense: If the kth entry in a condition is 1, that condition 
determines that k œ G. If it is 0, the condition determines that k – G. For example, ‚1, 1, 0, 1Ú 
determines that 0 œ G, 1 œ G, 2 – G, 3 œ G (but does not determine, say, 4 œ G either way). 
 Next, it should be noted that adding one set G to the universe immediately gives rise to 
many other sets which were not in the universe originally, such as ω - G, ω μ G, G2, P(G), etc. 
Each condition, by providing some information about G, enables us to make some conclusions 
also about these other sets, and about the whole expanded universe. Cohen writes p I¢ P (p forces 
P) to indicate that information provided by the condition p determines that the property P holds. 
For example, it is obvious that 
 
 ‚1, 1, 0, 1Ú I¢ (5, 3) œ ω μ G 
 
(because, as we noted before, ‚1, 1, 0, 1Ú I¢ 3 œ G, and 5 œ ω is true) or 
  
 ‚1, 1, 0, 1Ú I¢ (2, 3) – P(G)  
 
(because ‚1, 1, 0, 1Ú I¢ 2 – G). 
 It should be noticed that conditions often clash: For example, 
 

 ‚1, 1, 0Ú I¢ (0, 1) œ G2, 
while 
 ‚1, 0, 1Ú I¢ (0, 1) – G2." 
 
The statement p I¢ P(G) is to be understood as conditional: If the set G is as described by the 
condition p, then G has the property P. ‚1, 1, 0Ú I¢ (0, 1) œ G2 means if 0 œ G, 1 œ G, 2 – G, then 
(0, 1) œ G2, while ‚1, 0, 1Ú I¢ (0, 1) – G2 means if 0 œ G, 1 – G, 2 œ G, then (0, 1) – G2. "If we 
knew the set G, we would of course be able to determine whether it is as described by the 
condition ‚1, 1, 0Ú or by the condition ‚1, 0, 1Ú or perhaps by another of the remaining six 
conditions of length three. Since we cannot know the set G, we never know which of these 
conditions is 'true'; thus we never are able to decide whether (0, 1) œ G2 or not. Nevertheless, it 
turns out that there are a great many properties of G which can be decided, because they must 
hold no matter what conditions are 'true'. As an illustration, let us show that every condition 
forces that G is infinite. If not, there is a condition p and a natural number k such that p I¢ 'G has k 
elements'. For example, let p = ‚1, 0, 1Ú and k = 5; we show that ‚1, 0, 1Ú I¢ 'G has five elements' 
is impossible. Consider the condition q = ‚1, 0, 1, 1, 1, 1, 1Ú. First of all, the condition q contains 
all information supplied by p: 0 œ G, 1 – G, 2 œ G. If the conclusion that G has five elements 
could be derived from p, it could be derived from q also. But this is absurd because clearly q I¢ 'G 
has six elements'; namely, q I¢ 0 œ G, 2 œ G, 3 œ G, 4 œ G, 5 œ G, 6 œ G. The same type of 
argument leads to a contradiction for any p and k." 
 Every condition forces that G is a new set of natural numbers, not identical with any set 
A of the universe before adding G. If not, there is a condition p such that p I¢ G = A. Assume that 
this condition is p = ‚1, 0, 1Ú forcing 0 œ G, 1 – G, 2 œ G. Now there remain two possibilities. If 
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3 œ A, let q1 = ‚1, 0, 1, 0Ú. Since q1 contains all information supplied by p, q1 I¢ G = A. But this is 
impossible, because q1 I¢ 3 – G, whereas 3 œ A. If 3 – A, let q2 = ‚1, 0, 1, 1Ú. Again q2 I¢ G = A, 
but we get a contradiction from q2 I¢ 3 œ G and 3 – A. A similar argument works for any p. 
 "Let us now review what has been accomplished by Cohen's construction. The universe of 
set theory has been extended by adding to it a 'new', 'imaginary' set G (and various other sets 
which can be obtained from G by set-theoretic operations). Partial descriptions of G by 
conditions are available. These descriptions are not sufficient to decide whether a given natural 
number belongs to G or not, but allow us, nevertheless, to demonstrate certain statements about 
G, such as that G is infinite and differs from every set in the original universe. Cohen has 
established that the descriptions by conditions are sufficient to show the validity of all axioms of 
Zermelo–Fraenkel set theory with Choice in the extended universe. 
 Although adding one set of natural numbers to the universe does not increase the 
cardinality of the continuum, one can next take the extended universe and, by repeating the whole 
construction, add to it another 'new' set of natural numbers G'. If this procedure is iterated ¡2 
times, the result is a model in which there are at least ¡2 sets of natural numbers, i.e., 2¡0 ¥ ¡2. 
Alternatively, one can simply add ¡2 such sets at once by employing slightly modified 
conditions." 
 
To summarize: A partial model M of ZFC has to be extended by a generic set G such that M[G] 
has the desired properties. Some facts about M[G] depend on the particular generic set G, while 
others are general facts that are true for all G. If, for example, we add an element X to extend a 
group, then always the inverse element X-1 is added too by the axiom of inverse element. This is a 
general property. That X obeys the axiom of closure, however, is an individual property. 
 
 
 
 2.19 Second-order logic 
 
Logic takes as its particles sentences or statements A which have truth values, either false (A) = 0 
or true (A) = 1, and connects them by conjunction (⁄), disjunction (¤), and negation (¬) in order 
to form further, compound propositions. Logic is the set of rules how the truth-values of the 
resulting propositions have to be calculated. In the original, classical logic, developed by the 
ancient Greek, the sentences are called propositions. 
 
Example: The two propositions, P = "you order a pizza" and S = "you will get a salad free of 
charge", are combined to obtain the proposition ¬P ¤ S, which is often abbreviated as the 
implication P fl S. This implication is true unless (P) = 1 and (S) = 0. Note: If the premise is 
false, (P) = 0, the implication is always true, (P fl S) = 1, but not necessarily the conclusion S. 
 
In first-order predicate logic (FOL), the sentences are called predicates. They concern statements 
about elements which belong to a given domain and are either true or false. A predicate can be 
interpreted as a function which maps a statement to the truth values 0 or 1. The main distinction 
from classical logic however is that statements can be equipped with two quantifiers. A statement 
with the universal quantifier " claims truth for all elements of the domain D that are represented 
by the variable x in the expression "x œ D. A statement with the existential quantifier $ claims 
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that truth can be accomplished by inserting at least one1 element of the domain in place of the 
variable x in the expression $x œ D. Variables without quantifier are called free variables, 
variables with quantifier are called bounded variables: In the sentence ""n œ Ù: mÿn is even" the 
truth value depends on the choice of the free variable m but cannot depend on the bounded 
variable n because it is asserted for every possible element of the domain Ù. 
 
FOL is restricted to quantification over individuals, the elements of the domain, often a set, but 
not over predicates or functions which also cannot be taken as arguments for other predicates or 
functions. For instance FOL cannot quantify over all sets of real numbers, i.e., the power set 
P(—). (Since ZFC has been formulated in FOL and in ZFC everything is a set, this distinction 
becomes problematic.) 
 
Second-order logic (SOL) quantifies over predicates or relations including functions. SOL cannot 
be reduced to FOL, according to current set theory, because FOL addresses at most a countably 
infinite set. By the theorem of Skolem (cp. 3.4 "The Löwenheim-Skolem paradox") there is a 
countable model that satisfies precisely the same first-order sentences about real numbers and 
sets of real numbers as the real set — of real numbers. In the countable model there cannot be all 
uncountably many subsets of Ù or — and the least upper bound property cannot be satisfied for 
every bounded subset of —. So, if the real numbers are uncountable, then there must be many 
FOL models of —. In SOL, however, there is merely one model (up to isomorphism). 
 
SOL has a main disadvantage however. According to a result of Gödel's SOL does not admit a 
complete proof theory. So SOL is not logic, properly speaking. Quine calls it "set theory in 
sheep's clothing". He considers an expression which makes the choice of y depending on z too: 
 
 "z $w "x $y Fxyzw 
 
 "As a way of avoiding these unwanted dependences, the branching notation 
 

 
x y

Fxyzw
z w

∀ ∃
∀ ∃

         (*) 

 
suggests itself. [...] If we quantify over functions we can get (*) back into line thus: 
 
 $f $g "x "z Fx(fx)z(gz) . 
 
But here we affirm the existence of abstract objects of a certain sort: functions. We leave logic 
and ascend into a mathematics of functions, which can be reduced to set theory but not to pure 
logic. [...] The logic of quantification in its unsupplemented form admits of complete proof 
procedures for validity. It also admits of complete proof procedures for inconsistency; for, to 
prove a schema inconsistent we have only to prove its negation valid. Now a remarkable fact [...] 
is that as soon as you branch out in the manner of (*) you get into a terrain that does not admit 
simultaneously of complete proof procedures for validity and inconsistency." [W.V. Quine: 
"Philosophy of logic", 2nd ed., Harvard Univ. Press (1986) p. 90f] 
                                                 
1 Sometimes $6x is used to express that there exist one and only one of the elements represented by x 
which makes the expression true. 

https://books.google.fi/books?id=S_NhnP0izA4C&pg=PA91&hl=de&source=gbs_toc_r&cad=2#v=onepage&q&f=false
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Quine advanced the view that in predicate-language sentences the variable can be understood as a 
name denoting an object and hence can be quantified over. "The variables of quantification, 
'something', 'nothing', 'everything', range over our whole ontology, whatever it may be; and we 
are convicted of a particular ontological presupposition if, and only if, the alleged presuppositum 
has to be reckoned among the entities over which our variables range in order to render one of 
our affirmations true. 
 We may say, for example, that some dogs are white, and not thereby commit ourselves to 
recognizing either doghood or whiteness as entities. 'Some dogs are white' says that some things 
that are dogs are white; and, in order that this statement be true, the things over which the bound 
variable 'something' ranges must include some white dogs, but need not include doghood or 
whiteness." [Willard V. Quine: "On what there is", The Review of Metaphysics 2,5 (1948) p. 32; 
reprinted in "From a logical point of view", Harvard University Press (1953)] 
 
This reasoning has been criticized by Boolos. "It is of little significance whether second-order 
logic may bear the (honorific) label 'logic' or must bear 'set theory'. What matter, of course, are 
the reasons that can be given on either side. It seems to be commonly supposed that the 
arguments of Quine and others for not regarding second- (and higher-) order logic as logic are 
decisive, and it is against this view that I want to argue here." [George S. Boolos: "On second-
order logic", The Journal of Philosophy 72,16 (1975) p. 509] 
 
Boolos proves that sentences such as the classical Geach-Kaplan sentence "Some critics admire 
only each other" cannot be expressed in FOL using only the predicates occurring in the sentence 
itself. Further he favours "plural quantification" $xx and "xx meaning "there are some things 
represented by x" and "for any things represented by x". [George Boolos: "To be is to be a value 
of a variable (or to be some values of some variables)", Journal of Philosophy 81 (1984)] "He 
argues that it is simply a prejudice to insist that the plural locutions of natural language be 
paraphrased away. Instead he suggests that just as the singular quantifiers "x and $x get their 
legitimacy from the fact that they represent certain quantificational devices in natural language, 
so do their plural counterparts "xx and $xx. For there can be no doubt that in natural language we 
use and understand the expressions 'for any things' and 'there are some things'. Since these 
quantifiers bind variables that take name (rather than predicate) position, they are first-order 
quantifiers, albeit plural ones." [Øystein Linnebo: "Plural quantification", The Stanford 
Encyclopedia of Philosophy (2017)] 
 
"The First Order Logicians: the early, vast majority. These include Guisseppe Peano, C.S. Pierce, 
David Hilbert, Georg Cantor, Richard Dedekind, Skolem, Löwenheim, Zermelo, Fraenkel, 
Herbrand, the Bourbaki guys, Quine, Tarski, (early) Wittgenstein, etc. [...] Peano, Pierce, and 
Hilbert all developed First Order Logic roughly independently; this lends credence to the idea 
that FOL is a natural foundation for mathematics." [Matt W-D in "Is first order logic (FOL) the 
only fundamental logic?", Philosophy.StackExchange (29 Jul 2012)] 
 
The disadvantage of being not logical at all may save SOL from being unmasked as insufficient. 
In fact however SOL appears to be not indispensible in mathematics and sciences as will be seen 
in chapter VI by proving that there is nothing uncountable. So FOL will serve all mathematical 
and scientific purposes. 

https://www2.southeastern.edu/Academics/Faculty/jbell/onwhatthereis.pdf
https://www.jstor.org/stable/2025179?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2025179?seq=1#page_scan_tab_contents
http://plato.stanford.edu/entries/plural-quant/
http://philosophy.stackexchange.com/questions/3318/is-first-order-logic-fol-the-only-fundamental-logic
http://philosophy.stackexchange.com/questions/3318/is-first-order-logic-fol-the-only-fundamental-logic
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III   Paradoxes and antinomies 
 
A paradox is an astonishing result but not detrimental to the underlying theory. An antinomy is a 
contradiction that cannot be tolerated in a mathematical theory. Sometimes the judgements about 
what is a paradox and what is an antinomy are diverging (cp., e.g., Borel's statement about the 
axiom of choice in chapter V). In old set theory with unrestricted comprehension some internal 
contradictions appeared which were considered and called paradoxes until their disastrous effect 
had been acknowledged. They have been removed by the axiom of restricted comprehension. 
 
 
 3.1 Antinomies and paradoxes of naive set theory 
 
Set theory developed by Cantor, prior to the invention of the well-known axiom system ZFC by 
Zermelo and Fraenkel (and other systems like NBG by von Neumann, Bernays, and Gödel, or 
Quines' New Foundations NF) has been called naive set theory. Not based on axioms1 but on the 
assumed reality of "nature" it was subject to many contradictions. 
 
 
 3.1.1 The Burali-Forti antinomy 
 
The first antinomy has been published by Cesare Burali-Forti. In modern terms it reads: The set 
Ω of all ordinal numbers has (or is) an ordinal number itself which is larger than every ordinal 
belonging to the set (and like every ordinal number it has a successor Ω + 1). Therefore there is 
an ordinal number strictly larger than all ordinal numbers (which allegedly are contained in Ω). 
[C. Burali-Forti: "Una questione sui numeri transfiniti", Rendiconti del Circolo Matematico di 
Palermo 11 (1897) pp. 154-164; English translation: "A question on transfinite numbers" in Jean 
van Heijenoort: "From Frege to Gödel – A source book in mathematical logic, 1879-1931", 
Harvard Univ. Press, Cambridge (1967) pp. 104-112] 
                                                 
1 "Hypotheses are not at all mentioned in my arithmetical investigations about the finite and the transfinite, 
only reasons are given for what is really existing in nature. You on the other hand believe [...] that also in 
arithmetic hypotheses could be invented which is absolutely impossible. [...] As little as we can invent 
basic laws in arithmetic of finite numbers other than those known from time immemorial for the numbers 
1, 2, 3, ..., so little a deviation from arithmetical basic truths is possible in the realm of the transfinite. 
'Hypotheses' offending these basic truths are as false and contradictory as, e.g., the sentence 2 + 2 = 5 or a 
square circle. To see such hypotheses being used at the outset of an investigation suffices for me to know 
that this investigation must be wrong." [G. Cantor, letter to G. Veronese (17 Nov 1890)] Although Cantor 
here talks about "hypotheses" he is obviously meaning axioms: It is impossible to choose arbitrary axioms 
disobeying the natural laws of arithmetic. 
 Only much later, in a letter to Hilbert [G. Cantor, letter to D. Hilbert (27 Jan 1900)], Cantor 
discusses three kinds of axioms, namely (1) those of logic which mathematics shares with all other 
sciences, (2) the physical axioms, like those of geometry and mechanics, which are not necessary but can 
be replaced by others, and finally (3) the metaphysical axioms of arithmetic including the axiom of finite 
number theory "Every finite multitude is consistent" and the axiom of transfinite number theory "'Every 
multitude which a signed aleph ¡γ belongs to (where γ is any ordinal number) is consistent.' In other 
words: all signed alephs are real cardinal numbers, being just as real as the finite cardinal numbers."  
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 3.1.2 Cantor's set of all sets 
 
Cantor independently knew of the inconsistency of the set of all ordinal numbers and the set of 
all sets. In a letter to Dedekind [G. Cantor, letter to R. Dedekind (3 Aug 1899)] he states that the 
set of all ordinal numbers does not exist. He calls it an incomplete or inconsistent multitude or an 
inconsistent system. Nowadays such inconsistent systems are called classes. "The system Ω in its 
natural order of magnitude is a 'sequence'. Supplementing this sequence by the element 0, put in 
the first place, we get the sequence Ω' = 0, 1, 2, 3, ..., ω0, ω0 + 1, ..., γ, ... of which it is easy to see 
that every number γ is the type of the sequence of all its predecessors (including 0). (The 
sequence Ω has this property only for γ ¥ ω0 + 1.) Ω' (and therefore also Ω) cannot be a 
consistent multitude; if Ω' was consistent, then to this well-ordered set a number δ would 
correspond which would be larger than all numbers of the system Ω; but in the system Ω also δ 
appears because it contains all numbers including δ. That means δ would be larger than δ which 
is a contradiction. Therefore: The system Ω of all numbers is an inconsistent, an absolutely 
infinite multitude." 
 
Then Cantor proves that also the system of all alephs is an inconsistent absolutely infinite set. He 
shows, based on the inconsistency of Ω, that no cardinal number corresponds to an inconsistent 
multitude. And he proves that every cardinality is an aleph. "Let us take a certain multitude V and 
presuppose that it does not correspond to an aleph, then we can conclude that V must be 
inconsistent. It is easily recognized that, under the made assumptions, the whole system Ω can be 
mapped into the multitude V, i.e., there must exist a partial multitude V' of V which is equivalent 
to the system Ω. V' is inconsistent because Ω is inconsistent. Therefore the same must be claimed 
of V. Hence every transfinite consistent multitude, every transfinite set must have a determined 
aleph as its cardinal number. The system 9æ of all alephs is nothing else but the system of all 
transfinite cardinal numbers. Hence, all sets are in a generalized sense 'countable', in particular 
all 'continua'. [...] 'If a and b are any cardinal numbers, then either a = b or a < b or a > b.' 
Because, as we have seen, the alephs have this character of magnitudes." 
 
In short, the proof that the cardinality of the power set is always larger than that of the set forbids 
the existence of the set of all sets, because the set of all sets has to include its power set and thus 
has to have a larger cardinal number than itself. 
 
 
 3.1.3 The Russell antinomy 
 
In 1901 Bertrand Russell devised the first antinomy that became widely known, the predicate w: 
"to be a predicate that cannot be predicated of itself"; in modern treatments replaced by the set S 
of all sets X that do not contain themselves as an element: S = {X | X – X}. With unrestricted 
comprehension and without the axiom of foundation it is possible to define a set containing itself 
as an element; for instance, the set of all abstract notions is also an abstract notion, hence contains 
itself as an element. Russell concluded an antinomy: S œ S ‹ S – S. He mentioned this in 1902 
in a letter to Frege [B. Russell, letter to G. Frege (16 Jun 1902); reprinted in Jean van Heijenoort: 
"From Frege to Gödel – A source book in mathematical logic, 1879-1931", Harvard Univ. Press, 
Cambridge (1967) p. 124f] who in 1879 had devised the axiom of (unrestricted) comprehension. 
The same antinomy had been found by Zermelo independently. 
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Russell constructed a lot of easily understandable parables. Best known is the male barber who 
shaves all men in his village who do not shave themselves. Who shaves the barber? If he shaves 
himself, he belongs to the set of men not to be shaved by the barber. If he does not shave himself, 
the barber has to shave him. Or consider the library catalogues (which in the past used to be thick 
books with pigskin cover) that do not contain themselves. If we have to make a general catalogue 
of all library catalogues that do not contain themselves, should this general catalogue contain 
itself? If yes, then no, and if no, then yes. 
 
 
 
 3.1.4 Richard's paradox 
 
Richard's paradox was first stated in 1905 in a letter to the Revue générale des sciences pures et 
appliquées. The Principia Mathematica by Whitehead and Russell quote it together with six other 
paradoxes concerning the problem of self-reference. The paradox can be interpreted as an 
application of Cantor's diagonal argument. It inspired Kurt Gödel and Alan Turing to their 
famous works. Kurt Gödel considered his incompleteness theorem as analogous to Richard's 
paradox which in the original version runs as follows: 
 
Consider a list of all permutations of the 26 letters of the French alphabet, i.e., a list of all words 
of length two, three, four letters, and so forth, and write them in alphabetical order into a table. 
Let us cross out all those which are no definitions of numbers. The remaining entries form the 
ordered set E of all numbers that can be expressed with a finite number of letters or words. This 
set is denumerable. Let p be the nth decimal of the nth number of the set E; we form a number N 
having zero for the integral part and p + 1 for the nth decimal, if p is not equal either to 8 or 9, 
and 1 if p is equal either to 8 or 9. This number N does not belong to the set E because it differs 
from any number of this set, namely from the nth number by the nth digit. But N has been 
defined by G, a finite number of words, namely those which are above written in red. It should 
therefore belong to the set E. That is a contradiction. 
 
Richard then argues that this contradiction is only apparent. The collection G of letters has no 
meaning at the place where it appears in the table since it mentions the set E which has not yet 
been defined. Therefore there is no contradiction. Further, if, after N has been defined, its 
definition G is inserted into the table, another diagonal number N' will result. 
 
[Jules Richard: "Les principes des mathématiques et le problème des ensembles", Revue générale 
des sciences pures et appliquées 12 (1905) pp. 541-543; English translation: "The principles of 
mathematics and the problem of sets" in Jean van Heijenoort: "From Frege to Gödel – A source 
book in mathematical logic, 1879-1931", Harvard Univ. Press (1967) pp. 142-144] 
 
The version given in Principia Mathematica by Whitehead and Russell is similar to Richard's 
original version, alas not quite as exact. Here only the digit 9 is replaced by the digit 0, such that 
identities1 like 1.000... = 0.999... can spoil the result. 
 

                                                 
1 In chapter VI we will see that no such identities exist, but they are erroneously assumed in set theory 
because otherwise it is impossible to interpret (the diagonal) digit sequences as irrational numbers. 

https://commons.wikimedia.org/wiki/File:Les_Principes_des_Math%C3%A9matiques_et_le_Probl%C3%A8me_des_Ensembles.jpg
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 3.1.5 König's paradox 
 
This paradox was published also in 1905 by Julius (Gyula) König. Perhaps it had been written 
simultaneously with Richard's paper. "It is easy to show that the finitely defined elements of the 
continuum determine a subset of the continuum that has cardinality ¡0 [...] we are employing, 
lastly, the logical antithesis 'given an arbitrary element of the continuum, either it is finitely 
defined or this is not the case'." If the real numbers can be well-ordered, then there must be a first 
real number (according to this order) which cannot be defined by a finite number of words. But 
the first real number which cannot be defined by a finite number of words has just been defined 
by a finite number of words, namely those which are written in red. "The assumption that the 
continuum can be well-ordered has therefore lead to a contradiction." [Julius König: "Über die 
Grundlagen der Mengenlehre und das Kontinuumproblem", Math. Annalen 61 (1905) pp. 156-
160; English translation: "On the foundations of set theory and the continuum problem" in Jean 
van Heijenoort: "From Frege to Gödel – A source book in mathematical logic, 1879-1931", 
Harvard Univ. Press, Cambridge (1967) pp. 146ff] 
 
 
 
 3.1.6 Berry's paradox 
 
Berry's Paradox, first mentioned in the Principia Mathematica as fifth of seven paradoxes, is 
credited to G.G. Berry of the Bodleian Library. It uses the least integer not nameable in fewer 
than nineteen syllables; in fact, in English it denotes 111777. "But 'the least integer not nameable 
in fewer than nineteen syllables' is itself a name consisting of eighteen syllables; hence the least 
integer not nameable in fewer than nineteen syllables can be named in eighteen syllables, which 
is a contradiction. [Bertrand Russell: "Mathematical logic as based on the theory of types" (1908) 
in Jean van Heijenoort: "From Frege to Gödel – A source book in mathematical logic, 1879-
1931", Harvard Univ. Press, Cambridge (1967) p. 153] 
 
Berry's Paradox with letters instead of syllables is often related to the set of those natural 
numbers which can be defined by less than 100 (or any other large number of) letters. As the 
natural numbers are a well-ordered set, there must be the least number which cannot be defined 
by less than 100 letters. But this number was just defined by 65 letters including spatia. 
 
Analogously, the smallest natural number without interesting properties acquires an interesting 
property by this very lack of any interesting properties. 
 
The solution of Berry's paradox may be explained most easily in the second version. If all 
definitions with less than 100 letters already are given, then also the sequence of letters Z = "the 
least number which cannot be defined by less than 100 letters" does define a number. As an 
example, let a = 01, b = 02, c = 03 etc. By "example" we have defined the number example = 
05240113161205 and also the sequence Z would already define a number. Only by the change of 
language from numeral to colloquial the apparent paradox occurs. 
 
 
 
 

http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0061/PPN235181684_0061___LOG_0016.pdf
http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0061/PPN235181684_0061___LOG_0016.pdf
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 3.1.7 The Grelling-Nelson paradox 
 
A word that describes its own property is an autological word. Examples are "old", a very old 
word, or "short", a very short word. A word that does not describe its own property is called 
heterological. Examples are "new" which is a very old word or "long" which is a very short 
word. To what class does the word "heterological" belong? If "heterological" is heterological, 
then it describes its property and is autological. But if it is autological, then it does not describe 
its property and is heterological. The dilemma is irresolvable. [K. Grelling, L. Nelson: 
"Bemerkungen zu den Paradoxien von Russell und Burali-Forti", Abhandlungen der Fries'schen 
Schule, Vol. II, Göttingen (1908) pp. 300-334] 
 
A related version is the following: The number of all finite definitions is countable. In lexical 
order we obtain a sequence of definitions D1, D2, D3, ... . Now, it may happen that a definition 
defines its own number. This would be the case if D1 read "the smallest natural number". It may 
happen, that a definition does not describe its own number. This would be the case if D2 read "the 
smallest natural number". Also the sentence "this definition does not describe its number" is a 
finite definition. Let it be Dn. Is n described by Dn? If yes, then no, and if no, then yes. The 
dilemma is irresolvable.  
 
 
 
 3.2 The undecidable continuum hypothesis 
 
The most paradoxical result is certainly brought about by the fact that this theory, which nearly 
exclusively deals with different infinities, is unable to determine whether there is a cardinal 
number between ¡0 and 2¡0. The so-called continuum hypothesis assumes that there is no further 
cardinal number in between. Cantor had tried to prove this and had often believed that he had 
accomplished it: "I show with absolute rigour that the cardinality of the second number class (II) 
is not only different from the cardinality of the first number class but that it is indeed the next 
higher cardinality; [G. Cantor: "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", published 
by the author himself, Leipzig (1883)] In August 1884 he announced a proof in private 
correspondence. [G. Cantor, letter to G. Mittag-Leffler (26 Aug 1884)] But he had to withdraw it 
and instead announced a proof that the continuum had not the cardinality 2¡0 of the second 
number class and no cardinality at all. [G. Cantor, letter to G. Mittag-Leffler (14 Nov 1884)] 
Sometimes his first mental breakdown is attributed to this problem. Meanwhile it has been 
established that the question cannot be decided. Under the assumption that ZFC is free of 
contradictions (otherwise everything could be proven) Kurt Gödel showed in 1938 that the 
continuum hypothesis cannot be disproved from the axioms of ZFC. [K. Gödel: "The consistency 
of the continuum-hypothesis", Princeton University Press, Princeton (1940)] And Paul Cohen 
showed in 1963 that it cannot be proved either. [P.J. Cohen: "The Independence of the continuum 
hypothesis", Proc. Nat. Acad. Sciences, USA 50 (1963) pp. 1143-1148 & 51 (1964) pp. 105-110] 
So the continuum hypothesis is independent of ZFC. 
 
"There is no evidence that Cantor himself ever considered the possibility that the continuum 
hypothesis is unprovable and undecidable. Obviously formal investigations were far from his 
mind. For him mathematical theorems were theses about something being; he even was 

https://www.amazon.de/Consistency-Continuum-Hypothesis-Kurt-G%C3%B6del/dp/0923891536
https://www.amazon.de/Consistency-Continuum-Hypothesis-Kurt-G%C3%B6del/dp/0923891536
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221287/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC300611/
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convinced that the cardinal numbers ¡0 and ¡ were corresponding to realities in the physical 
world. We are afraid, he would not have enjoyed the 'solution' of his questions by the modern 
foundational researchers. [...] Obviously it was difficult for Cantor to express in hard 
mathematical language what he imagined. His 'definition' could appear rather questionable to a 
critical thinker like Kronecker." [Herbert Meschkowski: "Georg Cantor: Leben, Werk und 
Wirkung", 2nd ed., Bibl. Inst., Mannheim (1983) pp. 213 & 229] 
 
Cantor was not the only one who thought that he had proved the continuum hypothesis. Also 
Hilbert did: "Not even the sketch of my proof of Cantor's continuum hypothesis has remained 
uncriticized. I would therefore like to make some comments on this proof." [E. Artin et al. (eds.): 
"D. Hilbert: Die Grundlagen der Mathematik" (1927). Abh. Math. Seminar Univ. Hamburg, Bd. 
6, Teubner, Leipzig (1928) pp. 65-85; English translation in J. van Heijenoort: "From Frege to 
Gödel – A source book in mathematical logic, 1879-1931", Harvard Univ. Press, Cambridge 
(1967) p. 476] 
 
In order to give an example for the notion of independence, 
consider that even in arithmetic trichotomy is not a general 
property. We can choose a structure which obeys trichotomy 
and a structure which does not, like the sequence of natural 
numbers and the power set of {1, 2}, respectively. [W. 
Mückenheim: "Mathematik für die ersten Semester", 4th ed., 
De Gruyter, Berlin (2015) p. 18] The same can happen in set 
theory with respect to the continuum hypothesis. 
 
 
 
 3.2.1 The continuum hypothesis cannot be refuted in ZFC 
 
In section 2.17.2 a partial model Δ (often denoted as L, according to its universe of sets) of ZF 
has been constructed which obeys most ZF-axioms (cp. section 2.12). It is used to show that the 
continuum hypothesis (CH) is satisfied there and to conclude (or better: to strongly support the 
belief) that CH would hold also in a true model of ZFC. For this purpose Gödel shows that the 
axiom of choice (AC) is valid in Δ. Since the model is constructible it is a matter of few lines to 
show this: "Now it remains only to be shown that the axiom of choice and the generalized 
continuum-hypothesis follow from V = L and Σ. For the axiom of choice this is immediate since 
the relation [...], which singles out the element of least order in any non-vacuous constructible 
set, evidently satisfies {{AC}} if V = L." [Kurt Gödel: "The consistency of the continuum 
hypothesis", Princeton University Press (1940); reprinted by Ishi Press, New York (2009) p. 53] 
 
"This model, roughly speaking, consists of all 'mathematically constructible' sets, where the term 
'constructible' is to be understood in the semiintuitionistic sense which excludes impredicative 
procedures. [...] In particular, {{the generalized CH (see section 3.2.4)}} follows from the fact 
that all constructible sets of integers are obtained already for orders < ω1, all constructible sets of 
sets of integers for orders < ω2 and so on." [Kurt Gödel: "The consistency of the axiom of choice 
and of the generalized continuum-hypothesis", Proc. Nat. Acad. Sciences 24 (1938) p. 556] 
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https://www.amazon.de/Mathematik-ersten-Semester-Gruyter-Studium/dp/3110377330
https://www.amazon.de/Consistency-Continuum-Hypothesis-Kurt-G%C3%B6del/dp/0923891536
https://www.amazon.de/Consistency-Continuum-Hypothesis-Kurt-G%C3%B6del/dp/0923891536
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077160/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077160/
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"The next step in Gödel's proof is to show that the axiom of choice holds in L. The axiom of 
choice says in one form that given any set X, there is a function which assigns to each nonempty 
element y of X, an element of y. Now in the construction of L, each element is constructed at a 
least ordinal. Furthermore, at each ordinal there are only countably many formulas into which 
may be inserted particular constants that have already been constructed at a previous ordinal. [...] 
assuming we have well-ordered all the previously constructed sets, we obtain a well-ordering of 
whatever new sets are constructed at a given ordinal. Putting these altogether, we see that there is 
a definable well-ordering of L. This clearly gives a definable choice function by simply defining 
the choice function as the element which appears first in the well-ordering. At this point we have 
shown that 'models' exist in which the axiom of choice is true, and hence we know that it is 
impossible to prove AC false from the axioms of ZF." [Paul J. Cohen: "The discovery of 
forcing", Rocky Mountain Journal of Mathematics 32,4 (2002) p. 1084f] 
 
A concise and instructive version of Kurt Gödel's argument is presented by Hrbacek and Jech: 
"Let now X Œ ω. The Axiom of Constructibility guarantees that X œ Lα+1 for some, possibly 
uncountable, ordinal α. This means that there is a property P such that n œ X if and only if P(n) 
holds in (Lα, œ). By the Skolem-Löwenheim Theorem, there is an at most countable set B Œ Lα 
such that (B, œ) satisfies the same statements as (Lα, œ). In particular, n œ X if and only if P(n) 
holds in (B, œ). Moreover, the fact that a structure is of the form (Lβ, œ) for some ordinal β can 
itself be expressed by a suitable statement, which holds in (Lα, œ) and thus also in (B, œ). From 
all this, one can conclude that (B, œ) is (isomorphic to) a structure of the form (Lβ, œ) for some, 
necessarily at most countable, ordinal β. Since X is definable in (B, œ), we get X œ Lβ+1. 
 We can conclude that every set of natural numbers is constructed at some at most 
countable stage, i.e., P(ω) Œ «β<ω1

Lβ+1. To complete the proof 2¡0 = ¡1, we only need to show 
that the cardinality of the latter set is ¡1. This in turn follows if we show that Lγ is countable for 
all γ < ω1. Clearly L* = ω is countable. The set L1 consists of all subsets of L* definable in (L*, 
œ), but there are only countably many possible definitions (each definition is a finite sequence of 
letters from a finite alphabet of some formalized language, together with a finite sequence of 
parameters from the countable set L*), and therefore only countably many definable subsets of L*. 
We conclude that L1 is countable and then proceed by induction, using the same idea at all 
successor stages and the fact that a union of countably many countable sets is countable at limit 
stages." [K. Hrbacek, T. Jech: "Introduction to set theory", 2nd ed., Marcel Dekker, New York 
(1984) p. 232] 
 
The consistency of CH can also be shown by forcing (cp. section 2.18). We assume that F be the 
poset of countably infinite partial functions f from ω1 to —. The sets Dx = {f œ F | x œ dom(f)} and 
Dr = {f œ F | r œ range(f)} are dense, so G intersects all of them. Thus, if G is generic over F, 
then «G is a surjection from ω1 to —. So M[G] yields the set of real numbers of the model and 
shows that its cardinality is not larger than the ω1 of the model: M[G] £ |—M| § ω1

M. M Õ M[G] 
implies ω1

M § ω1
M[G]. In order to show —M = —M[G] let g be an element of —M[G] and g' be a 

name for that element. If f œ F forces that g' is a function from ω to {0, 1}, then we can find a 
chain of fn for all n œ ω, such that fn § fn-1 § ... § f0 § f, and fn forces g(n) to have a particular 
value. This is a countable descending sequence of countable functions, so their union u is also a 

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
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countable function, and is thus in F. u is, or at least contains, a function from ω to {0, 1} which is 
equal to g, so g is in M. Hence —M = —M[G] as desired. Thus, M[G] £ |—| § ω1. 
 
 
 
 3.2.2 The continuum hypothesis cannot be proved in ZFC 
 
In order to construct a model of ZFC in which the continuum hypothesis is false (ŸCH), define 
the forcing order P = {p: ω2 μ ω Ø {0, 1} | p is a finite partial function} where p is stronger than 
q iff p extends q. If G is a generic filter on P, f = «G will be a total function f: ω2

M μ ω Ø {0, 1} 
defining ω2

M Cohen generic reals (cp. section 2.18 "Forcing" and the literature listed there, in 
particular Rowan Jacobs: "Forcing"). 
 In order for M[G] to model ŸCH, we must make sure that ω2

M = ω2
M[G]. The easiest 

way to show this is to verify that P satisfies the countable chain condition (abbreviated by ccc), 
defined as the condition that every antichain in P is countable. 
 Theorem   If P satisfies the countable chain condition and G is an M-generic filter of P, 
then for all limit ordinals α, the cofinalities1 in M and M[G] are identical cfM(α) = cfM[G](α). 
As a result, for all cardinals κ, κM = κM[G]. 
 Proof: It is enough to show that if κM is a regular2 cardinal, so is κM[G]. So assume κM 
(henceforth denoted by κ) is regular, and let λ < κ. Let f' be a name, and p œ P such that p I¢ f' is 
a function from λ to κ. For every ordinal α < λ define Aα = {β < κ | $q < p, q I¢ f' (α) = β}. The 
set Aα contains every β that some q (extending p) forces to be a value for f(α). The set of 
witnesses {qβ such that qβ I¢ f'(α) = β | β œ Aα} is an antichain, because if β ≠ γ then qβ and qγ are 
not compatible. By ccc it is countable. So Aα must be countable too, for all α < λ. As κ is regular, 
there is γ < κ which is an upper bound to the set «α<κ Aα. So for each α < λ, p I¢ f'(α) < γ. 
Therefore p I¢ f' is bounded below κ for all f' œ MP and p œ P. Thus in M[G], for every λ < κ, 
cf(κ) > λ. So cf(κ) = κ, and κ is regular in M[G] as desired. 
 It remains to show that P is ccc and that the Cohen generic reals defined by P are distinct. 
For that sake we assume that M is a countable transitive model, and thus f: ω2

M μ ω Ø {0, 1} is 
countable in V, and we use the following lemma: Let P be a set of finite functions on a countable 
set C, where p § q iff p extends q. Assume that if p » q is a function then it is also in P. Then P 
has countable chain condition. 
 Then for all α < ω2, define fα(n) = f(α, n), so fα is the αth function defined by G. For all α 
and n, this is defined, since the sets Dα,n = {p œ P | (α, n) œ dom(p)} are dense in P. Assume that 
α ≠ β. The set D = {p œ P | $n: p(α, n) ≠ p(β, n)} is dense in P, so it intersects G. So fα ≠ fβ. We 
can conclude that M[G] £ there are ω2 distinct real numbers. 
 
                                                 
1 The cofinality cf(S) of a set S is the least possible order type of any ordering of its elements. For 
example, the cofinality of ω2 is ω, because every countable limit ordinal has cofinality ω (cp. section 2.9). 
The minimum possible cardinality of a cofinal subset of S is referred to as the cofinality of S too.  
2 A regular cardinal number is equal to its own cofinality. It cannot be divided into smaller sets of smaller 
cardinalities. An example is ¡0 (cp. section 2.8). 

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Jacobs.pdf
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 3.2.3 The independence of the axiom of choice 
 
If M is a model of the axiom of choice (AC), M £ AC, then also M[G] £ AC (cp. section 2.18 
and see Rowan Jacobs: "Forcing"). But we can construct submodels which model ŸAC. For that 
sake we will add countably many Cohen generic reals to M, then let N be the hereditarily 
ordinal-definable sets of M[G] and show that a well-ordering of our new reals is not hereditarily 
ordinal-definable, and thus not in N. To easen this task, we assume that M is a model of V = L. 
 Let P be the poset of finite partial functions from ω μ ω to {0, 1}. If G is a generic filter 
on P, let ak = {n œ ω | $p œ G, p(k, n) = 1} and A = {ak | k œ ω}. A' and a'k will be the names in 
M[G] for A and its elements. For every pair a'k, a'j and p œ P there exists q   p and n œ ω such 
that q(k, n) = 1 and q(j, n) = 0. So every p œ P forces that all a'k are distinct. 
 Let N Õ M[G] be the class of all sets in M[G] that are hereditarily ordinal-definable with 
parameters in A – that is, the transitive closure of each element of N must be ordinal-definable. 
Thus, N is a submodel of M[G], and is a transitive model of ZFC. It remains to be shown that 
there is no well-ordering of A in N. 
 Assume that f: A Ø Ord is one-to-one and ordinal-definable with parameters in A. Then 
there exists some finite sequence s = (x0, ..., xk) such that f is ordinal-definable with parameters 
x0, ..., xk, A. For any a œ A which is not some xi, there is some ϕ such that M[G] £ a is the 
unique set such that ϕ(a, α1, ..., αn, s, A), where αi are ordinals. 
 Let p0 I¢ ϕ(a', α1, ..., αn, s', A'). We will show that there exists a name b' and q œ P 
extending p0 such that q I¢ a' ≠ b' and q I¢ ϕ(b', α1, ..., αn, s', A'). There are i, i0, ..., ik and p1 
extending p0 such that p1 I¢ a' = a'i, and for all j, p1 I¢ a'ij

 = x'j . Let j be a natural number distinct 
from i, such that for all m, p1(j, m) is not defined. 
 We define π: ω Ø ω as the transposition (i, j). This permutation induces an automorphism 
π of P, and thus of B and MB. π(a'i) = a'j and vice versa, and for all other n, π(a'n) = a'n. We also 
have (πp1)(i, m) not defined for all m, but p1 and πp1 agreeing at all other points. So p1 and πp1 
are compatible. Let q extend both of them. We get q I¢ ϕ(a'i, ...) ⁄ ϕ(a'j, ...) ⁄ a'i ∫ a'j, 
contradicting the hypothesis that f is ordinal-definable with parameters in A. Thus, N is a model 
of a set that cannot be well-ordered. So, as desired N is a model of ZF where AC fails. 
 
 
 
 3.2.4 Further undecidable hypotheses 
 
Gödel's First Incompleteness Theorem states that any axiom system sufficient to express 
elementary arithmetic cannot be both consistent and complete. If ZFC is consistent, then it cannot 
be complete. Then ZFC must have models which satisfy different statements. We have learned 
about the most prominent examples of incompleteness in the preceding part of this section. 
 
Meanwhile plenty of independence results have been established by forcing although none being 
as disturbing as the undecidability of the simple continuum hypothesis ¡1 = 2¡0 which in case of 
real numbers can be expressed as "every uncountable set S Œ — has a bijective mapping on —". 
 
The classical examples include the generalized continuum hypothesis and Souslin's problem. 

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Jacobs.pdf


 81

The generalized continuum hypothesis [Felix Hausdorff: "Grundzüge einer Theorie der 
geordneten Mengen", Mathematische Annalen 65 (1908) p. 494] states that for every transfinite 
cardinal number ¡α the next cardinal number is 
 
 ¡α+1 = 2¡α . 
 
Souslin in 1920 considered a complete linearly ordered set (R, <) without endpoints where every 
set of disjoint open intervals is at most countable. ["Problème de M.M. Souslin", ICM 
Bibliotheka Wirtualna Matematyki] The question whether (R, <) must be isomorphic to the real 
line cannot be answered in ZFC.  
 
A bewildering facet of undecidability is that it is consistent that Gödel's explicit construction of a 
well-ordered subset of the real numbers is "all real numbers" (cp. 2.17.2), whereas Cohen's 
construction (cp. 3.2.2) shows that it is also consistent that this subset is not all real numbers. 
 
All these problems become decidable when the axiom of constructibility is assumed; but this 
axiom is contradicting the power set axiom of ZFC – and nobody is authorized to modify it. 
 
 
 
 3.3 The paradox of Tristram Shandy 
 
The belief in the possibility to finish infinite bijections raises the paradoxical result that Adolf A. 
Fraenkel explained by Laurence Sterne's novel "The life and opinions of Tristram Shandy, 
gentleman": "Well known is the story of Tristram Shandy who undertakes to write his biography, 
in fact so pedantically, that the description of each day takes him a full year. Of course he will 
never get ready if continuing that way. But if he lived infinitely long (for instance a 'countable 
infinity' of years [...]), then his biography would get 'ready', because, expressed more precisely, 
every day of his life, how late ever, finally would get its description because the year scheduled 
for this work would some time appear in his life." [A. Fraenkel: "Einleitung in die Mengenlehre", 
3rd ed., Springer, Berlin (1928) p. 24] "If he is mortal he can never terminate; but did he live 
forever then no part of his biography would remain unwritten, for to each day of his life a year 
devoted to that day's description would correspond." [A.A. Fraenkel, A. Levy: "Abstract set 
theory", 4th ed., North Holland, Amsterdam (1976) p. 30] 
 
To have an example with a simpler ratio consider Scrooge McDuck who per day earns 10 $ and 
spends 1 $. The dollar bills are enumerated by the natural numbers. McDuck receives and spends 
them in natural order. If he lived forever he would go bankrupt by the same argument. (Using 
coins he would get rich.) 

http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002262150
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002262150
http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1125.pdf
http://en.wikipedia.org/wiki/The_Life_and_Opinions_of_Tristram_Shandy,_Gentleman
http://en.wikipedia.org/wiki/The_Life_and_Opinions_of_Tristram_Shandy,_Gentleman
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN373206852|LOG_0009&physid=PHYS_0039
https://archive.org/stream/in.ernet.dli.2015.134723/2015.134723.Abstract-Set-Theory-Fourth-Revised-Edition_djvu.txt
https://archive.org/stream/in.ernet.dli.2015.134723/2015.134723.Abstract-Set-Theory-Fourth-Revised-Edition_djvu.txt
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 3.4 The Löwenheim-Skolem paradox 
 
Another paradox or antinomy (depending on the standpoint) has been published by Thoralf 
Skolem1 based on previous work by Leopold Löwenheim2: Every first-order theory like ZFC, 
that has a model (i.e., that is consistent), also has a countable model. This appears as a hard blow 
to set theory, which mainly has gained interest because of the existence of uncountable sets. 
 
 
 
 3.4.1 Skolem's first proof 
 
In 1920 Skolem introduced his "normal form3", showed that every satisfiable well formed 
formula of first order predicate calculus has a satisfiable Skolem normal form (and vice versa), 
and improved and generalized the proof of Löwenheim's theorem. 
 
Theorem   "Every proposition in normal form either is a contradiction or is already satisfiable in 
a finite or denumerably infinite4 domain." [loc cit p. 256] 
 
Let us consider first the simplest possible case containing both quantifiers 
 
 "x $y U(x, y) 
 
where U(x, y) is a proposition constructed by means of conjunction (⁄), disjunction (¤), and 
negation (¬) from relative coefficients having only x and y as arguments5. Then by virtue of the 
axiom of choice for every x a uniquely determined y can be chosen in such a way that U(x, y) 
comes out true. (Remember we consider only satisfiable propositions.) Assume that for every x, 
x' is the image of x. Then for the values assigned to the relative symbols, the proposition U(x, x') 
is true for every x. Calling O the domain, we can write this as 
 
 "x œ O: U(x, x') . 
 
Let a be a particular individual of O. Then there exist certain classes X included in O that, first, 
contain a as an element (X(a) is true) and, second, contain x', whenever they contain x.6 Now let 

                                                 
1 [Th. Skolem: "Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit 
mathematischer Sätze nebst einem Theoreme über dichte Mengen", Vidensskapsselskapets Skrifter I, 
Mat.-naturv. Klasse No. 4, Kristiania (1920), partially translated as "Logico-combinatorial investigations 
in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. 
Löwenheim and generalizations of the theorem" in J. van Heijenoort: "From Frege to Gödel – A source 
book in mathematical logic, 1879-1931", Harvard Univ. Press, Cambridge (1967) pp. 252-263] 
2 [Leopold Löwenheim: "On possibilities in the calculus of relatives" (1915) loc cit pp. 229-251] 
3 A Skolem normal form is a string of all universal quantifiers (") followed by a string of all existential 
quantifiers ($) followed by a quantifier-free expression. (Skolem and Löwenheim wrote Π and Σ instead 
of " and $.) 
4 "finite or denumerably infinite" will henceforth be abbreviated by "countable". 
5 Skolem writes Uxy and calls it Aussage (proposition) and the xy Indizes (subscripts). A binary relative U 
is a set of ordered pairs (x, y) for which Uxy holds. 
6 "X(x') whenever X(x) is true", or, in other words, "¬X(x) ¤ X(x') is true for every x", briefly X(x) fl X(x'). 
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X0 be the logical (identical) product (i.e. the intersection) of all these classes. Then, according to 
Dedekind's theory of chains (see footnote 1 on p. 48), X0 is a countable class. But it is clear 
further, that 
 
 "x œ X0: U(x, x') 
 
must hold. Hence this proves that, if "x $y U(x, y) is satisfied in a domain O, it is also satisfiable 
in a countable domain. 
 
In order to prove the theorem in full generality Skolem inserts two lemmas. 
 
Lemma 1.   Let R(x1, ..., xm, y1, ..., yn) be an (m + n)-ary relation which holds if for arbitrary given 
x1, ..., xm in the domain O there is one and only one y1, one and only one y2, and so forth up to 
one and only one yn. Let K be an arbitrary finite class, and let K1 be the class of all those values 
of y1, ..., yn that correspond to the various possible choices of x1, ..., xm in K. Then K » K1 is a 
finite class too. 
 This proposition is clearly true because if K consists of k objects, then there exist 
altogether km possible choices of x1, ..., xm, hence also km corresponding sequences y1, ..., yn. K1 
contains at most kmn elements and K » K1 contains at most k + kmn objects. 
 
Lemma 2.   Let R be an (m + n)-ary relative with the property mentioned in lemma 1, and let Ξ be 
the logical product of all classes X that possess the two properties: 
 1) a is an element of X. 
 2) If x1, ..., xm are arbitrarily chosen in X, then X also contains the objects y1, ..., yn for 
which R(x1, ..., xm, y1, ..., yn) holds. 
 Then Ξ is a countable class. 
 The class K » K1 is defined as in lemma 1. Further {a} is a singleton. Consider those 
classes of classes having two properties, namely containing {a} as an element and if containing a 
class K, also containing K » K1 as an element. The intersection A of these classes of classes is an 
ordinary Dedekind chain (see footnote 1 on p. 48) and consists of the classes {a}, {a}', {a}'', ... . 
The classes that are elements of A need not be mutually distinct; in any case A is a countable class 
of classes. In consequence of lemma 1 every element of A must be a finite class, for {a} is finite, 
and if K is finite then also K » K1 is finite. According to the definition of A the class of all finite 
classes must contain all of A, that is, every element of A is a finite class. 
 Then, by well-known set theoretic theorems, the sum «A of all classes that are elements 
of A must be countable. This sum «A is Ξ. First {a} is included in Ξ as a subclass and with K 
also K » K1 is a subclass. Therefore every element of A is a subclass of Ξ. Conversely Ξ must 
also be a subclass of «A. a is an element of «A, and if x1, ..., xm are arbitrarily chosen in «A 
then, since {a} is a subclass of {a}' and {a}' is a subclass of {a}'' ..., there exists an element K of 
A that contains all x1, ..., xm. Then every y of y1, ..., yn belongs to K » K1, which is the successor 
element of K in A. Consequently all of the y belong to «A. According to the definition of Ξ, Ξ 
must then be a subclass of «A. So «A = Ξ, from which it follows that Ξ is countable. 
 
It is now easy to prove the theorem in general. Assume the general first-order proposition 
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 "x1 "x2 ... "xm $y1 $y2 ... $yn U(x1, ..., xm, y1, ..., yn) .    (*) 
 
By the axiom of choice we can then, for every choice of x1, ..., xm, imagine a definite sequence 
chosen from among the corresponding sequences y1, ..., yn for which U(x1, ..., xm, y1, ..., yn) is 
true. Denote the corresponding sequence of y by y1(x1, ..., xm), y2(x1, ..., xm), ..., yn(x1, ..., xm). 
Then the proposition 
 
 U(x1, ..., xm, y1(x1, ..., xm), y2(x1, ..., xm), ..., yn(x1, ..., xm))    (**) 
 
holds for every choice of x1, ..., xm and the relation has the properties considered in the lemmas. 
Hence, if we assume that a is a particular individual and that Ξ is the intersection of all classes X 
that contain a as an element and contain the y of the sequence y1, y2, ..., yn whenever they contain 
x1, ..., xm, then Ξ is countable and (**) holds for all possible choices of x1, ..., xm in this Ξ. 
 
Skolem then derives some generalizations of his theorem, for instance: If a proposition can be 
represented as a product of a denumerable set of first-order propositions, it is either a 
contradiction or is already satisfiable in a denumerable domain. But the main point has been 
made: There is no absolute uncountability. 
 
 
 
 3.4.2 Skolem's second proof 
 
While Skolem's first proof made use of the axiom of choice and proved that a formula F of 
quantification theory that is satisfiable in a domain is also satisfiable in a countable subdomain, 
his second proof, delivered 1922 before the Fifth Congress of Scandinavian Mathematicians at 
Helsinki, avoided the axiom of choice and proved that every satisfiable formula, with some 
appropriate adaption of the predicate letters of F, is also satisfiable in the domain Ù. This proof 
adhered closer than his first one to Löwenheim's original approach. [T. Skolem: "Einige 
Bemerkungen zur axiomatischen Begründung der Mengenlehre", Akademiska Bokhandeln, 
Helsinki (1923) pp. 217-232; reprinted as "Some remarks on axiomatized set theory" in J. van 
Heijenoort: "From Frege to Gödel – A source book in mathematical logic, 1879-1931", Harvard 
University Press, Cambridge (1967) pp. 290-301] 
 
Among other points Skolem first discusses the fact that Zermelo's system is not sufficient to 
provide a foundation for ordinary set theory. Probably no one will find Zermelo's explanations of 
"definite proposition" satisfactory. Skolem gives a better explanation of "definite proposition", 
namely a finite expression constructed from the five logical operations conjunction, disjunction, 
negation, and universal and existential quantification. Further he gives another proof of 
Löwenheim's theorem: If a first-order proposition is satisfied in any domain at all, it is already 
satisfied in a countable domain. Skolem breaks this down to the set of natural numbers. 
 
Let there be given an infinite sequence of first-order propositions U1, U2, ... which are assumed to 
hold simultaneously. By a suitable choice of the class and relation symbols occuring in the 
propositions, they can be assumed to hold in the infinite sequence of positive integers. 
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Again Skolem uses the normal form given above (*). The proof proceeds then by way of an 
infinite sequence of steps. First let x1 = x2 = ... = xm = 1. If U is consistent, then it must be 
possible to choose y1, ..., yn among the numbers 1, 2, ..., n + 1 such that U(1, 1, ..., 1, y1, ..., yn) is 
satisfied. The second step consists in choosing for x1, ..., xm every permutation with repetition of 
the numbers 1, 2, ..., n + 1 (taken m at a time) with exception of the first permutation 1, 1, ..., 1. 
For at least one of the solutions obtained in the first step it must then be possible, for each of the 
(n + 1)m - 1 permutations, to choose y1, ..., yn among the numbers 1, 2, ..., n + 1 + n((n + 1)m - 1) 
in such a way that for each permutation x1, ..., xm taken within the segment 1, 2, ..., n + 1, the 
proposition holds for a corresponding choice taken within 1, 2, ..., n + 1 + n((n + 1)m - 1). Thus 
from certain solutions gained in the first step we now obtain certain continuations, which 
constitute the solutions of the second step. It must be possible to continue the process in this way 
indefinitely if the given first-order proposition is consistent. 
 Then Skolem shows that it is possible to obtain a uniquely determined solution for the 
entire number sequence and applies his result to generalize Löwenheim's theorem in the case of 
Zermelo's axioms, which, as first-order propositions, can be enumerated according to their form. 
Skolem concludes: "If Zermelo's axiom system, when made precise, is consistent, it must be 
possible to introduce an infinite sequence of symbols 1, 2, 3, ... in such a way that they form a 
domain B in which all of Zermelo's axioms hold provided these symbols are suitably grouped into 
pairs of the form a œ b." [loc cit p. 295] 
 One of the symbols will be the null set (no other will stand in the œ-relation with that 
symbol). If a is one of the symbols, then {a} is another. If M is a symbol, then PM, «M, and »M 
will be others. 
 
In the discussion Skolem notes: "So far as I know, no one has called attention to this peculiar and 
apparently paradoxical state of affairs. By virtue of the axioms we can prove the existence of 
higher cardinalities, of higher number classes, and so forth. How can it be, then, that the entire 
domain B can already be enumerated by means of the finite positive integers? The explanation is 
not difficult to find. In the axiomatization, 'set' does not mean an arbitrarily defined collection; 
the sets are nothing but objects that are connected with one another through certain relations 
expressed by the axioms. Hence there is no contradiction at all if a set M of the domain B is 
nondenumerable in the sense of the axiomatization; for this means merely that within B there 
occurs no one-to-one mapping Φ of M onto Z0 (Zermelo's number sequence). Nevertheless there 
exists the possibility of numbering all objects in B, and therefore also the elements of M, by 
means of the positive integers; of course, such an enumeration too is a collection of certain pairs, 
but this collection is not a 'set' (that is, it does not occur in the domain B). [...] 
 Even the notions 'finite', 'infinite', 'simply infinite sequence', and so forth turn out to be 
merely relative within axiomatic set theory." [loc cit p. 295] 
 
We see that Skolem denied an antinomy because the definition of countability of a set in the 
model requires a bijection with the natural numbers within the model. If this bijection, also being 
a set, does not exist in the model, then the set is uncountable there, although it may be countable 
from outside. However, this implies that "set" does not mean an arbitrarily defined collection! It 
completely invalidates set theory as a theory of sets of real objects or of their names. 
 
Nevertheless Skolem emphasized the relativism of uncountability. "In order to obtain something 
absolutely nondenumerable, we would have to have either an absolutely nondenumerably infinite 
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number of axioms or an axiom that could yield an absolutely nondenumerable number of first-
order propositions. But this would in all cases lead to a circular introduction of the higher 
infinities; that is, on an axiomatic basis higher infinities exist only in a relative sense.  
 With a suitable axiomatic basis, therefore, the theorems of set theory can be made to hold 
in a merely verbal sense, on the assumption, of course, that the axiomatization is consistent; but 
this rests merely upon the fact that the use of the word 'set' has been regulated in a suitable way. 
We shall always be able to define collections that are not called sets; if we were to call them sets, 
however, the theorems of set theory would cease to hold. [...] 
 Concluding remark: The most important result above is that set-theoretic notions are 
relative. [...] I believed that it was so clear that axiomatization in terms of sets was not a 
satisfactory ultimate foundation of mathematics that mathematicians would, for the most part, not 
be very much concerned with it. But in recent times I have seen to my surprise that so many 
mathematicians think that these axioms of set theory provide the ideal foundation for 
mathematics; therefore it seemed to me that the time had come to publish a critique." [loc cit pp. 
296 & 300f] 
 
 
 
 3.4.3 Reception of Skolem's results 
 
"The reception of Skolem's paradox illustrates the delay in the absorbing of new ideas in science. 
Fraenkel's influential 'Einleitung in die Mengenlehre' [1919] is a good example to trace the 
influence of Skolem. The second edition of 1923 mentions Skolem's paper, which had only just 
become available to Fraenkel, in a footnote. The paradox is referred to as 'a difficulty which has 
so far not yet been overcome'. 
 In the subsequent 'Zehn Vorlesungen über die Grundlegung der Mengenlehre' [1927], 
Skolem's paradox gets its own section, where it is discussed as a new, alarming attack at the 
axiomatic foundation of set theory. Fraenkel was not convinced of the correctness of the 
arguments of Skolem, he built in the caveat 'if the conclusions of Löwenheim and Skolem 
proceed without gaps and errors'. He did not see a solution to the paradox, but was inclined to see 
impredicativity as a possible source of the problem. The third edition of the 'Einleitung' [1928)] 
again questions the correctness of the Skolem argument. In spite of Skolem's crystal clear 
exposition, Fraenkel states: 
 'Since neither the books have at present been closed on the antinomy, nor on the 
significance and possible solution so far an agreement has been reached, we will restrict 
ourselves to a suggestive sketch.' 
 The remarks show that the role of logic in set theory was not quite clear to Fraenkel, no 
matter how much he admired Hilbert's proof theory. Apparently Skolem's arguments were 
beyond his expertise. [...] 
 Von Neumann straightforwardly acknowledged the relativity phenomenon, he ended his 
paper with the words: 
 'At present we can do no more than note that we have one more reason here to entertain 
reservations about set theory and that for the time being no way of rehabilitating this theory is 
known.' 
 Where the majority of the mathematicians followed Fraenkel's scepticism, and a few von 
Neumann's resignation, the first set theoretician to surpass Cantor in his own field, Ernst 
Zermelo, had decided that the Skolem paradox was a hoax. [...] 
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 On October 4, 1937, under the title 'Relativism in set theory and the so-called Theorem of 
Skolem', he wrote down what he thought would be such a refutation. [...] The argument is clever, 
and it would probably have confused most readers, it certainly confused Zermelo himself. [...] 
 How could this happen? Surely, Zermelo would have been able to mathematically 
understand, say, Skolem's proof of the Löwenheim-Skolem Theorem. However, he seems to have 
been blocked to view this theorem as a purely mathematical statement and, instead, was caught in 
the special case of a first-order axiomatization of set theory, a system that – as we have seen – 
totally contradicted his understanding of set theory and strongly evoked his epistemological 
resistance." [D. van Dalen, H.-D. Ebbinghaus: "Zermelo and the Skolem paradox", Utrecht 
Research Institute for Philosophy, Logic Group, Preprint Series 183 (1998) pp. 3 & 10f] 
 
"What about Zermelo? When faced with the existence of countable models of first-order set 
theory, his first reaction was not the natural one, namely to check Skolem's proof and evaluate the 
result – it was immediate rejection. Apparently, the motivation of ensuring 'the valuable parts of 
set theory' which had led his axiomatizations from 1908 and from the Grenzzahlen paper had not 
only meant allowing the deduction of important set-theoretic facts, but had included the goal of 
describing adequately the set-theoretic universe with its variety of infinite cardinalities. Now it 
was clear that Skolem's system, like perhaps his own, failed in this respect. Moreover, Skolem's 
method together with the epistemological consequences Skolem had drawn from his results, 
could mean a real danger for mathematics like that caused by the intuitionists: In his Warsaw 
notes W3 he had clearly stated that 'true mathematics is indispensably based on the assumption of 
infinite domains', among these domains, for instance, the uncountable continuum of the real 
numbers. Hence, following Skolem, 'already the problem of the power of the continuum loses its 
true meaning'. 
 Henceforth Zermelo's foundational work centred around the aim of overcoming Skolem's 
relativism and providing a framework in which to treat set theory and mathematics adequately. 
Baer speaks of a real war Zermelo had started [R. Baer, letter to E. Zermelo (27 May 1930)] [...] 
'It is well known that inconsistent premises can prove anything one wants; however, even the 
strangest consequences that Skolem and others have drawn from their basic assumption, for 
instance the relativity of the notion of subset or equicardinality, still seem to be insufficient to 
raise doubts about a doctrine that, for various people, already won the power of a dogma that is 
beyond all criticism.' [E. Zermelo: 'Über Stufen der Quantifikation und die Logik des 
Unendlichen', Forschung und Fortschritte 8 (1932) p. 6f] [...] in the beginning Zermelo had 
doubts about the correctness of Skolem's proof {{then}} he tried right away to disprove the 
existence of countable models. [...] Starting with a countable model M, he invoked various 
methods to obtain a contradiction by constructing sequences of subsets of ω in M of length 
uncountable in M. [...] Besides his endeavour to refute the existence of countable models of set 
theory by providing a concrete inconsistency, Zermelo proceeded more systematically. The tone 
of the resulting papers – both the published and the unpublished ones – is harsh. [...] Zermelo 
regarded Skolem's position as a real danger for mathematics and, therefore, saw 'a particular duty' 
to fight against it. [...] His remedy consisted of infinitary languages. [...] Skolem had considered 
such a possibility, too, but had discarded it because of a vicious circle." [Heinz-Dieter 
Ebbinghaus: "Ernst Zermelo: An approach to his life and work", Springer (2007) p. 200ff] 
 
Usually set theorists are inclined to play down the far reaching implications of Skolem's results. 
A typical treatment is given in the following: "A crucial counterexample is the powerset of ¡0, 

http://www.amazon.de/Ernst-Zermelo-Approach-Life-Work/dp/3540495517
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denoted by 2¡0. Naively, one might suppose that the powerset axiom1 of ZFC guarantees that 2¡0 
must be a member of any standard transitive model M. But let us look more closely at the precise 
statement of the powerset axiom. Given that ¡0 is in M, the powerset axiom guarantees the 
existence of y in M with the following property: For every z in M, z œ y if and only if every w in 
M satisfying w œ z also satisfies w œ ¡0. Now, does it follow that y is precisely the set of all 
subsets of ¡0? 
 No. First of all, it is not even immediately clear that z is a subset of ¡0; the axiom does not 
require that every w satisfying w œ z also satisfies w œ ¡0; it requires only that every w in M 
satisfying w œ z satisfies w œ x. However, under our assumption that M is transitive2, every w œ z 
is in fact in M, so indeed z is a subset of ¡0. 
 More importantly, though, y does not contain every subset of ¡0; it contains only those 
subsets of x that are in M. So if, for example, M happens to be countable (i.e., M contains only 
countably many elements), then y will be countable, and so a fortiori y cannot be equal to 2¡0, 
since 2¡0 is uncountable. The set y, which we might call the powerset of ¡0 in M, is not the same 
as the 'real' powerset of ¡0, a.k.a. 2¡0; many subsets of ¡0 are 'missing' from y. This is a subtle 
and important point, [...]  
 More generally, one says that a concept in V is absolute if it coincides with its counterpart 
in M. For example, 'the empty set', 'is a member of', 'is a subset of', 'is a bijection', and '¡0' all turn 
out to be absolute for standard transitive models. On the other hand, 'is the powerset of' and 
'uncountable' are not absolute. For a concept that is not absolute, we must distinguish carefully 
between the concept 'in the real world' (i.e., in V) and the concept in M. A careful study of ZFC 
necessarily requires keeping track of exactly which concepts are absolute and which are not. [...] 
the majority of basic concepts are absolute, except for those associated with taking powersets and 
cardinalities," [Timothy Y. Chow: "A beginner's guide to forcing", arXiv (2008) p. 6f]  
 
"Since the Skolem-Löwenheim 'paradox', namely, that a countable model of set theory exists 
which is representative of the stumbling blocks that a nonspecialist encounters, I would like to 
briefly indicate how it is proved. What we are looking for is a countable set M of sets, such that if 
we ignore all other sets in the universe, a statement in M is true precisely if the same statement is 
true in the true universe of all sets. After some preliminary manipulation, it is possible to show 
that all statements can be regarded as starting with a sequence of quantifiers, for all, there exists, 
etc. The set of all statements can be enumerated, say An. We go through the list and {{for}} every 
statement which begins with 'there exists' and is true in the universe, we pick out one set in the 
universe which makes it true. Since there are only countably many statements, we have chosen 
only countably many elements and we place them in M. Next we form all statements using these 
sets and again only look at those which begin with 'there exists'. If they are true in the universe, 
we pick out one set which makes them true and adjoin these to M. We repeat this process 
countably many times. The resulting collection of all sets so chosen is clearly countable. Now it 
is easy to see that the true statements of M are exactly the true statements in the universe. This is 
                                                 
1 Every set x has a so-called power set y = P(x). This is expressed formally as "x $y "z: z œ y ñ z Œ x. 
Compare also section 2.12 "ZFC-Axioms of set theory". 
2 A standard model M of ZFC is transitive if every member of an element of M is also an element of M. 
(The term transitive is used because we can write the condition in the suggestive form 'x œ y and y œ M 
implies x œ M'.) This is a natural condition to impose if we think of M as a universe consisting of 'all that 
there is'; in such a universe, sets 'should' be sets of things that already exist in the universe. 

http://arxiv.org/pdf/0712.1320.pdf
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proved by induction on the number of quantifiers appearing at the beginning of the statement. If 
there are none, then the statement simply is composed of finitely many statements of the form 'x 
is a member of y', connected by the Boolean operators. This clearly is true in M if and only if it is 
true in the universe. Now consider a statement with one quantifier. By considering its negation, if 
necessary, we may assume it begins with 'there exists'. Now our choosing process clearly 
guarantees that the statement is true in M if and only if it is true in the universe. The proof now 
proceeds by a simple induction on the number of quantifiers. 
 You may feel that this argument is too simple to be correct, but I assure you that this is the 
entire argument, needing only a very simple argument to show that one can always bring the 
quantifiers to the front of the statement. I might add that the underlying reason the argument is so 
simple is because it applies to any system whatsoever, as long as we have only finitely many 
predicates (even countably many will work the same way) so that the number of statements that 
can be formed is countable. This theorem is perhaps a typical example of how a fundamental 
result which has such wide application must of necessity be simple." [Paul J. Cohen: "The 
discovery of forcing", Rocky Mountain Journal of Mathematics 32,4 (2002) p. 1076f] 
 
 
 
 3.5 Vitali sets  
 
The interval [0, 1] = {x | 0 § x § 1} has measure 1. The set of rational numbers contained therein 
(and even in the whole set —) has measure 0. The reason is that the rational numbers are 
countable. So we can construct a sequence (qn) of all rational numbers. We can include the nth 
number into an interval of measure ε/2n. Then all rational numbers are included in intervals of 
total measure ε. Since ε can be made arbitrarily small, smaller than every positive constant, the 
measure is smaller than every positive constant, that is the measure is μ = 0. 
 
Guiseppe Vitali proved the existence of unmeasurable sets of real numbers, i.e., violation of σ-
additivity 
 

 ( )k k
kk

S S
∈∈

⎛ ⎞
μ = μ⎜ ⎟

⎝ ⎠
∑∪  

 
by the following construction [G. Vitali: "Sul problema della misura dei gruppi di punti di una 
retta", Bologna, Tip. Gamberini e Parmeggiani (1905)]: If we add an irrational number x to every 
rational qn, we get a set of only irrational numbers. (The distance |qμ - qν| between two rational 
numbers qμ and qν is always a rational). Since there are uncountably many irrational numbers in 
[0, 1], we can construct, by axiom of choice, as many Vitali sets. The union of all these sets 
contains at least all real numbers of the interval [0, 1] and at most the real numbers of the interval 
[0, 2]. So the measure must be between 1 and 2. But the sum of infinitely many similar sets with 
fixed measure is either 0 or infinite. Therefore the Vitali sets cannot have any measure. 
 

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
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 3.6 The Hausdorff sphere paradox 
 
Felix Hausdorff shows in [F. Hausdorff: "Bemerkungen über den Inhalt von Punktmengen", 
Math. Annalen 75 (1914) pp. 428-433] that additivity of measure μ(«Ak) = Σμ(Ak) is violated 
already for finite sums of sets Ak. 
 
First Hausdorff recapitulates Vitali's example (see section 3.5), applying it to a circle. 
 
Consider a circle with radius r = 1/2π. All points with integer difference are identical: x = x ± n. 
Let ξ be an irrational number. The countable set of points 
 
 Px = {..., x - 2ξ, x - ξ, x, x + ξ, x + 2ξ, ...} 
 
has no point in common with the similar set Py unless y = x ± nξ for some n. Then the sets are 
identical. Taking from each of the different sets one element, we build the set A0 = {x, y, z, ...}. 
Turning the circle by mξ, we obtain another set Am = {x + mξ, y + mξ, z + mξ, ...} which has no 
point in common with the set A0. In this way we can construct a countable set of congruent sets. 
The measure μ(Am) of each one must be μ(Am) § 1/n for every n œ Ù, i.e., it must be μ(Am) = 0 
whereas the sum of all measures is 1. This means the sets cannot be measured. 
 
Since every set in the n-dimensional space can be expanded to a set in the n+1-dimensional space 
(by assigning the height 1 to an n-dimensional basis), this one-dimensional example shows that 
the measure-problem exists in the n-dimensional space for every n œ Ù. 
 
Then Hausdorff shows that additivity is even violated for finite numbers of n pairwise disjoint 
sets Ak. The formula 
 
 μ(A1 » A2 » ... » An) = μ(A1) + μ(A2) + ... + μ(An) 
 
can be contradicted in spaces of three or more dimensions. For this sake the surface of the sphere 
is divided into three sets A, B, and C, such that A, B, and C, and B » C are pairwise congruent. 
 
Let ϕ be a rotation by π around a given axis and let ψ be a rotation by 2π/3 around a different 
axis. Since ϕ2 and ψ3 yield the identity, i.e., the same result as one full or no rotation, we get the 
group G 
 
 I | ϕ, ψ, ψ2 | ψϕ, ψ2ϕ, ϕψ, ϕψ2 | ...        (G) 
 
where the products of different numbers of factors have been separated by strokes1. ϕ, ψ, and ψ2 
are considered as different elements of the group. ϕ2 and ψ3 are not included because they are the 
empty word or unit I. 
                                                 
1 Note that the order of the factors has been reversed with respect to the original paper by Hausdorff 
because we adhere to the matrix notation, such that the factor to be applied first appears on the right-hand 
side of the product. 

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0075?origin=/suche%3Fsearch%255Bq%255D%3DMathematische%2520Annalen%25201914%26search%255BsearchScope%255D%3DMathematica%26search%255BsearchType%255D%3Dmetadata%26search%255Bcollection%255D%3DMathematica%26s
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The general formula of a product is one of the following four: 
 
 α = ψmnϕ ... ψm2ϕψm1ϕ  
 β = ϕψmnϕ ... ψm2ϕψm1  
 γ = ϕψmnϕ ... ψm2ϕψm1ϕ 
 δ = ψmnϕ ... ψm2ϕψm1 
 
with mk = 1 or 2. The insertion of ϕ2 or ψ3 into the expressions would not change them because ϕ 
with every exponent mk = 0 mod 2 and ψ with every exponent mk = 0 mod 3 produce the unit I. 
 
Now Hausdorff shows that if the axes are suitably chosen all products of elements of the group G 
lead to results that differ from I. 
 
Proof: If a product I is possible, then it can be assumed in the form of α because: 
 
 β = I fl ϕβϕ = I fl ϕϕα = α = I 
 γ = I fl ϕγϕ = I fl ϕϕδϕϕ = δ = I 
 δ = I fl ψm1δψ3-m1 = I fl ψm1ψmnϕ ... ψm2ϕψm1ψ3-m1 = ψm1ψmnϕ ... ψm2ϕ = α' = I 

 
where α' has the factor ψ1 or ψ2 on the left-hand side and therefore is an α. 
 
The ψ-axis is chosen in z-direction. The ϕ-axis is chosen in the x-z-plane with the angle ϑ/2 
between both axes. Then the matrix of ψ is obtained from the rotation matrix in z-direction 
 

 

1 32 2 0cos sin 0 2 23 3
2 2 3 1sin cos 0 0
3 3 2 2

0 0 10 0 1

⎛ ⎞π π⎛ ⎞ − −⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟π π⎜ ⎟ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 . 

 
The matrix of ψ2 is also obtained from the rotation matrix in z-direction 
 

 

1 34 4 0cos sin 0 2 23 3
4 4 3 1sin cos 0 0
3 3 2 2

0 0 10 0 1

⎛ ⎞π π⎛ ⎞ −⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟π π⎜ ⎟ = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

by simply changing the signs of the terms 3
2

. 
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The matrix of ϕ, a π-rotation around the axis defined by the unit vector 0

sin
2

0

cos
2

N

ϑ⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟ϑ
⎜ ⎟
⎝ ⎠

, is  

 

2

2

sin (1 cos ) cos 0 sin cos (1 cos ) cos 0 sin2 2 2
0 cos 0 0 1 0

sin 0 coscos sin (1 cos ) 0 cos (1 cos ) cos
2 2 2

ϑ ϑ ϑ⎛ ⎞− π + π − π⎜ ⎟ − ϑ ϑ⎛ ⎞
⎜ ⎟ ⎜ ⎟π = −⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ϑ ϑ ϑ ϑ ϑ⎝ ⎠− π − π + π⎜ ⎟
⎝ ⎠

 . 

 
The matrix of the product ψϕ is therefore 
 

 

1 3 1 3 10 cos sin
2 2 2 2 2cos 0 sin
3 1 3 1 30 0 1 0 cos sin

2 2 2 2 2
sin 0 cos0 0 1 sin 0 cos

⎛ ⎞ ⎛ ⎞
− − ϑ − ϑ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟− ϑ ϑ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟− • − = − ϑ ϑ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ϑ ϑ⎝ ⎠ ϑ ϑ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

and the matrix of the product ψ2ϕ is obtained by changing the signs of the expressions 3
2

. 

 
Now let α be a product of n double-factors ψϕ or ψ2ϕ and let α' be a product of n + 1 such 

double-factors. Let α transform the point 
0
0
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 into 
x
y
z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 and let α' transform 
0
0
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 into 
'
'
'

x
y
z

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. Then 

 

1 3 1cos sin
2 2 2 '

3 1 3cos sin '
2 2 2

'sin 0 cos

x x
y y
z z

⎛ ⎞
ϑ ± − ϑ⎜ ⎟

⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ϑ ± ϑ • =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ϑ ϑ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∓  . 

 
Let us choose ψϕ for the following (the choice of ψ2ϕ leads to a similar derivation) 
 

 

1 3 1 1cos sin sin
2 2 2 20

3 1 3 3cos sin 0 sin
2 2 2 2

1sin 0 cos cos

⎛ ⎞ ⎛ ⎞ϑ − ϑ − ϑ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟− ϑ ϑ • = ϑ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ϑ ϑ ϑ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 . 

 
Applying again ψϕ onto the result we get 
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1 3 1 1 1 3 1 3cos sin sin cos sin sin sin cos sin (
2 2 2 2 4 4 2 4

3 1 3 3 3 3 3cos sin sin cos sin sin sin cos
2 2 2 2 4 4 2
sin 0 cos cos 1 sin sin cos cos

2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ϑ − ϑ − ϑ − ϑ ϑ + ϑ − ϑ ϑ ϑ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ϑ ϑ • ϑ = ϑ ϑ + ϑ + ϑ ϑ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

ϑ ϑ ϑ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ϑ ϑ + ϑ ϑ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2

1 cos )

3sin (1 3cos )
4

3 1cos
2 2

⎛ ⎞− ϑ⎜ ⎟
⎜ ⎟
⎜ ⎟ϑ ⋅ + ϑ⎜ ⎟
⎜ ⎟
⎜ ⎟ϑ −⎜ ⎟
⎝ ⎠

 . 

 

After n transformations the resulting vector has the form 

1

1

sin ( cos ...)

sin ( cos ...)

cos ...

n

n

n

a

b

c

−

−

⎛ ⎞ϑ ⋅ ϑ +
⎜ ⎟

ϑ ⋅ ϑ +⎜ ⎟
⎜ ⎟⎜ ⎟ϑ +⎝ ⎠

 where sinϑ is 

multiplied with a polynomial of degree n - 1 in cosϑ. For n = 1 and 2 this is shown above. The 
general case is proved by mathematical induction. Application of another transformation ψϕ 
yields 
 

 

1

1

1

1 3 1cos sin sin ( cos ...)
2 2 2 2sin ( cos ...)

3 1 3 3( )cos sin sin ( cos ...) sin ( cos ...)
2 2 2 2

cos ...sin 0 cos ( )cos ...

n

n

n n

n
n

a c

a
c ab

c c a

−

−

+

⎛ ⎞ −⎛ ⎞ϑ − ϑ ϑ⋅ ϑ +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎛ ⎞ϑ ⋅ ϑ + ⎜ ⎟

⎜ ⎟⎜ ⎟ −⎜ ⎟− ϑ ϑ • ϑ⋅ ϑ + = ϑ⋅ ϑ +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ϑ +ϑ ϑ⎜ ⎟ ⎝ ⎠ − ϑ +⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
where the smaller powers in the cos-polynomials have not been noted. (For ψ2ϕ only the sign of 
the y-term would change.) We see that the degrees of the cos-polynomials increase by 1. 
 
The coefficients (c - a) of the z-term and 

2
a c−  of the x-term increase by the factor 3

2
 per step: 

 3' ' ( ) ( )
2 2

a cc a c a c a−
− = − − = −  . 

Therefore after n transformations ψϕ or ψ2ϕ the z-term is given by 
13 cos ...

2

n
n

−
⎛ ⎞ ϑ +⎜ ⎟
⎝ ⎠

 which is not 

I except for a finite number of angles ϑ. By suitable choice of ϑ with the omission of countably 
many values the result I can be avoided such that the product α differs from I in all steps. Then 
the transformations of G, except I itself, have only two fixed points each on the surface of the 
unit sphere. Call the countable set of these points Q with μ(Q) = 0. The remainder P of the 
surface S2 of the sphere must have measure μ(S2 \ Q) ª μ(P) > 0. 
 

Every point 
x

U y
z

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 of P can be transformed by every element of G. This gives the countable set 

of different vectors or surface points, the G-orbit of U  
 
 PU = {U , ϕU , ψU , ψ2U , ψϕU , ...} . 
 
Choosing from every orbit PU exactly one point (here the axiom of choice is required), we get 
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 M = {U , V , W , ...} 
 
and the remainder P of the surface of the sphere is 
 
 P = M » ϕM » ψM » ψ2M » ψϕM » ... . 
 
Now it is possible to distribute these sets or transformations on two classes A, B, C such that 
 
 (1) of two transformations ρ, ϕρ one belongs to A and the other to B » C; 
 (2) always one of three transformations ρ, ψρ, ψ2ρ belongs to A, B, C. 
 
For proof assume that the products of n or less factors have been distributed already so that the 
conditions are satisfied. We call a product of n factors ψn if its last factor is ψ or ψ2. We call a 
product of n factors ϕn if its last factor is ϕ. Every product of n + 1 factors then has one of the 
three forms ϕψn, ψϕn, ψ2ϕn (ϕϕn would be the unit I, ψψn would be ψ2ϕn or the unit I). 
 
Consider a sphere with three equal surface elements A, B, C equally distributed around the z-axis. 
If ρn = ϕn or ψn belongs to A, B, C, then ψρn belongs to B, C, A and ψ2ρn belongs to C, A, B. For 
a sphere with two hemispheres, A and A', distributed around the 0N -axis, ϕ will always cause a 
switch between the hemispheres. 
 
Now we define areas pointwise by the elements of G. First we distribute the factors equally 
between A and its complement A' by rotating around the 0N -axis: 
 
A:   I     ϕψ      ϕψ2      ψ2ϕ        ϕψϕ      ϕψϕψ       ϕψ2ϕψ      ϕψϕψ2      ϕψ2ϕψ2    ψ2ϕψ2ϕ     ... 
A':   ϕ    ψ        ψ2   ϕψ2ϕ    ψϕ        ψϕψ          ψ2ϕψ         ψϕψ2           ψ2ϕψ2     ϕψ2ϕψ2ϕ  ... . 
 
Then we distribute the factors equally between A, B, and C by rotating around the z-axis, using 
for A exactly the same factors as above: 
 
A:   I     ϕψ       ϕψ2      ψ2ϕ       ϕψϕ       ϕψϕψ       ϕψ2ϕψ      ϕψϕψ2      ϕψ2ϕψ2      ψ2ϕψ2ϕ  ... 
B:   ψ    ψϕψ    ψϕψ2     ϕ    ψϕψϕ    ψϕψϕψ    ψϕψ2ϕψ    ψϕψϕψ2   ψϕψ2ϕψ2   ϕψ2ϕ      ... 
C:   ψ2   ψ2ϕψ   ψ2ϕψ2   ψϕ    ψ2ϕψϕ    ψ2ϕψϕψ   ψ2ϕψ2ϕψ   ψ2ϕψϕψ2   ψ2ϕψ2ϕψ2  ψϕψ2ϕ  ... . 
 
Denoting the respective sets also by A, B, and C we get 
 
 A = M » ϕψM » ϕψ2M » ψ2ϕM » ... 
 B = ψM » ψϕψM » ψϕψ2M » ϕM » ... 
 C = ψ2M » ψ2ϕψΜ » ψ2ϕψ2M »ψϕM » ... 
with 
 ϕA = A' = P \ A,   ψA = B,   ψ2A = C . 
 
The sets P \ A and B » C are congruent. A must have μ(A) = μ(P)/3 and μ(A) = μ(P)/2. 
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 3.7 The Banach-Tarski paradox 
 
The Banach–Tarski paradox [S. Banach, A. Tarski: "Sur la décomposition des ensembles de 
points en parties respectivement congruentes", Fundamenta Mathematicae 6 (1924) pp. 244-277], 
based on earlier work of Guiseppe Vitali (see sec. 3.5) and Felix Hausdorff (see sec. 3.6) on the 
surface of a sphere, states that there exists a decomposition of a solid sphere into a finite number 
of disjoint (non-measurable) parts, which can be reassembled to yield two spheres of same 
diameter such that no point of the original sphere is missing and no point is added. The minimum 
number of pieces is five [Raphael M. Robinson: "On the decomposition of spheres", Fund. Math. 
34 (1947) pp. 246-260]. The decomposition does not work in one or two dimensions. The 
paradox needs the axiom of choice (cp. section 2.12) or an equivalent premise. It is not existing 
in pure ZF set theory. Therefore it has been taken as a contradiction of the axiom of choice (cp. 
for instance Borel's statement in chapter V). 
 
The critical steps in the work of Banach and Tarski had already been furnished by Hausdorff. 
When composing a solid sphere by infinitely many surfaces of infinitesimal thickness, the result 
is established – according to the integral calculus and common sense. But with respect to the lack 
of common sense in this realm, we have to proceed more carefully. There is, for instance, the 
countable set of fixed points exempted from Hausdorff's sphere. Banach and Tarski were able to 
eliminate it. In the following we will prove the 
 
Theorem   If A and B are any two bounded subsets of —3 with non-empty interior then it is 
possible to partition A into finitely many pieces which can be rearranged to form B. 
 
The standard text for this topic is [Stan Wagon: "The Banach-Tarski paradox", Cambridge 
University Press (1994) pp. 21-33]. Some visual impressions are given in [Grzegorz Tomkowicz, 
Stan Wagon: "Visualizing paradoxical sets", Math. Intelligencer (2014)]. 
 
Paradoxical group Consider a group composed of two letters σ and τ, but unlike ϕ = ϕ-1 in 
section 3.6, with the reversed letters, σ-1 and τ-1, differing from σ and τ respectively, such that 
 
 I = σσ-1 = σ-1σ = ττ-1 = τ-1τ .        (∗) 
 
Then we can concatenate the letters σ, σ-1, τ, τ-1 to generate finite words. If a word contains one 
of the pairs of (*), then this pair can be omitted without changing the result. The set W of words 
reduced in this way, where every reduced word differs from all other reduced words, is called a 
free group. The letters σ and τ are called its generators. This free group has a paradoxical 
decomposition; the set W of all words is the union of the empty word I and of four disjoint 
subsets of reduced words, where each word is beginning with one of the four letters: 
 
 W = W(σ) » W(σ-1) » W(τ) » W(τ-1) » {I} . 
 
When prepending σ for another time, we remove one σ-1 from the words beginning with σ-1 and 
get all words that begin with other letters than σ (because no reduced word had begun with σ-1σ) 
 
 σW(σ-1) = W(σ-1) » W(τ) » W(τ-1) » {I} 

http://matwbn.icm.edu.pl/ksiazki/or/or1/or1116.pdf
http://matwbn.icm.edu.pl/ksiazki/or/or1/or1116.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm34/fm34125.pdf
https://books.google.de/books?id=_HveugDvaQMC&pg=PA21&hl=de&source=gbs_toc_r&cad=4#v=onepage&q&f=false
http://stanwagon.com/public/visualizingparadoxicalsetstomkowiczwagon.pdf
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where {I} is generated from the word σ-1. Therefore we get the paradoxical decompositions of 
the disjoint sets  
 
 W(σ) » W(σ-1) » W(τ) » W(τ-1) » {I} = W(σ) » σW(σ-1) . 
 
In effect, four sets of cardinality ¡0 have become two sets1. Same holds for τW(τ-1). 
 
Removing the holes The group of rotations can act on the set of all points of the surface S2 of the 
sphere without the countable set Q of fixed points and thus induce a paradoxical decomposition 
of S2 \ Q. This has already been shown in section 3.6. We will now proceed to remove the holes. 
 
Definition: Two polygons in the plane are congruent by dissection if one of them can be 
decomposed into finitely many polygonal pieces that can be rearranged using isometries (and 
ignoring boundaries) to form the other polygon. 
 
The set theoretic analogon of congruence may be stated in the context of group action. 
 
Definition: Suppose G acts on X, and A, B Œ X. Then A and B are G-equidecomposable, A ~ B, if 
A and B can each be partitioned into the same finite number of G-congruent pieces. Formally 
 

 
1

n

k
k

A A
=

=∪    and   
1

n

k
k

B B
=

=∪  . 

 
Ak … Aj = « = Bk … Bj if k < j § n, and there are g1, ..., gn œ G such that, for each k § n: gkAk = Bk. 
 
Theorem   If Q is a countable subset of S2, then S2 and S2 \ Q are equidecomposable by the group 
of rotations. (We apply two pieces using the axiom of choice, so they are not constructible). 
 
One-dimensional example: The unit circle S1 with the point 1

0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 removed, S1 \ { 1
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

} can be 

decomposed into two pieces, P and Q, such that after rotating Q by σ, P » σQ = S1. 
 

Let Q be the set of all points of the circle with 
cos
sin

n
n

n
⎧ ⎫⎛ ⎞

∈⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

. This set consists of infinitely 

many different points, because the circumference 2π is irrational. Let P = (S1 \ { 1
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

}) \ (Q). 

Rotation by σ = 
cos 1 sin 1
sin 1 cos1

⎛ ⎞
⎜ ⎟−⎝ ⎠

 includes the point 1
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 because σQ = 
cos( 1)
sin( 1)

n
n

n
−⎧ ⎫⎛ ⎞

∈⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭
. This 

                                                 
1 Hausdorff in his decomposition used ϕ = ϕ-1 and ψ2 = ψ-1. Thus ψW(ψ-1) = W(ψ-1) » W(ϕ) » {I} such 
that W(ψ) » W(ψ-1) » W(ϕ) » {I} = W(ψ) » ψW(ψ-1). Therefore Hausdorff obtains only the reduction 
factor 2/3 instead of 1/2.  
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shifting-to-infinity technique shows how points can be absorbed. It is applied now to the set Q of 
fixed points remaining in the Hausdorff proof. 
 
Proof: We seek a rotation ρ of the sphere such that the sets Q, ρQ, ρ2Q, ... are pairwise disjoint. 
This suffices since then, with 

0

* n

n
Q Q

∈

= ρ∪ , S2 = Q* » (S2 \ Q*) ~ ρQ* » (S2 \ Q*) = S2 \ Q. Let 

0N be a vector such that { 0x N⋅ | x œ —} … Q = «. Let Ψ be the set of angles θ such that for some 
n > 0 and some q œ Q, ρq is also in Q, where ρ is the rotation about 0N through the angle nθ. 
Since Ψ is countable there exists an angle ϕ – Ψ. Let σ be the corresponding rotation about 0N  
then for every n > 0: σnQ … Q = «, and whenever 0 § m < n then σmQ … σnQ = «. So σ is as 
required. É 
 
The Banach-Tarski paradox is a corollary of this theorem: S2 is paradoxical with respect to the 
group of rotations in the three-dimensional space. This also holds for any sphere centred at the 
origin, and any solid ball in —3, and for —3 itself. 
 
Since none of the previous steps depends on the size of the sphere, spheres of any radius r admit 
paradoxical decompositions. We can use every radius 0 < r § 1 to prove the decomposition for 
the solid ball B \ { 0 }. 0  can be absorbed by a rotation around an axis missing the origin. As 
usual a set Q = {σn( 0 ) | n ¥ 0} may be used to absorb it: σ(Q) = Q \ { 0 }, so B ~ B \ { 0 }. 
 
In consequence this leads to the strong form of the Banach-Tarski paradox: If A and B are any 
two bounded subsets of —3, each having nonempty interior, then A and B are equidecomposable. 
For proof use solid balls and repeated duplication. 
 
 
 
 3.8 The Sierpinski-Mazurkiewicz paradox 
 
While the choice of the rotations in the Banach-Tarski paradox requires the axiom of choice, the 
Sierpinski-Mazurkiewicz paradox gets by without. The involved sets are infinite though. [Francis 
E. Su et al.: "Sierpinski-Mazurkiewicz paradox", Math Fun Facts. Jens Bossaert: "The Sierpinski- 
Mazurkiewicz paradox", Curiosa Mathematica] 
 
Let p(n) be a polynomial with nonnegative integer coefficients ak. The value of the polynomial 

pn(x) = 
0

n
k

k
k

a x
=
∑ at x = ei is a point in the complex plane. Because ei is a transcendental number, 

i.e., never the root of a polynomial, each such value corresponds to a unique point in the complex 
plane. 
 
Let P0 be the set of all points of polynomials with constant zero 
 
  P0 = {pn(ei) | n œ Ù ⁄ a0 = 0} 
 

https://math.hmc.edu/funfacts/sierpinski-mazurkiewicz-paradox/
http://curiosamathematica.tumblr.com/post/103798113852/the-sierpi%C5%84skimazurkiewicz-paradox
http://curiosamathematica.tumblr.com/post/103798113852/the-sierpi%C5%84skimazurkiewicz-paradox
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and let P+ be the set of all points of polynomials with positive integer constant 
 
 P+ = {pn(ei) | n œ Ù ⁄ a0 > 0} . 
 
Then the set of all points together is 
 
 P = P0 » P+ . 
 
If we add 1 to a polynomial of P0 we get a polynomial of P+ (because the constant is no longer 
zero). If we multiply a polynomial of P+ by ei we get a polynomial of P0 (because the constant is 
now zero). 
 
Vice versa this means, when shifting the set P+ by a unit in the negative of the real axis, i.e., 
subtracting 1 from all points of P+, we include all points P0 such that P+ = P. Further, when 
multiplying all points of P0 by e-i, i.e., when turning P0 clockwise by 1 radian, we get P0 = P. 
 
All sets are countable and no choice has been required. 
 
 
 
 3.9 A simple decomposition 
 
Decompose the set Ÿ of all integers into A, the set of odd integers, and B, the set of even integers 
 
 Ÿ = A + B . 
 
When the elements of B are divided (δ) by 2, then δB = Ÿ. When the elements of A are translated 
(τ) by one unit (in positive or negative direction) and then divided by 2, then δτA = Ÿ. 
 
Same can be shown for other sets, for instance the set Ù of positive integers (then A must be 
translated by +1) or the set of non-negative integers (then A must be translated by -1). [Hilbert7: 
"Who is the original author of this simple paradoxical decomposition?", MathOverflow (8 Jan 
2016)] 
 
 
 
 3.10 The Mirimanoff paradox 
 
Every set of well-founded sets is well-founded i.e., it does not contain an infinite sequence (Xn) 
with "n: Xn+1 œ Xn. Hence the collection of all well-founded sets is well-founded, and therefore a 
member of itself – hence it is not well-founded. But that makes it a set all of whose members are 
well-founded that is nevertheless not well-founded itself. This is a contradiction. [A. Levy: 
"Basic Set Theory", Dover Publications (2002) p. 6] 
 

http://mathoverflow.net/questions/227941/who-is-the-original-author-of-this-simple-paradoxical-decomposition
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 3.11 The Cantor set 
 
"As an example of a perfect point set which in no interval, how small it ever may be, is overall 
dense, I offer the set of all real numbers given by the expression 
 

 1 2
2 ... ...

3 3 3
cc cz ν

ν= + + + +  

 
where the coefficients cν have to take the values 0 and 2". [Cantor, p. 207] 
 
This set has become famous as the Cantor set. Divide the unit interval into three equal parts and 
remove the central one such that only the closed intervals [0, 1/3] and [2/3, 3/3] remain. Do the 
same with the first and the last interval such that only [0, 1/9], [2/9, 3/9], [6/9, 7/9], [8/9, 9/9] 
remain. Continue by removing always the central open interval from every remaining interval. 
 

  
 and so on. 
 
There remain only such numbers which can be written in ternary notation with digits 0 (first 
third) and 2 (last third) only, i.e., without digit 1. The 1 in 1/3 etc. can be circumvented by the 
period 222..., such that in ternary 1/3 = 0.1t = 0.0222...t. The endpoints are those numbers which 
have only periods of 000...t or 222...t. The Cantor set, the intersection of all these sets, does not 
only contain endpoints of intervals. For example 
 
 1/4 = 2/9 + 2/92 + 2/93 + ... = 0.020202...t 
 
is not an endpoint but an element of the Cantor set. The measure of the Cantor set is 0 because 
the measure of the removed parts is 
 

 1
0 0

1 2 4 8 2 1 2 1 1... 123 9 27 81 3 3 3 3 1
3

nn

n
n n

∞ ∞

+
= =

⎛ ⎞+ + + + = = = =⎜ ⎟
⎝ ⎠ −

∑ ∑  . 

 
Since all digit sequences containing 0 and 2 are existing, the set is uncountable. Further it is 
closed since its complement is open. 
 
Two-dimensional equivalents are the Sierpinski carpet and the Sierpinski triangle. Three-
dimensional equivalents are the Menger sponge and the Sierpinski tetrahedron and the Sierpinski 
pyramid. 

https://en.wikipedia.org/wiki/Sierpinski_carpet
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Menger_sponge
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle
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 3.12 Well-ordering of undefinable elements 
 
The set of all finite words, i.e., finite combinations of symbols, is countable. The sole or few 
multiple meanings of a word depend on the used language. But since every language has to be 
devised and stored in at least one memory, there are only finitely many languages. Therefore the 
list of all possible meanings of finite words in all languages is countable. Infinite words cannot be 
used in mathematical discourse in uncompressed form. But in compressed form they are finite 
words. This means that it is impossible to assign meaning to all elements of an uncountable set. 
 
So there exist at least two elements of every uncountable set which cannot reasonably be put in 
an order. But according to the axiom of choice every set can be well-ordered. That means that 
two elements which cannot be identified, distinguished, and put in an order can be identified, 
distinguished, and put in an order. 
 
This antinomy has only wormed its way into public awareness. 
 
Cantor himself denied the existence of undefinable real numbers. "'Infinite definitions' (that do 
not happen in finite time) are non-things. If König's theorem was true, according to which all 
'finitely definable' real numbers form an embodiment of cardinality ¡0, this would imply that the 
whole number-continuum was countable, which is certainly false. The question is: which error 
underlies the alleged proof of his wrong theorem?" [G. Cantor, letter to D. Hilbert (8 Aug 1906)] 
 
Also Hessenberg had to cope with this problem. He proposed the following, obviously false, 
solution: "Taking into consideration that a finite representation means to assign a thing to a 
combination of symbols, we recognize that really every thing has a finite representation; at least I 
don't see why I should not assign to it a hitherto meaningless combination." [Gerhard 
Hessenberg; "Grundbegriffe der Mengenlehre", offprint from Abhandlungen der Fries'schen 
Schule, Vol. I, no. 4, Vandenhoeck & Ruprecht, Göttingen (1906) § 95] He overlooked that also 
meaningless combinations of symbols belong to the countable set of finite representations. 
 
Finally Zermelo tried to circumvent the problem simultaneously to the Löwenheim-Skolem 
paradox by means of uncountable alphabets of infinitary languages (cp. section 3.4.3). In section 
"On uncountable alphabets" of chapter VI this approach will be discussed. 
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IV   The environment of set theory 
 
The educationally disadvantaged populace admires Adam Ries(e) as the greatest (and often as the 
only) German mathematician. For the educated class Carl Friedrich Gauß assumes this position. 
The mathematicians themselves however hold Georg Cantor in esteem as their greatest colleague. 
The highest award of the German Mathematical Union (DMV) carries Cantor's likeness and 
name, because he extended and enriched mathematics infinitely – as many believe. More 
biographical material has been collected about Georg Cantor, inventor of set theory and first 
president of the DMV, than about any other mathematician of the 19th century. From these 
tesserae we can obtain a vivid picture of his world view. In the present chapter some of the 
theological aspects which led to and seemingly supported his understanding of the infinite will be 
reproduced. Then Cantor's scientific attitude will be investigated and in section 4.6 the huge gap 
between his pretension and the realized applications of set theory will be shown. Further the 
environment of set theory will be elucidated by some typical quotes of his followers. 
 
 
 
 4.1 Cantor on theology 
 
"it is clear that the theological considerations by which Cantor motivated his notion of the actual 
infinite, were metaphysical in nature." [A. Heyting: "Technique versus metaphysics in the 
calculus", in Imre Lakatos (ed.): "Problems in the philosophy of mathematics", North Holland, 
Amsterdam (1967) p. 43] 
 
"Cantor is probably the last great exponent of the Newtonian attitude with respect to religion." 
[H. Meschkowski, W. Nilson: "Georg Cantor Briefe", Springer, Berlin (1991) p. 15] 
 
"it was a certain satisfaction for me, how strange this may appear to you, to find in Exodus ch. 
XV, verse 18 at least something reminiscent of transfinite numbers, namely the text: 'The Lord 
rules in infinity (eternity) and beyond.' I think this 'and beyond' hints to the fact that ω is not the 
end but that something is existing beyond." [G. Cantor, letter to R. Lipschitz (19 Nov 1883)] 
 
"Compare the concurring perception of the whole sequence of numbers as an actually infinite 
quantum by St Augustin (De civitate Dei. lib. XII, ch. 19) [...] While now St Augustin claims the 
total, intuitive perception of the set (ν), 'quodam ineffabili modo', a parte Dei, he simultaneously 
acknowledges this set formally as an actual infinite entity, as a transfinitum, and we are forced to 
follow him in this matter." [G. Cantor, letter to A. Eulenburg (28 Feb 1886)] 
 
"It can be absolutely ascertained that St Thomas only with great doubts and half-heartedly 
adhered to the received opinion concerning the actually infinite numbers, going back to Aristotle. 
[...] Thomas' doctrine 'It can only be believed but it is not possible to have a proof that the world 
has begun' is known to appear not only in that opusculo but also [...] in many other places. This 
doctrine however would be impossible if the Aquinatus had thought that the theorem 'there are no 
actually infinite numbers' was proven. Because from this sentence (if it was true), it would 
demonstrably follow with greatest evidence that an infinite number of hours could not have 
passed before the present moment. The dogma of the begin of the world (a finite time ago) could 
not have been defended as a pure dogma." [G. Cantor, letter to C.F. Heman (2 Jun 1888)] 

https://books.google.de/books?id=a1diPb5BB_wC&pg=PA43&lpg=PA43&dq=%22It+is+clear+that+the+theological+considerations+by+which+Cantor+motivated+his+notion%22&source=bl&ots=LF1veSSyIS&sig=L6oDpn4qAekvK05ZXugepJDcpyE&hl=de&sa=X&ved=0ahUKEwissYuK15nTAhUGM8AKHe
https://books.google.de/books?id=a1diPb5BB_wC&pg=PA43&lpg=PA43&dq=%22It+is+clear+that+the+theological+considerations+by+which+Cantor+motivated+his+notion%22&source=bl&ots=LF1veSSyIS&sig=L6oDpn4qAekvK05ZXugepJDcpyE&hl=de&sa=X&ved=0ahUKEwissYuK15nTAhUGM8AKHe
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"Your understanding of the relation of the two propositions: 
 I. 'The world including the time has begun before a finite time interval or, what is the 
 same, the duration of the world elapsed until now (e.g., measured by hours) is finite.' 
which is true and a Christian dogma and: 
 II. 'There are no actually infinite numbers.' 
which is false and pagan and therefore cannot be a Christian dogma – 
I say you have not the correct idea about the relation of these two propositions. [...] 
 The truth of proposition I does not at all imply, as you seem to assume in your letter, the 
truth of proposition II. Because proposition I concerns the concrete world of creation; proposition 
II concerns the ideal domain of numbers; the latter could include the actual infinite without its 
necessarily being included in the former. [...] 
 The pagan wrong proposition II, even without possessing the property of being a dogma 
acknowledged by the church or ever having been in that possession, has, because of its dogma-
like popularity, done unmeasurable damage to Christian religion and philosophy, and one cannot, 
in my opinion, thank holy Thomas of Aquino too effusively that he has clearly marked this 
proposition as definitely doubtful." [G. Cantor, letter to C.F. Heman (21 Jun 1888)] 
 
For comparison: Thomas Aquinatus writes in his Summa Theologica I, q. 7, a. 4: "But no species 
of number is infinite; for every number is multitude measured by one. Hence it is impossible for 
there to be an actually infinite multitude, either absolute or accidental. Likewise multitude in 
nature is created; and everything created is comprehended under some clear intention of the 
Creator; for no agent acts aimlessly. Hence everything created must be comprehended in a certain 
number. Therefore it is impossible for an actually infinite multitude to exist, even accidentally. 
But a potentially infinite multitude is possible;" [Thomas Aquinas: "Summa"] 
 
"All so-called proofs (and I hardly may have missed anyone) against the creational A. I. {{actual 
infinite}} prove nothing because they do not refer to the correct definition of the transfinite. The 
two, for their time and even today, strongest and profoundest arguments of St Thomas Aquinatus 
S. Th. I, q. 7, a. 4 [...] become invalid as soon as a principle of individuation, intention, and 
ordination of actually infinite numbers and sets has been found;" [G. Cantor, letter to A. Schmid 
(26 Mar 1887)] 
 
"The teaching of the transfinite is far from shaking the fundaments of Thomas' doctrin. The time 
is not far, however, that my teaching will turn out to be a really exterminating weapon against all 
pantheism, positivism and materialism." [G. Cantor, letter to J. Hontheim (21 Dec 1893)] 
 
"Metaphysics and theology, I will frankly confess it, have occupied my soul in such a degree that 
I cannot spare much time for my first flame. If my wishes of fifteen, yes even eight years ago had 
come true, then I would have been appointed to a greater sphere of mathematical activity, for 
instance at the university of Berlin or Göttingen, and probably I would have not been doing 
worse there than Fuchs, Schwarz, Frobenius, Felix Klein, Heinrich Weber etc etc. However now I 
thank God, the all-wise and all-merciful, that he has denied my wishes forever, because so he has 
forced me, by deeper penetrating into theology, to serve Him and his holy Roman Catholic 
Church better than I could have done according to my probably weak mathematical talent when 
exclusively being occupied with mathematics." [G. Cantor, letter to C. Hermite (22 Jan 1894)] 
 
 

http://www.sacred-texts.com/chr/aquinas/summa/sum010.htm
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"Allow me to remark that the reality and the absolute law of the integers appear to me to be much 
stronger than those of the world of sensations. And this being so has only one, very simple 
reason, namely that the integers separately as well as in their actually infinite totality are existing 
as eternal ideas in intellectu Divino in the highest degree of reality." [G. Cantor, letter to C. 
Hermite (30 Nov 1895)] 
 
"With respect to the third question concerning the A. I. {{actual infinite}}, namely the A. I. in 
Deo aeterno omnipotenti seu in natura naturante (the last expression I have adopted from some 
great scholastics) I have no doubt that we agree again in its approval. The last A. I., i.e., the A. I. 
in Deo, I call the Absolute, as you will have noted in my little essay 'Grundlagen', and this falls 
completely out of number theory." [G. Cantor, letter to I. Carbonnelle (28 Nov 1885)] 
 
"other, far more important reasons can be added which result from the absolute omnipotence of 
God and with respect to which every negation of the possibility of a 'Transfinitum seu Infinitum 
actuale creatum' appears like a violation of that attribute of God." [G. Cantor, letter to C. 
Gutberlet (24 Jan 1886)] 
 
"I am having no doubts concerning the truth of the transfinite that I have recognized by help of 
God and have been studying in its diversity and unity for more than twenty years. Every year and 
nearly every day advances me in this science. I happen to know also a bit of several other 
sciences besides mathematics, and therefore I am able to compare theorems here and there with 
respect to their degree of objective certainty; I can say that I don't know of anything of the 
created nature with a safer or, if this expression is allowed, with more certain knowledge than of 
the theorems of transfinite theory of numbers and types. Therefore I am convinced that this 
theory one day will belong to the common property of objective science and will be confirmed in 
particular by that theology which is based upon the holy bible, tradition and the natural 
disposition of the human race – these three necessarily being in harmony with each other." [G. 
Cantor, letter to I. Jeiler (20 May 1888, Whitsun)] 
 
"I am very glad to see from your friendly letter of 20 Oct. that meanwhile your qualms against 
the 'transfinitum' have disappeared. Some time I will write and send you a little essay where I 
want to show you in scholastic form in detail how my results can be defended against the well-
known arguments and, above all, how by my system the foundations of Christian philosophy in 
all essentials remain unchanged, they are not shaken but rather become fixed, and how even their 
development in different directions can be promoted." [G. Cantor, letter to I. Jeiler (27 Oct 
1895)] 
 
"The speculation, in particular the mathematical one, occupies only a small part of my time, after 
having overcome the original main difficulties with respect to the transfinite. I devote the 
speculation to theology and 'good works'. [...] You can be sure that I will adhere to the standpoint, 
mentioned to Don Zoel Garcia de Galdeano, and contribute according to my power to initiate 
healthier states in Spain, as I have been trying for years for Italy and France by means of my 
relations with the mathematicians there. [...] The institution university requires the rather peaceful 
collaboration of the four faculties; and if, caused by the reformation, this relation in many 
catholic countries first has been shaken and then completely dissolved everything has to be done 
(with care and cleverness, of course) to re-establish step by step this only natural state. [...] You 
would also do a 'good work' if you pushed some of your younger, metaphysically interested 
patres to occasionally visit me for a short time and discuss privatissime with me about the actual 
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infinite (this 'quaestio multis molestissima de infinita multitudine' as Card. Franzelin calls it in 
his Tr. de Deo uno sec. nat. Thes. XLI). You can be sure that the point of view taken by the 
majority of your patres (but also by the majority of catholic theologians) in the long term is 
completely untenable. [...] The only reason I have to be grateful to this Langbehn {{German 
author of the bestseller 'Rembrandt'}} is his hint [...] to his observation that my head and face 
allegedly resemble the holy Ignatius of Loyola; whose spiritual exercises I have been knowing 
and reading for many years. Perhaps this has had an influence on my looks. But perhaps this 
comparison is as much nonsense and as silly as most comparisons in his 'Rembrandt'. [...] By the 
way, should my agitation in Spain become successful, I would be very grateful for a clever 
cooperation of your patres in kindred spirit." [G. Cantor, letter to A. Baumgartner (27 Dec 1893)] 
 
"Monsignore, allow me to present you the included (galley proofs of a) little essay of which I will 
send you some copies [...] as soon as preprints will be completed. I would be glad if my attempt, 
contained therein, to properly distinguish between the three main questions with respect to the 
actual infinite could be scrutinized thoroughly by Christian-Catholic philosophers." [G. Cantor, 
letter to J.B. Franzelin (17 Dec 1885)]  
 
"Presently I have little occasion to deal with metaphysical discussions; but I confess that in my 
opinion that what the author calls the 'Transfinitum in natura naturata', cannot be defended and in 
a certain sense, which however the author does not seem to assert, would include the error of 
pantheism." [J.B. Franzelin, letter to G. Cantor (25 Dec 1885)]  
 
"Accordingly I distinguish an 'Infinitum aeternum sive Absolutum' that refers to God and his 
attributes, and an 'Infinitum creatum sive Transfinitum' that is stated wherever in the Natura 
creata an actual infinite has to be postulated, like, for example, with respect to the, according to 
my firm conviction, actually infinite number of created individuals, in the universe as already on 
our earth and, most probably, even in each extended part of the space, however small it may be. 
Here I agree completely with Leibniz. [...] 
 I know that this teaching of the 'Infinitum creatum' is objected, if not by all yet by most 
doctors of the church, and contrary opinions are given in particular by the great St Thomas 
Aquinatus in his Summa theol. I, q. 7. a. 4. But the reasons that have imposed themselves on me 
in this question and, I can say against my will, rather captivated me during 20 years of research 
[...] are stronger than everything contrary that I have heard, although I have scrutinized it to a 
large extent. Further I believe that the words of the Holy Bible like Sap. c. 11, v. 21: 'Omnia in 
pondere, numero et mensura disposuisti' which have been assumed to contradict infinite numbers, 
do not have this meaning; for given the case, actually infinite 'powers', i.e., cardinal numbers, and 
a. i. numbers {{Cantor uses 'Anzahlen' as numbers of well-ordered sets}}, i.e., ordinal numbers 
[...] existed, as I think to have proved, which like the finite numbers obey firm laws given by 
God, so clearly also these transfinite numbers would be covered by that holy remark – and it 
cannot be used, in my opinion, against actually infinite numbers to avoid a circular argument. 
 But it can be proved in different ways that an 'Infinitum creatum' has to be assumed. [...] 
 One of the proofs starts from the notion of God and infers first from the highest perfection 
of the Supreme Being the possibility of the creation of a Transfinitum ordinatum, then from 
God's loving kindness and glory the necessity of an actually created Transfinitum.  
 Another proof shows a posteriori that the assumption of a 'Transfinitum in natura naturata' 
facilitates a better, because more complete, explanation of the phenomena, in particular of the 
organisms and psychological phenomena than the contrary hypothesis. {{This has never been 
further elaborated by Cantor.}} [...] 
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 I believe that pantheism, perhaps only by means of my conception of the things, over time 
can be overcome completely. [...] Materialism and related ideas seem to me to belong to the evils 
which, just because they belong to the scientifically most untenable and easiest refutable, the 
human race in its temporal existence will never completely be released of." [G. Cantor, letter to 
J.B. Franzelin (22 Jan 1886)] In this letter the terminus "cardinal-number" appears for the first 
time. 
 
"In your valued letter to me you say first quite rightly (provided that your notion of the 
transfinitum is not only compatible with religion but also true, what I do not judge), 'one of the 
proofs starts from the notion of God and infers first from the highest perfection of the Supreme 
Being the possibility of the creation of a Transfinitum ordinatum.' Assuming that your 
transfinitum actuale in itself contains no contradiction, your conclusion of the possibility of the 
creation of a transfinitum out of the notion of God's omnipotence is quite right. But to my regret 
you go on and infer from his 'loving kindness and glory the necessity of an actually created 
Transfinitum'. Just because God himself is the absolute infinite good and the absolute glory, 
which good and which glory nothing can be added to and nothing can be missing, the necessity of 
some creation, whatever it might be, is a contradiction, [...] 
 I am not able to continue the correspondence about your philosophical opinions because 
of my many occupations which direct me to quite another field. You might excuse if I will not 
react on your possible replies, which however, as far as they will be related to your system, I beg 
you to refrain from." [J.B. Franzelin, letter to G. Cantor (26 Jan 1886)] 
 
"Your Eminence, I thank you very much indeed for the clarifications given in your kind letter of 
26 January which I agree to with full conviction, because in the short hint in my letter of 22 
January I did not opine to talk about an objective, metaphysical necessity of the act of creation, 
which God, the absolutely free had been subject to, but I only wanted to point to a certain 
subjective necessity for us, to infer from God's loving kindness and glory an actually done (not a 
parte Dei to be done) creation, not only of a Finitum ordinatum but also of a Transfinitum 
ordinatum." [G. Cantor, letter to J.B. Franzelin (29 Jan 1886)] 
 
I would be most delighted if my works {{on transfinite cardinal numbers and transfinite order 
types}} were for the benefit of the Christian philosophy which is next to my heart, namely the 
'philosophia perennis' {{perpetual, eternal philosophy}}. This would only then be thinkable and 
possible, if they were scrutinized by the old, meanwhile by His Holiness Leo XIII so beautifully 
restored, revived school." [G. Cantor, letter to T. Esser (19 Dec 1895)] 
 
"Attempts that I have made many years ago and repeatedly recently, to win members of the 
German province of S. J. {{Societas Jesu}} for a confidential scientific correspondence about the 
actual infinite, have been without any success although many of them have been knowing and 
possessing my works for more than ten years, whereas the late Cardinal J.B. Franzelin S. J. very 
plainly has been pointing to the importance of this question for theology and philosophy in his 
letters directed to me just 10 years ago." [G. Cantor, letter to T. Esser (25 Dec 1895)] 
 
"The general set theory [...] definitely belongs to metaphysics. You can easily convince yourself 
when examining the categories of cardinal numbers and the order type, these basic notions of set 
theory, on the degree of their generality.  
 [...] and the fact that my presently written work is issued in mathematical journals does 
not modify the metaphysical contents and character of this work.  
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 [...] By me Christian philosophy is for the first time confronted with the true teachings of 
the infinite in its beginnings. I know quite firmly and for sure, that my teachings will be accepted. 
The question is only, whether this will happen soon or after my death. But I am completely calm 
about this alternative. It doesn't touch my poor soul which, however, dear Pater, I recommend to 
your and yours pious prayer." [G. Cantor, letter to T. Esser (1/15 Feb 1896)]  
 
"Since he {{Cantor}}, because of his bold endeavour, had been attacked from all sides, he tried 
to get support from me, the only one who, as he believed, agreed with his opinions. Since he was 
noble minded, he did not share the contempt of the disbelieving science against the Christian 
philosophers. And it was not only pure poverty which led him to me, but, as he said, he had a 
Catholic-friendly attitude because his mother was Catholic. He inquired with me about the 
teachings of the scholastics with respect to this question. I could point him in particular to St 
Augustin and to P. {{father}} Franzelin, the later cardinal. This highly esteemed teacher of mine 
defended the actually infinite set in the cognition of God, supported by the explicit teaching of St 
Augustin, and it was he, who induced that writing of mine and who calmed me during the violent 
attacks with the argument that I only had repeated the teaching of St Augustin. Cantor himself 
then addressed the cardinal and reported his statements, without revealing his name, in an essay 
of the 'Zeitschrift für Philosophie und philosophische Kritik'." [C. Gutberlet: Philos. Jahrbuch der 
Görres-Gesellschaft 32 (1919) p. 364ff]  
 
Cantor "tried to actively intervene in education policy in favour of Catholicism. He wished that 
chairs of philosophy in Germany should not be occupied by professors who supported Darwinism 
or atheism." He tried to reach this aim with cunning and even under circumventing the official 
appointment procedure, always without success though. [H. Meschkowski, W. Nilson: "Georg 
Cantor Briefe", Springer, Berlin (1991) pp. 13 & 374 & 380] 
 
"From the Catholic point of view we have to be happy that you got rid of Prof. Riehl [...] and one 
can only wish that he will not be replaced by a kindred spirit. Because this sort of men is able to 
cause much damage, as you have experienced with Riehl over many years. [...] The theologians 
at Kiel may convince themselves what they have got and may look how they can live with him. 
Further we cannot know whether divine providence places just such radical people in Protestant 
universities in order to accelerate the undermining and decay of Protestantism. Would we be 
interested to hinder that? Not at all!  
 [...] The government of the grand duke of Baden should be informed in a private way (by 
your friend, the member of parliament) of the fact that a pupil and friend of Prof. Riehl (Dr. 
Förster) has been sentenced because of lèse-majesté; this should be a reason to meet the candidate 
recommended by Prof. Riehl with greatest suspicion. In the senate it may be preferable not to 
touch this point. [...] 
 As I have been told by a personally known brother monk of the author, P. Esser is 
momentarily in Rome as a co-worker of an extremely important commission, appointed by the 
Holy Father in order to revise the Index," [G. Cantor, letter to F.X. Heiner (31 Dec 1895)] This 
"extremely important" commission renewed the index of prohibited books, i.e., those books 
which a devout Catholic was not allowed to read. 
 
"I do highly appreciate that the pretended scientific appearance has been snatched away from 
Haeckel's shameless attacks against Christianity in front of the widest audience. The noble 
shyness toward hearty polemics (in other circles so usual!) had to give way with respect to such 
wretchedness." [G. Cantor, letter to F. Loofs (24 Feb 1900)] 
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"You have, as far as I know, 10 universities in Spain. Theology however is excluded and is only 
taught in seminaries. The former constitution of universities, which included theology, is better in 
my opinion. That holds for Spain as well as for France, where the same exclusion has been 
introduced. I do not only care about a non-hostile attitude of the other sciences towards the 
ancestral theology, but I believe that also theology can only stand to gain from a close relation to 
the other faculties." [G. Cantor, letter to Don Zoel Garcia de Gáldeano (1893), quoted in a letter 
from G. Cantor to A. Baumgartner (15 Dec 1893)] 
 
"Especially bold in this matter, with regard to his time, appears Rod. Arriaga S. J. {{Rodrigo de 
Arriaga (1592-1667)}}. (I mention here that the teaching of the creational actual infinite (what I 
call transfinitum) by Rod. Arriaga has not at all been founded free of contradiction; same is true 
for the Minime Em. Maignan {{Emanual Maignan (1601-1676)}}. Both I have only become 
acquainted with a long time after I had completed my theory internally and had cleared it. Both of 
them are lacking the correct notions of transfinite cardinal numbers {{Mächtigkeiten}} and the 
transfinite order types and ordinal numbers, just that tool which helps to make the whole theory 
faultless.); but also Suarez S. J. {{Francisco Suarez (1548-1617)}} is not so disconnected from 
my position as it might appear. [...] With respect to my high esteem and admiration of your 
religious order I could not win more encouragement from any party to continue with my work 
than from you and yours." [G. Cantor, letter to J. Hontheim (21 Dec 1893)] So the roots of set 
theory reach back into times which saw Bruno and Galilei sentenced as heretics. 
 
"[...] it is certain for instance of Leibniz that he has assumed a creational infinite in different 
relations as really existing. [...] On the other hand Leibniz has as little as his predecessors and 
successors recognized the actually infinite, i.e., transfinite numbers and order types; he even 
refutes their possibility. [...] 
 You say [...] that you have problems with the notion of the transfinite because you cannot 
give up the theorem that the possibility of addition implies the presence of a potential. But it has 
not been asserted by me that a transfinitum be only act, rather the transfinite in the sense in which 
it is multipliable is potency; only the absolute is actus purus or rather actus purissimus. [...] 
 Whereas the emphasized (that the principle 'totum majus est sua parte' is wrong in a 
certain sense) with respect to the substantial forms is acknowledged in general (the soul of a 
living organism, for instance, in its essential being remains always the same during the growing 
or decreasing of the body) one seems to believe that this does not refer to the accidental forms 
too. This prejudice originates from the observation that, as I just stressed, observation has been 
restricted to only finite sets which always obey the principle 'totum majus est sua parte' with 
respect to the cardinal number forms belonging to them; without further investigation, but also 
without any justification, its validity in the noted sense has been carried over to infinite sets too, 
and there is no reason to be surprised about the contradictions resulting from such an utterly 
wrong premise." [G. Cantor, letter to I. Jeiler (20 May 1888, Whitsun)] 
 
"To use scholastic terms: Something that can be multiplied is in potentia to this further actus, 
hence something potential; it belongs to that notion. Then your transfinitum could only be some 
subsection of the usually taught potential infinite." [I. Jeiler, letter to G. Cantor (22 Jun 1890)]  
 
 "The results, which I have arrived at, are as follows: 
 Such a transfinitum, whether it is thought of in concreto or in abstracto, is free of 
contradiction, therefore possible and creatable by God, as well as a finitum. [...] 
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 All special modes of the transfinite have been existing forever as ideas in intellectu 
divino. [...] 
 If you express this fact by saying: 'every transfinite is in potentia to another actus and in 
this respect is a potential', so I have no objection. Because actus purus is only God; but every 
creational, in the sense mentioned by you, is being in potentia to another actus.  
 Nevertheless the transfinite cannot be considered as a subsection of what is usually called 
'potential infinite'. Because the latter is not (like every individual transfinite and in general 
everything due to an 'idea divina') determined in itself, fixed, and unchangeable, but a finite in the 
process of change, having in each of its actual states a finite size; like, for instance, the time 
elapsed after the beginning of the world, which, measured in some time-unit, for instance a year, 
is finite in every moment, but always growing beyond all finite limits, without ever becoming 
really infinitely large." [G. Cantor, letter to I. Jeiler (13 Oct 1895)] 
 
"In the first half of the last century a curious attempt has been made by the famous Frenchman 
Fontenelle (in the book 'Eléments de la Géometrie de l'infini', Paris 1727), to introduce actually 
infinite numbers; this attempt however has failed and has brought the author some mockery, not 
quite undeserved, from the mathematicians who were active in the 18th century and in the first 
quarter of the present century; the present generation does not know about it. Fontenelle's attempt 
was doomed to failure because his infinite numbers brought with them a flagrant contradiction; it 
has been easy to show this contradiction, and that has been done best by R. P. Gerdil. But if 
d'Alembert, Lagrange, and Cauchy believed that the dormant idea of the transfinite had been 
stroken deadly by that for all times, then this error would appear by far greater than that of 
Fontenelle and the more grave because Fontenelle in the most humble way confesses to be a 
layman in mathematics whereas those three not only have been professionals but really great 
mathematicians. [...] 
 The R. P. Ign. Carbonelle, in his beautiful essay 'Les confins de la science et de la 
philosophie, 3e ed. t. I, cap. 4', has tried to save Gerdil's proof for a temporal beginning of the 
world by very astutely and scholarly defending the proposition: 'Le nombre actuellement infini 
n'est pas absurd', but adding the hard, merciless, and dissonant afterthought: 'mais il est 
essentiellement indéterminé'. Perhaps he would have refrained from that afterthought if he had 
known at his time my works already, which from the beginning, for meanwhile nearly twenty 
years, have been concerned with ways of individuation, specification and ordination of the actual 
infinite in natura creata. But the mathematical proof for the temporal beginning of the creation, 
undertaken by R. P. Carbonelle, stands and falls with just this afterthought. 
 Finally, with respect to the third thesis of your esteemed letter I fully agree with you when 
you say with Nicolaus of Cusa that 'in God all is God' as well as that 'the cognition of God 
objectively cannot recognize the incommensurable as commensurable or the irrational as rational, 
because the divine omniscience as well as the divine omnipotence cannot give rise to the 
impossible.' [...] 
 If it is said here that a mathematical proof of the beginning of the world in finite time 
cannot be given, then the emphasis is on the word 'mathematical', and only in that respect my 
opinion is in agreement with St Thomas. On the other hand, just based upon the true teaching of 
the transfinite, a mixed mathematical metaphysical proof of the theorem might well be possible, 
and in so far I differ from St Thomas, who holds the opinion: S. Th. q. 46, a. 2 concl. 'Only by 
belief we know that the universe did not always exist, and that cannot be checked by proof on its 
genuineness.'" [G. Cantor, letter to A. Schmid (26 Mar 1887)] 
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"If one has recognized something of the truth, then one knows to be in possession of this truth and 
one feels (even if saying like me 'non quaero ab hominibus gloriam' {{I do not demand glory 
from mankind}}) sort of duty, as far and as long as power reaches, to tell it to others. Under this 
aspect you, Reverend Father, will kindly forgive that in the following I will in greater detail 
support and amplify what I said in my recent messages." [G. Cantor, draft of a letter to A. Schmid 
(18 Apr 1887)]  
 
"The fact of the act. infinitely large numbers is so little a reason for the possibility of an a parte 
ante infinite duration of the world that, on the contrary, by means of the theory of transfinite 
numbers the necessity of a beginning of motion and time in finite distance from the present can 
be proven.  
 The detailed grounds of this theorem I will postpone to another opportunity because I 
would not like to weigh down the merry beginning of your holidays with mathematical and 
metaphysical considerations." {{Cantor never supported his claim.}} [G. Cantor, letter to A. 
Schmid (5 Aug 1887)]  
 
"After having recently looked through your paper 'Institutiones philosophicae' I have got the 
impression that I do not much deviate in the most important metaphysical questions concerning 
the philosophy of Saint Thomas Aquinatus, which you, Reverend Father, support so masterly and 
enlightening, and that those points, where a difference could be stated, are such in which 
modifying the teaching of the great philosopher might be allowed and perhaps even be desirable." 
[G. Cantor, letter to M. Liberatore (7 Feb 1886)] 
 
"In religious questions and relations my opinion is not a denominational one because I am not 
member of any existing organized church. My religion is that revealed by the Triune one and 
only God himself, and my theology is founded on God's word and work, and I am admiring as 
my teachers mainly the Apostolic Fathers, the Church Fathers, and the most respected teachers of 
the Church of the first 15 centuries after Christ (i.e., the time preceding the church-revolution of 
the 16th century)." [G. Cantor, letter to Constance Pott (7 Mar 1896)] 
 
"I have never been assuming a 'Genus supremum' of the actual infinite. On the contrary I have 
proven strictly that a 'Genus supremum' of the actual infinite does not exist. That which is higher 
than all finite and transfinite is not a 'Genus', it is the only absolutely individual unit, in which all 
is contained, which comprehends all, the 'Absolute', for the human intellect incomprehensible, 
therefore not being subject to mathematics, unmeasurable, the 'ens simplicissimum', the 'actus 
purissimus', which by many is called 'God'." [G. Cantor, letter to Grace Chisholm-Young (20 Jun 
1908)] 
 
"Our Holiest Father, Pope LEO XIII  
 With regard to the integrating apostolic letters of your Holiness, in particular that 
published on April 14, 1895 that you have sent to the English people, I have held it necessary to 
remind all Christians, in particular the adherents of the Anglican Church, of the creed of Francis 
Bacon 'the fine specimen of his century and his nation, adorning literature and being its 
adornment'.  
 Permit, Greatest Pontifex, that I dedicate to you seven specimen of a new edition of that 
little work and that I include three volumes of the works of Francis Bacon. 
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 I implore you, Beatissime Pater, to condescent to accept those 10 little gifts, which I dare 
to offer you in order to be a token of my deference and of my love to your Holiness and to the 
Holy Roman Catholic Church.  
 Your Holiness most humble and most obsequious servant  
 Georg Cantor  
 mathematician." 
[G. Cantor, letter to Pope Leo XIII (13 Feb 1896)] An answer of the Pope is not known. 
 
In 1905 Cantor published on is own expense the essay "Ex oriente lux" where he opposed the 
dogma of virgin birth. "During his studies in a psychiatric clinic he had come to the conclusion 
that Joseph of Arimathia was the natural father of Jesus" [H. Meschkowski, W. Nilson : "Georg 
Cantor Briefe", Springer, Berlin (1991) p. 444] The essay concludes with a refusal of 
Catholicism: "It remains until the end of all days resting on an unshakeable rock, Christ himself: 
the invisible church, which He has founded. He is the Lord who does not need a governor on 
earth." ["Ex oriente lux. Gespräche eines Meisters mit seinem Schüler über wesentliche Puncte 
des urkundlichen Christenthums. Berichtet vom Schüler selbst." (1905) {{Light from the east. 
Talks of a master with his pupil about the essential points of the original Christianity. Reported 
by the pupil himself.}}] 
 
"Recently Mr. Bernstein has committed the new carelessness, to try to show in the mathem. 
Annalen that 'there are sets existing which cannot be well-ordered'. I have not the time to look for 
the error in his proof but I am firmly convinced that such an error exists. 
 Hopefully time and opportunity will come soon to frankly express my full opinion about 
all those immature attempts. [...] 
 The fundament of my opinion about redemption is that Jesus is the predicted Messiah of 
the Jews and as such in his human nature is a real descendant of David. This we know absolutely 
sure from himself and as such he has been considered by all his apostles after his resurrection. 
From this point I arrive, as you have seen, based on the New Testament, at the distinction of two 
Josephs, the royal Joseph and physical father of Christ and the breadwinner Joseph. [...] 
 Concerning the resurrection of Christ (about which you have inquired me), this has been 
attested best and most comprehensively by the writings of the New Testament. I firmly believe it 
as a fact and do not brood over the 'how' of it." [G. Cantor, letter to P. Jourdain (3 May 1905)] 
 
"That Jesus Christ was the natural son of Joseph of Arimathea was one of the obsessions which 
Cantor adopted in his later life, although he published nothing more on it after 'Ex Oriente Lux'." 
[Ivor Grattan-Guinness: "The correspondence between Georg Cantor and Philip Jourdain", 
Jahresbericht der Deutschen Mathematiker-Vereinigung 73 (1971) p. 127] 
 
As an ironical footnote it should be mentioned that St Augustin, Cantor's prima facie source of 
knowledge about the infinite set of numbers in the divine sphere, did not like the tables. In his 
confessions [Aurelius Augustinus: "Confessions", 1, 13, 22] he confessed that the chant "unum et 
unum duo, duo et duo quattuor" sounded ugly to him. 
 

http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002136651&physid=PHYS_0134
http://www.stoa.org/hippo/text1.html
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 4.2 Cantor on sciences 
 
Cantor devised set theory for application to reality and planned to write a paper about set theory 
and its applications: "The third part contains the applications of set theory to the natural sciences: 
physics, chemistry, mineralogy, botany, zoology, anthropology, biology, physiology, medicine 
etc. It is what the Englishmen call 'natural philosophy'. Added to that are applications to the so-
called 'humanities', which, in my opinion, have to be conceived as natural sciences too, because 
also the 'mind' belongs to nature." [G. Cantor, letter to D. Hilbert (20 Sep 1912)] 
 
Cantor explained his impetus for devising set theory to Mittag-Leffler: "Further I am busy with 
scrutinizing the applications of set theory to the physiology of organisms, [...] I have been 
occupied for 14 years with these ideas of a closer exploration of the basic nature of all organic; 
they are the true reason why I have undertaken the painstaking and hardly rewarding business of 
investigating point sets, and all the time never lost sight of it, not for a moment. Further I am 
interested, purely theoretically, in the nature of the states and what belongs to them, because I 
have my opinions on that topic which later may become formulated mathematically; the striking 
impression that you perhaps may obtain will disappear, when you consider that also the state in 
some sense represents an organic being." [G. Cantor, letter to G. Mittag-Leffler (22 Sep 1884)] 
 
"I expect great benefits from the general theory of types in all respects. It constitutes an important 
and great part of pure set theory (Théorie des ensembles), i.e., also of pure mathematics, because 
in my opinion the latter is nothing else but pure set theory. [...] By applied set theory I understand 
what usually is called physical science or cosmology; to this realm all so-called natural sciences 
are belonging, those concerning the anorganic as well as the organic world. [...] For 
mathematical physics the theory of types is particularly important because the latter theory is a 
powerful and sharp tool for the discovery and the intellectual construction of the so-called matter. 
Related to this is the applicability of the theory of types in chemistry. [...] The application of 
mathematical type theory on study and research in the domain of the organic seems to me of very 
special interest " [G. Cantor, letter to G. Mittag-Leffler (18 Nov 1884)] 
 
"This has created my desire to replace the mechanical explanation of nature by a more complete 
one, which I would call in opposition to the former an 'organic' one. However it could be 
satisfactory to me only if the conventional notions were replaced by new and improved notions 
which with respect to mathematical determination and accessibility do not fall behind the former 
or rather present ones." [G. Cantor, letter to W. Wundt (4 Mar 1883)] 
 
"Therefore Wundt errs if he believes that the transfinitum has no physical meaning, but only the 
infinitum; strictly speaking the opposite is true because the 'improper infinite' is only an auxiliary 
and relative notion." [G. Cantor, letter to K. Laßwitz (15 Feb 1884)] 
 
"The A. I. {{actual infinite}} in abstracto and in concreto, however, where I call it transfinitum, 
are not only subject of an extended number theory but also, as I hope to show, of an advanced 
natural science and physics." [G. Cantor, letter to I. Carbonnelle (28 Nov 1885)] 
 
Cantor says that he has no safer knowledge of anything in nature than of his transfinite set theory. 
"Therefore I am convinced that this theory one day will belong to the common property of 
objective science" [G. Cantor, letter to I. Jeiler (20 May 1888, Whitsun)] 
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 4.2.1 Temporal origin of the world 
 
Cantor frequently expressed his opinion that the world has a beginning and his claim that he 
could prove that. But he never gave a proof and he hardly has foreseen the evidence in favour of 
the big bang. He was a creationist undoubtedly. 
 
"With respect to the creation of the world and its temporal beginning I completely agree with you 
Reverend Father but I also agree with St Thomas Aq., who contests in his Opusc. de aeternitate 
mundi the mathematical provability of this theorem (that a temporal beginning of the world has 
to be assumed), [...] If it is said here that a mathematical proof of the beginning of the world in 
finite time cannot be given, then the emphasis is on the word 'mathematical' and only in that 
respect my opinion is in agreement with St Thomas. On the other hand, just based upon the true 
teaching of the transfinite, a mixed mathematical metaphysical proof of the theorem might well 
be possible. In so far I differ from St Thomas, who holds the opinion: 'Only by belief we know 
that the universe did not always exist, and that cannot be checked by proof on its genuineness.'" 
[G. Cantor, letter to A. Schmid (26 Mar 1887)] 
 
"I definitely agree with you, Reverend Father, in the assumption of a temporal beginning of the 
world. I have always considered the contrary dogma of present natural sciences as violating good 
reason in highest degree;" [G. Cantor, letter to A. Schmidt (5 Aug 1887)] 
 
"This doctrine {{of a temporal beginning}} would be impossible, if the Aquin. had considered 
the theorem 'there are no act. infinite numbers' as proven. Because from this theorem (if it was 
true) it would follow demonstrably with greatest evidence that an infinite number of hours could 
not have passed before this moment. The dogma of a beginning of the world (a finite time ago) 
could not have been defended as bare credo." [G. Cantor, letter to C.F. Heman (2 Jun 1888)] 
 
"I do not only maintain with all Christian philosophers the temporal beginning of the creation, I 
also claim like you that this truth can be proven by rational reasons. [...] The foundation of 
actually infinitely great or, as I call them, transfinite numbers, does not entail that we have to 
refrain from the rational proof of the beginning of the world." [G. Cantor, letter to J. Hontheim 
(21 Dec 1893)] 
 
"for instance, the time elapsed since the beginning of the world, which, measured in some time-
unit, for instance a year, is finite in every moment, but always growing beyond all finite limits, 
without ever becoming really infinitely large." [G. Cantor, letter to I. Jeiler (13 Oct 1895)] 
 
"With great interest I have studied your essay: 'The teachings of holy Thomas of Aquino about 
the possibility of a creation without beginning'. It was very satisfying for me to see the position 
of holy Thomas concerning actual infinity being discussed by such a profound expert and to 
learn that I had correctly understood holy Thomas in this point and related questions, in 
particular that his arguments against the actual infinite in creatis or against the possibility of 
actually infinitely great numbers has, for himself, not the meaning of a demonstratio, quae 
usquequaque de necessitate concludit leading to metaphysical certainty, but was in his own eyes 
only probable to a certain degree." [G. Cantor, letter to T. Esser (5 Dec 1895)] 
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 4.2.2 Physical space 
 
In a paper about continuity preserving manifolds Cantor proved that the manifold —n (with n ¥ 2) 
remains continuous if the set of points with purely algebraic coordinates is taken off. According 
to Cantor's interpretation this is a peculiar property of countable sets. (For a correction see 
section "On continuity-preserving manifolds" in chapter VI.) 
 "In this manner it has been shown that two points N and N' of the domain A, which 
remains after subtracting the overall dense countable point set (M) from the {{initial}} domain, 
can be connected by a continuous line l' constructed of a finite number of circular arcs which 
with all their points belong to the domain A, i.e., do not contain any point of (M). [...] 
 Connected with these theorems are considerations concerning the constitution of the 
three-dimensional space which the real world has to be based upon in order to explain the 
phenomena appearing therein. It is known that the space is assumed as universally continuous 
because of forms appearing there and in particular because of the movement occuring there. The 
latter property consists, according to the simultaneous and independent investigations by 
Dedekind (cp. the little essay: Stetigkeit und irrationale Zahlen by R. Dedekind, Braunschweig 
1872) and by the author (Mathem. Annalen Vol. V, pp. 127 and 128), in nothing else but that 
every point the coordinates x, y, z of which are given with respect to an orthogonal coordinate 
system by any definite real, rational or irrational, numbers are thought of as really belonging to 
the space; in general this is not necessitated by an inherent force but has to be considered as a 
free act of our intellectual construction. The hypothesis of continuity of space is therefore nothing 
else but the rather arbitrary assumption of the complete, mutually unique correspondence 
between the three-dimensional purely arithmetic continuum (x, y, z) and the space which the 
world of phenomena is based upon." [G. Cantor: "Über unendliche lineare Punktmannichfaltig-
keiten" (3), Math. Ann. 20 (1882) pp. 113-121. Cantor, p. 156]  
 
"You are quite right in that you deny the real background of Gauß-Riemann-Lobatchewsky's 
spaces but accept them as 'logical postulates'." [G. Cantor, letter to W. Wundt (5 Oct 1883)] 
 
"I refer you to what I have found in Math. Annalen Vol. XX pp. 118-121, that in the space filled 
with body matter (since I assume the body matter being of first cardinality) for the ether (the 
matter of second cardinality) there is an enormous space remaining for continuous movement, 
such that all phenomena of transparency of bodies as well as those of radiating heat, the electric 
and magnetic induction and distribution appear to get a natural basis free of contradictions." [G. 
Cantor, letter to G. Mittag-Leffler (16 Nov 1884)] 
 
"The paper by Pohle about the objective meaning of the infinitely small contains quite nice and 
comprehensive reflections. But he errs in the assumption that the infinitely small be necessary as 
an actually integrating or constituent element for the explanation of the continuum or as a 
foundation of the infinitesimal calculus. I agree with him concerning the objective importance of 
the infinitely small, but not the infinitely small as far as it is something actual, being infinitely 
small, rather only something potential, becoming infinitely small. As an element of the 
continuum the infinitely small is not only unusable but even unthinkable or impossible as I can 
strictly prove." [G. Cantor, letter to C. Gutberlet (1 May 1888)] 
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 4.2.3 Created creatures and atoms of matter and ether 
 
"If we consider the epitome of all organic cells in our universe, which to all directions is 
infinitely extending, at a given time, then this epitome certainly consists of infinitely many 
individuals; therefore we can ask about the cardinality of this set, and I am able to strictly prove 
that this cardinality is the first one, i.e., not a higher one." [G. Cantor, letter to W. Wundt (16 Oct 
1883)] Cantor never delivered a proof of this thesis. 
 
"The proper infinite, as we encounter it, e.g., in well-defined point sets or in the constitution of 
bodies of point-like atoms (here I do not mean the chemical-physical (Democritian) atoms, 
because I do not believe that they exist, neither as a notion nor in reality – whatever useful might 
have been accomplished, up to a certain limit, by this fiction) has found its most decided defender 
however in an extremely sharp-minded philosopher and mathematician of our century, in 
Bernard Bolzano," [G. Cantor: "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", Leipzig 
(1883). Cantor, p. 179] 
 
"Therefore and since the present Sunday provides me with some free hours I will briefly tell you 
my opinions about the constitution of matter. 
 Like Boscovich, Cauchy, Ampère, Wilh. Weber, Faraday, and many others I think that 
the last elements have no extent, that means, speaking geometrically, they are purely pointlike. 
Willingly I accept the usual expressions centres of force or material points. You see that I 
already here deviate from that atomism which assumes the last elements to have extent but to be 
not divisible by any forces. This is the opinion which is common today in chemistry and 
prevailing in physics. I will call this atomism the chemical atomism. 
 Although those authors differ with me in the just mentioned respect from the chemical 
atomism, they maintain another form of atomism which I temporarily will call, for the sake of 
brevity, point atomism. 
 But strictly speaking I am not an adherent of point atomism either, although for me too 
the last elements are indestructible centres of force. I think that I have to refuse the chemical as 
well as the point atomism, the latter at least in its present form. 
 Nevertheless I am not an unconditional advocate of the hypothesis of continuity, at least 
not in the vague form in which it hitherto has been developed by some philosophers. 
 I believe with the point atomists that for an explanation of the anorganic and, up to a 
certain limit, also the organic natural phenomena two classes of created and, after having been 
created, separate, indestructible, singular elements with no extent and equipped with forces, 
which I will also call atoms, are necessary and sufficient. Those of the first class I will call body 
atoms, those of the other class I will call ether atoms. 
 I go on to believe also, and that is the first point where I rise over the point atomism, that 
the totality of body atoms is of the first cardinality, the totality of ether atoms is of the second 
cardinality – and this is my first hypothesis. 
 In a short letter I cannot explain all reasons which in my opinion are supporting this 
hypothesis. I refer you to what I have found in Math. Annalen Vol. XX pp. 118-121, that in the 
space filled with body matter (since I assume the body matter being of first cardinality) for the 
ether (the matter of second cardinality) there is an enormous space remaining for continuous 
movement, such that all phenomena of transparency of bodies as well as those of radiating heat, 
the electric and magnetic induction and distribution appear to get a natural basis free of 
contradictions. 
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 Just as little I want to talk today about the forces which have to be ascribed to the two 
different elements. Only one point I have to add to the above, simultaneously constituting the 
apparent second difference with the point atomism. 
 I believe that in the state of equilibrium, because of the mutual attraction and repulsion 
exerted by the elements upon each other1 and because of the innumerable grades of this 
attraction, both the body matter for itself can only exist in form of a geometric homogeneous 
point set dense in itself (of first order or cardinality) and the ether for itself can only exist in 
form of a geometric homogeneous point set dense in itself (of second order or cardinality2). And 
this is my second hypothesis. This second hypothesis concerns only the static phenomena. In 
general however the following decompositions are relevant: P ª rP + i1P, Q ª rQ + i1Q + i2Q, 
where P is the matter of first class {{body atoms}}. Here in general all parts have physical 
meaning. From my investigations in Acta math. Vol. IV pp. 388-390 and Math. Annalen Vol. 
XXIII pp. 473-479 it follows that here the notion of volume does not vanish." [G. Cantor, letter 
to G. Mittag-Leffler (16 Nov 1884)] 
 
"in this respect I have developed the hypothesis, years ago already, that the cardinality of the 
body matter is what I call in my investigations the first cardinality, the cardinality of the ether 
matter, on the other hand, is the second one." [G. Cantor: "Ueber verschiedene Theoreme aus der 
Theorie der Punktmengen in einem n-fach ausgedehnten stetigen Raume Gn. Zweite Mitteilung.", 
Acta Mathematica Vol. 7 (1885) pp. 105-124. Cantor, p. 276] 
 
"Accordingly I distinguish an 'Infinitum aeternum sive Absolutum' that refers to God and his 
attributes, and an 'Infinitum creatum sive Transfinitum' that has to be applied wherever in the 
Natura creata an actual infinite is observed, like, for example, with respect to the, according to 
my firm conviction, actually infinite number of created individuals, in the universe as already on 
our earth and, most probably, even in each extended part of the space, however small it may be, 
wherein I agree completely with Leibniz. [...]  
 Another proof shows a posteriori that the assumption of a 'Transfinitum in natura naturata' 
delivers a better, because more complete, explanation of the phenomena, in particular of the 
organisms and psychological phenomena than the contrary hypothesis." [G. Cantor, letter to J.B. 
Franzelin (22 Jan 1886)] 
 
 
 4.2.4 Energy and matter 
 
"Should I also mention a point where I do not quite agree with you, so it is your unreserved 
confidence in the modern so-called law of energy conservation. I do not at all wish to doubt the 
teaching of the equivalence of the different natural forces transforming into each other as far as 
this has been sufficiently verified by experiment. 
 That which I have serious reservations against is the elevation of the asserted law into the 
rank of a metaphysical principle which is claimed to govern the recognition of so important 
theorems as the immortality of the soul as well as further the completely unjustified extension 

                                                 
1 Here Meschkowski, Nilson (1991) deviate from Meschkowski (1983) and Purkert, Ilgauds (1987) and 
give: "I believe that because of the mutual attraction exerted by similar elements upon each other". 
2 Here Meschkowski, Nilson (1991) deviate from Meschkowski (1983) and Purkert, Ilgauds (1987) who 
give: "of first and second order or cardinality". 
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and application of the theorem of conservation of energy onto the whole world system which the 
gentlemen Thomson, v. Helmholtz, Clausius, and comrades like to do, who link phantastic 
speculations to it which in my opinion are without any value." [G. Cantor, letter to C. Gutberlet 
(1 May 1888)] 
 
"the matter, as far as it is able to generate light, is just called 'ether'. It is not meant that this ether 
is different in character from the other matter; they differ only in their degree of density. [...] I 
have been pursuing for many years my special thoughts with regard to the explanation of light 
phenomena, in connection with the 'Théorie des ensembles'" [G. Cantor, letter to G. Mittag-
Leffler (5 Oct 1883)] 
 
"In close connection with the above results {{concerning point sets}} are mathematical-physical 
groundworks which I have been pursuing for several years without interruption. I have never 
been quite satisfied with even the most splendid results of mathematical analysis in physics 
because the hypotheses that they are based upon seemed to me partly contradictory and partly not 
clear and determined enough, and early already I recognized as the reason of this lack, that about 
the constitution of matter, the ponderable as well as the imponderable, the so-called ether, the 
truth had not yet been found anywhere. [...] The result of my investigations, which are not at all 
purely speculative but take into account experience and observation too, is that {{instead of 
atomism and continuity hypothesis}} a third hypothesis is conceivable, a name for which I have 
not yet found, a hypothesis which somehow lies between both, but is distinguished with respect 
to them by great simplicity and naturality and in particular precision; it participates in the 
advantages of the two others but seems to be free of their disadvantages and contradictions." [G. 
Cantor, letter to G. Mittag-Leffler (20/28 Oct 1884)] 
 
 
 4.2.5 Philosophy 
 
"General set theory [...] definitely belongs to metaphysics." [G. Cantor, letter to T. Esser (1/15 
Feb 1896)] 
 
"Most likely I will quit the mathematical lectures here completely after some semesters because 
the teaching of the courses required for the education of mathematics teachers, like calculus, anal. 
geometry, and mechanics, does no longer appeal to me in the long run; I will give philosophical 
lectures instead" [G. Cantor, letter to G. Mittag-Leffler (20/28 Oct 1884)]  
 
Cantor "began during the previous semester to lecture on Leibniz' philosophy. In the beginning 
he had 25 students. Then, little by little, the audience melted together, first to 4, then to 3, then to 
2, finally to one. Cantor held out nevertheless and continued to lecture. But, alas! One fine day 
the last of the Mohicans came, somewhat troubled, and thanked the professor very much but 
explained that he had so many other things to do so he could not longer manage to follow the 
professor's lectures. Then Cantor, to his wife's unspeakable joy, gave the solemn promise never to 
lecture on philosophy again." [Sonja Kowalewskaja, letter to G. Mittag-Leffler (21 May 1885)] 
 
"although I appreciate the mathematical, physical, and astronomical merits of Newton, I cannot 
but believe that he has done much harm to philosophy indirectly and that the main idea of his 
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metaphysics is completely wrong. In the latter respect I think that his great rival Leibniz came 
infinitely closer to the truth." [G. Cantor, letter to É. Blanc (22 May 1887)] 
 
"I have to draw your attention to two facts: 1st to the untearable ties that connect metaphysics and 
theology, in that the latter is the lodestar according to which the former is adjusting itself. [...] 
There follows a threefold: a) that in metaphysical discussions it is sometimes inevitable to have 
theology join in; b) that every real progress in metaphysics strengthens or multiplies the tools of 
theology; it may even happen that human reason (of course subjugating to the infallible decisions 
of the church) may obtain deeper and richer symbolic insights with respect to the mysteries of the 
religion than has been expected or foreseen before. [...] 
 Every expansion of our insight into the realm of the creational-possible therefore must 
lead to an expanded knowledge of God." [G. Cantor, letter to T. Esser (1/15 Feb 1896)] 
 
"I am Baconion in the Bacon-Shakespeare question and I am quite an adversary of Old Kant, 
who, in my eyes has done much harm and mischief to philosophy, even to mankind; as you easily 
see by the most perverted development of metaphysics in Germany in all that followed him, as in 
Fichte, Schelling, Hegel, Herbart, Schopenhauer, Hartmann, Nietzsche, etc. etc. on to this very 
day. I never could understand that and why such reasonable and enabled peoples as the Italiens, 
the English and the French are, could follow yonder sophistical philistine, who was so bad a 
mathematician. 
 And now it is that in just this abominable mummy, as Kant is, Monsieur Poincaré felt 
quite enamoured, if he is not bewitched by him. So I understand quite well the opposition of 
Mons. Poincaré, by which I felt myself honoured, so he never had in his mind to honour me, as I 
am sure. If he perhaps expect, that I will answer him for defending myself, he is certainly in great 
a mistake." [G. Cantor, letter to B. Russell (19 Sep 1911) {{original English by Cantor}}] 
 
"I have only recently found an occasion to get a more precise image of the so-called Nietzschean 
philosophy (a counterpart of Haeckel's monistic evolutionary philosophy). Because of its stylistic 
appeal it finds an uncritical recognition in Germany, which seems to me highly alarming with 
respect to its perverse contents and the Herostratic-antichristian motives." [G. Cantor, letter to F. 
Loofs (24 Feb 1900)] 
 
"Without a little bit of metaphysics in my opinion no exact science can be founded. Therefore 
please excuse the few words that I have to say in the introduction about this in modern times so 
frowned upon doctrin. Metaphysics, as I understand it, is the teaching of the being or, what is 
the same, of that which is there, i.e., existing, that means: of the world how it is as such itself 
and not how it appears to us. All we can perceive with our senses and imagine with our abstract 
thinking is not-being and therefore is at most a trace of the being itself." [G. Cantor, unpublished 
text, written about 1913] 
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 4.3 Cantor on the ease of his theory 
 
At least in five of his preserved letters (and that is merely a small fraction of his complete 
correspondence) Cantor emphasizes that very little mathematical knowledge is required to 
understand his theory: 
 
"To understand the basic idea of the teaching of the transfinite no scholarly education in newer 
mathematics is required; this could even be a hindrance because in the so-called infinitesimal 
analysis the potential infinite has been pushed to the fore and lead to the opinion, even of the 
heroes, as if they with their 'differentials' and 'integrals' mastered the heights of knowledge and 
skill. Strictly speaking however, the potential infinite is always unthinkable without the 
foundational A. I. (which only most of those gentlemen will not or can not account for). So, if 
you expect to get an 'expertly' competent judgement in the current question from those circles 
you might find your expectations disappointed. The only forum here is the {{Empress}} Reason 
who does not acknowledge any reputation of privileged, scholarly, academical guilds. She 
persists and rules – we humans come and go." [G. Cantor, draft of a letter to A. Schmid (18 Apr 
1887)] 
 
"Should you have time to read my papers, you might find that very little previous mathematical 
knowledge is required for the understanding." [G. Cantor, letter to C.F. Heman (28 Jul 1887)] 
 
"With respect to the question of the actual infinite in creatis I repeat first of all, what I wrote you 
one year ago: A scholarly preparation in mathematics is not at all necessary for the understanding 
of my relevant papers but a careful study of the latter is sufficient. Everyone, and in particular the 
trained philosopher, is able to scrutinize the teaching of the transfinite and to convince himself 
from its correctness and truth." [G. Cantor, letter to C.F. Heman (2 Jun 1888)] 
 
"The comprehension of the elements of the teaching of the transfinite does not require any 
scholarly preparation in the newer mathematics. That could rather be disadvantageous than useful 
for this purpose because the modern mathematicians, in their majority, [...] have got into a victory 
flush which lets them degenerate into materialistic one-sidedness and makes them blind for any 
objective-metaphysical recognition and therefore also for the foundations of their own science." 
[G. Cantor, letter to I. Jeiler (20 May 1888, Whitsun)] 
 
"I mention that great previous knowledge of mathematics is not required to understand my 
teachings, but only thorough philosophical knowledge, as it is learned best and most beautifully 
at your institution." [G. Cantor, letter to A. Baumgartner (27 Dec 1893)] 
 
And finally, Cantor gives a general advice: "As a philosopher you do well, in my opinion, to be 
very sceptical against mathematical authorities in all mathematical-philosophical questions, in 
memory of Pascal's true saying: 'Il est rare, que les géomètres soient fins, et que les fins soient 
géomètres.'" {{It is rare that the mathematicians are sharp-witted and that the sharp-witted are 
mathematicians.}} [G. Cantor, letter to A. Schmid (8 May 1887)] 
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 4.4 The rising of the empty set 
 
Bernard Bolzano, the inventor of the notion set (Menge) in mathematics would not have named a 
nothing an empty set. In German the word "Menge" has the meaning of many or great quantity. 
Often we find in German texts the expression "große (great or large) Menge", rarely the 
expression "kleine (small) Menge". Therefore Bolzano apologizes for using this word in case of 
sets having only two elements: "Allow me to call also a collection containing only two parts a 
set." [B. Bolzano: "Einleitung zur Grössenlehre", J. Berg (ed.), Friedrich Frommann Verlag, 
Stuttgart (1975) p. 152] 
 
Also Richard Dedekind discarded the empty set. But he accepted the singleton, i.e., the non-
empty set of less than two elements: "For the uniformity of the wording it is useful to permit also 
the special case that a system S consists of a single (of one and only one) element a, i.e., that the 
thing a is element of S but every thing different from a is not an element of S. The empty system, 
however, which does not contain any element, shall be excluded completely for certain reasons, 
although it may be convenient for other investigations to fabricate such." [R. Dedekind: "Was 
sind und was sollen die Zahlen?" Vieweg, Braunschweig (1887), 2nd ed. (1893) p. 2] 
 
Bertrand Russell considered an empty class as not existing: "An existent class is a class having at 
least one member." [B. Russell: "On some difficulties in the theory of transfinite numbers and 
order types", Proc. London Math. Soc. (2) 4 (1906) p. 47] 
 
Gottlob Frege shared his opinion: "If, according to our previous use of the word, a class consists 
of things, is a collection, a collective union of them, then it must disappear when these things 
disappear. If we burn down all the trees of a forest, then we burn down the forest. Thus an empty 
class cannot exist." [G. Frege: "Kleine Schriften", I. Agelelli (ed.), 2nd ed., Olms, Hildesheim 
(1990) p. 195] 
 
Georg Cantor mentioned the empty set with some reservations and only once in all his work: 
"Further it is useful to have a symbol expressing the absence of points. We choose for that sake 
the letter O; P ª O means that the set P does not contain any single point. So it is, strictly 
speaking, not existing as such." [Cantor, p. 146]  
 
And even Ernst Zermelo who made the "Axiom II. There is an (improper) set, the 'null-set' 0 
which does not contain any elements" [E. Zermelo: "Untersuchungen über die Grundlagen der 
Mengenlehre I", Mathematische Annalen 65 (1908) p. 263], this same author himself said in 
private correspondence: "It is not a genuine set and was introduced by me only for formal 
reasons." [E. Zermelo, letter to A. Fraenkel (1 Mar 1921)] "I increasingly doubt the justifiability 
of the 'null set'. Perhaps one can dispense with it by restricting the axiom of separation in a 
suitable way. Indeed, it serves only the purpose of formal simplification." [E. Zermelo, letter to 
A. Fraenkel (9 May 1921)]  
 So it is all the more courageous that Zermelo based his number system completely on the 
empty set: { } = 0, {{ }} = 1, {{{ }}} = 2, and so on. He knew that there is only one empty set. 
But many ways to create the empty set can be devised, like the empty set of numbers, the empty 
set of bananas, the uncountably many empty sets of all real singletons, and the empty set of all 
these empty sets. Is it the emptiest set? Anyhow, "zero things" means "no things". So we can 
safely say (pun intended): Nothing is named the empty set. 

https://ia600303.us.archive.org/26/items/wassindundwasso00dedegoog/wassindundwasso00dedegoog.pdf
https://ia600303.us.archive.org/26/items/wassindundwasso00dedegoog/wassindundwasso00dedegoog.pdf
https://books.google.de/books?id=H9-h4QQjmEgC&pg=PA195&lpg=PA195&dq=%22Wenn+wir+s%C3%A4mtliche+B%C3%A4ume+eines+Waldes+verbrennen%22&source=bl&ots=UYXErkVYkW&sig=MAW2GxadZcnE24gzYmnZtLV3Z_w&hl=de&sa=X&ved=2ahUKEwj0weyy9IXfAhVBU1AKHcClC6UQ6AEwCHoECAcQAQ#v=o
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 4.5 Gems from the surroundings of set theory 
 
 4.5.1 Proof of God 
 
A being exists which reconciles all positive properties in itself. That has been proven by the 
legendary logician Kurt Gödel by means of a complicated formula. Two scientists have 
scrutinized this proof of God – and have approved it. "The existence of God can in future be 
assumed to be a proven logical theorem." [T. Hürter: "Mathematiker bestätigen Gottesbeweis", 
SPIEGEL ONLINE, Wissenschaft (9 Sep 2013)] "Gödel's ontological proof has been analysed 
for the first-time with an unprecedented degree of detail and formality with the help of higher-
order theorem provers." [Christoph Benzmüller, Bruno Woltzenlogel Paleo: "Formalization, 
mechanization and automation of Gödel's proof of God's existence", arXiv (2013)] This is a very 
lucid example of the advantage of the technique of formalizing and the safety, reliability, 
dependability, and trustworthiness gained by checking theorems by automated theorem provers. 
 
In this context it may be of interest to note Cantor's answer to the question: "Couldn't God, after 
having produced an infinite set, e.g., of stones or angels, produce further angels? Of course He 
can do this, has to be answered here. If he {{Durandus de Sancto Porciano}} further derives from 
that: That means that the angels produced first have not been infinitely many, then this 
conclusion is utterly wrong because the supposed set of produced angels is a transfinitum capable 
of increase and decrease." [G. Cantor, letter to I. Jeiler (20 May 1888, Whitsun)] 
 
"These angels cannot influence our fate; nevertheless, the more often we ask for their help, the 
more lucky is our lot." [Franz Ludescher: "Engel" (Oct 2010)] "Great cardinal numbers can be 
helpful even there where they are not really used." [Ralf Schindler: "Sind große Kardinalzahlen 
entbehrlich?" (23 Apr 2010) p. 24] "we can never exclude that there are two contradictory 
statements both of which can be proved correctly. (We believe firmly and unshakeably that two 
such statements are not existing)." [Manfred Burghardt: "Notes of a lesson by Peter Koepke", 
Bonn (1996) p. 3] And this is the victory that has overcome the world: our faith. [Anonymous: 
"The holy bible", 1 John 5:4] 
 
 
 4.5.2 Definability and countability of real numbers 
 
A preprint by J.D. Hamkins et al. contains the following phrases, starting smugly: "One 
occasionally hears the argument – let us call it the math-tea argument, for perhaps it is heard at a 
good math tea – that there must be real numbers that we cannot describe or define, because there 
are only countably many definitions, but uncountably many reals. Does it withstand scrutiny? [...]  
 Question 1. Is it consistent with the axioms of set theory that every real is definable in the 
language of set theory without parameters? 
 The answer is Yes. Indeed, much more is true: if the ZFC axioms of set theory are 
consistent, then there are models of ZFC in which every object, including every real number, 
every function on the reals, every set of reals, every topological space, every ordinal and so on, is 
uniquely definable without parameters.1 Inside such a universe, the math-tea argument comes 
ultimately to a false conclusion. [...] 
                                                 
1 So, by contraposition we easily find that the ZFC axioms are inconsistent. 

http://www.spiegel.de/wissenschaft/mensch/formel-von-kurt-goedel-mathematiker-bestaetigen-gottesbeweis-a-920455.html
http://arxiv.org/abs/1308.4526
http://arxiv.org/abs/1308.4526
https://www.vigeno.de/franz-ludescher/engel-symbolik-der-engel-teil-1-stein-des-monats-oktober-2010-free
http://wwwmath.uni-muenster.de/u/rds/kolloquium_muenchen.pdf
http://wwwmath.uni-muenster.de/u/rds/kolloquium_muenchen.pdf
http://www.math.uni-bonn.de/people/logic/teaching/2002WS/skript_1.pdf
http://biblehub.com/1_john/5-4.htm
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 In a pointwise definable model, every object can be specified as the unique object with 
some first-order property. In such models, all objects are discernible;" [J.D. Hamkins et al.: 
"Pointwise definable models of set theory", arXiv (2012)] 
 
Usually it is claimed that every given real number can be distinguished in a finite process from 
every other given real number. That is true – but most real numbers cannot be given. 
Nevertheless forcing even proves that all sets, including —, can be made countable: "Namely, the 
method of forcing shows that every set that exists in any model of set theory can become 
countable in another larger model of set theory, the forcing extension obtained by collapsing the 
cardinality of that set to ω. Thus, the concept of countability loses its absolute meaning; whether 
a set is countable or not depends on the set theoretic background. So if X is any set, then in some 
forcing extension of the universe, the set X becomes countable." [J.D. Hamkins in "Is every 
model of ZF countable 'seen from the outside'?", MathOverflow (21 Jan 2010)] The first 
statement is certainly true since there is no model of set theory. The readers may make their own 
judgement about the scientific value of forcing. 
 
 
 4.5.3 Odd and even transfinite ordinals 
 
"Yes, the first infinite ordinal ω is even, but other infinite ordinals, such as ω + 1 or ωω + 5 are 
odd ordinals. The cardinality of the set of even natural numbers is ω which is even. In fact, under 
AC, all infinite cardinals are even." [J.D. Hamkins, MathOverflow, Q 21457 (15 Apr 2010)]1 
 
 
 4.5.4 Real damage 
 
"Wolfgang Mückenheim is probably one of the most dangerous cranks out there. He has a 
professorship at the University {{of Applied Sciences}} of Augsburg, Germany, where he is 
teaching physics and mathematics!! Currently {{having started in 2003}}, he is teaching a lecture 
called 'History of the Infinite'. This man does real damage." [Michael Greinecker in "Nominalist 
foundations of mathematics", tea.MathOverflow (1 May 2012)] 
 
A curse uttered by an anonymous matheologian culminated in the words: "No punishment, within 
legal boundaries {{death penalty, if in suitable states of the USA?}}, would be too severe for you 
for your wrongdoings. [...] Rest assured that my contact, the senior German civil servant who 
refused to believe this fiasco was going on, is being copied into these threads. I sincerely hope 
there are severe repercussions. Those exposed to this type of 'education', assuming they are, or 
their guardians if they are minors, have every right to seek legal remedies in the civil courts 
against the perpetrator(s)." [Port563 in "What is a real number", sci.math (9 May 2014)] 
 
"In your case, crank 'adjunct lecturer' Wolfgang Mueckenheim from Hochschule Augsburg, 
hatred is absolutely legitimate: what you do is deeply hateful and disgusting. You deserve far 
worse than what decent people tell you here. [Python in "Can the empty set be the limit of a 
sequence of non-empty sets?" sci.logic (12 Sep 2019)] 
 
                                                 
1 Unfortunately, meanwhile not even rudiments of this question are available any longer. 

http://arxiv.org/pdf/1105.4597v2.pdf
https://mathoverflow.net/questions/12566/is-every-model-of-zf-countable-seen-from-the-outside
https://mathoverflow.net/questions/12566/is-every-model-of-zf-countable-seen-from-the-outside
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Nominalist foundations.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Nominalist foundations.pdf
https://groups.google.com/forum/#!original/sci.math/-GSsWLUKmyo/sldkzJaw9ekJ
https://groups.google.com/forum/#!topic/sci.logic/tk5qzaUjODI%5B26-50%5D
https://groups.google.com/forum/#!topic/sci.logic/tk5qzaUjODI%5B26-50%5D
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 4.5.5 Questions hastily deleted in MathOverflow 
 
MathOverflow is "a forum to ask and answer research level mathematics questions". The 
overwhelming majority of users there are mainstream mathematicians, who anxiously suppress 
any heretic idea. The following questions have been deleted – most very soon – obviously 
because the participants are not able to answer them in a convincing or satisfying way. This is not 
a surprise because they deny that infinite sequences do never end; they are unable to understand 
the infinite but project their ideas about finite, exhaustible sets onto infinite sequences and sets. 
The reader may judge whether or not these questions have mathematical content. 
 
"Let (sn) be a sequence of sets sn = {n+1, n+2, ..., 2n} of natural numbers 1, 2, 3, ... . 
 There is a limit of the sequence of sets, namely the empty set { }, showing that no number 
n remains in the sequence. 
 There is a limit of the sequence of cardinal numbers, namely ¡0. What does this limit 
mean?" [Bacarra: "What is the meaning of the limit of a sequence of cardinal numbers?", 
MathOverflow (27 Jun 2014)] 
 
"Let (sn) be the sequence of sets sn = {n} of natural numbers 1, 2, 3, ... . Then the limit is the 
empty set { }. The sequences of sets tn = {n1} or un = {nn} or vn = {n/(n+1)} have also empty 
limit sets. This shows that no natural number will remain in all sets of the sequence. All natural 
numbers will be exhausted. 
 But this simple argument appears to fail in cases like wn = {1n} (where n is only an index) 
or xn = {n/n} or yn = {n0}? Of course all limits are {1}. But why don't the natural numbers get 
exhausted in these cases?" [Bacarra: "Why do the natural numbers get exhausted in some limits 
but not in all?", MathOverflow (27 Jun 2014)] 
 
A typical comment, characteristic of the research level of the research-level-researchers 
researching there: "I don't understand your question, but I'm pretty sure it's not about 
mathematical research, which is what the MO website is for." [Gerry Myerson, loc cit] 
 
"The limit of the sequence (sn) with sn = {n} is the empty set. This means, among others, that 
there is no natural number n œ Ù, that remains in all terms of the sequence. 
 The ordered character of the natural numbers allows us to understand this sequence as a 
supertask, transferring the complete set Ù from a reservoir A to a reservoir Z. Every single 
transfer of a natural number during the supertask can be represented by a term of the sequence 
and vice versa. 
 However, if we introduce an intermediate reservoir M and define that every transfer has to 
pass via M, and further, that a number n may leave M only after the number n+1 has been 
inserted into M, then we have the same limit, i.e., the whole set Ù will finally be in Z although 
this can be excluded by the definition of the supertask. How can this contradiction be solved?" 
[Illegal border: "Minimal super task", MathOverflow (10 Jul 2014)] 
 
"How can the difference between ordinal and cardinal exponentiation be expressed when only 
multiplication is allowed, if an = aÿaÿaÿ...ÿa?" [Charbotew: "How can the difference between 
ordinal and cardinal exponentiation be expressed when only multiplication is allowed?", 
MathOverflow (7 Oct 2018)] 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/140627.htm
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/140627a.htm
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/140627a.htm
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Minimal super task.pdf
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"The following three principles seem to be incompatible: 
 (1) Cantor's axiom: Every real number determines a point of the real line. 
 (2) The set of rational numbers is countable and therefore can be included in intervals of 
arbitrary small total measure. 
 (3) For every pair (x, y) of different irrational numbers x < y there is a rational number q 
with x < q < y. 
 To visualize the problem assume a covering of all rational numbers of the real axis by 
closed intervals with irrational endpoints like [qn-10-nÿ◊2, qn+10-nÿ◊2]. It has measure less than 1 
and could be made as small as desired. The remaining space does not contain rational numbers. 
As it is included into the irrational endpoints it cannot contain irrational numbers either. This 
result is required by (3) in case (1) and (2) hold, but it is obviously not true. 
 Therefore my question: How can these three principles be reconciled?" [Hans 
Hinterseher: "How can the following three principles be reconciled?", MathOverflow (29 Nov 
2018)] 
 
"Borel proved that a countable set of intervals of total length 1 removed from the real axis, leaves 
an uncountable number of separated points in the complement. The points must be separated 
because the set of intervals could contain all rational numbers, but irrational numbers cannot exist 
side by side. We can replace the set of intervals by their midpoints without reducing the 
complement or changing the structure of separation. And the example does not depend on the 
rational character of points, since we could translate the whole system by adding π. Then we get 
the theorem (where the lengthy expression 'interval or degenerate interval or point' has been 
abbreviated by 'atom'): 
 (1) Removing ¡0 atoms separates 2¡0 atoms in the complement. 
By symmetry however (removing what in (1) has remained) we get also: 
 (2) Removing 2¡0 atoms separates ¡0 atoms in the complement. 
But if we stop in (2) after having removed ¡0 atoms, we have, according to (1), separated more 
atoms in the complement, namely 2¡0, than after finishing (2). What is the correct answer to this 
apparent paradox?" [Ibrahim Abd el Faruk-Shaik: "Can symmetry considerations help in 
topology?" MathOverflow (5 Jan 2019)] 
 
"I am looking for a countable model of ZF reduced to only the axiom of infinity and the axiom of 
powerset. It is sufficient to find a subset of ω that is provably not in the model. 
 Clarification: I am not interested in any subset of ω that cannot be in a countable model. 
Such a subset does not exist. I am interested in a proposal of a countable model that does not 
contain at least one subset of ω." [Brahibam: "What subset of ω can be missing in a countable 
model?", MathOverflow (21 Jan 2019)] 
 
But an answer suggesting the existence of uncountable sets in reality [Kalabass in "On 
independence and large cardinal strength of physical statements", MathOverflow (30 Aug 2017)] 
received great support although it failed to answer the original question concerning large 
cardinals. It got 5 upvotes and over 300 views and remained open for more than two months – 
until Kalabass unveiled what every intelligent person should have got immediately, namely that 
the answer was complete nonsense. [Kalabass: "Checking the intelligence of MO-users", 
MathOverflow (5 Nov 2017)]. 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181203 MSE 3 principles.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190105 MO Symmetry.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190105 MO Symmetry.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190121''' MO countable model.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190121''' MO countable model.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Kalabass.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Kalabass.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/big picture - Checking the intelligence of MO-users - MathOverflow.html
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 4.5.6 Suppression of the distinction between infinities 
 
"But potential infinity is almost forgotten now. In the ZFC set theory mindset, people tend not to 
even remember that distinction. They just think infinity means actual infinity and that's all there 
is to it." [S. Simpson quoted in N. Wolchover: "Dispute over infinity divides mathematicians", 
Scientific American (3 Dec 2013)] 
 
As mentioned in chapter I already [P.L. Clark in "Physicists can be wrong", tea.MathOverflow (2 
Jul 2010)] terms like completed and potential infinity are not part of the modern vernacular. 
 
A typical opinion is this one: "The notion of actual vs. potential infinity is simply not required in 
modern mathematics." [D. Christensen in "How absurd will things get before things change", 
sci.math (2 Dec 2015)] 
 
In set theory however actual infinity is urgently needed, for instance in form of the complete digit 
sequence of Cantor's antidiagonal number that uniquely defines this real number. A potentially 
infinite sequence could never accomplish this because in every case only a finite number of digits 
is defined whereas always most, i.e., infinitely many, digits are undefined. In other instances only 
the potentially infinite sequence can be tolerated. In fact nothing more is given by the axiom of 
infinity. The only successful approach consists in forgetting about the difference. 
 
 
 4.5.7 On the continuum hypothesis 
 
Ë Cantor believed in the Continuum Hypothesis (CH). 
Ë Gödel proved: (ZFC is consistent) fl (ZFC + CH is consistent). 
Ë Cohen proved: (ZFC is consistent) fl (ZFC + ŸCH is consistent). 
 
Nevertheless both seem to distrust the axioms and pursue their own opinions: 
 
"Only someone who (like the intuitionist) denies that the concepts and axioms of classical set 
theory have any meaning (or any well-defined meaning) could be satisfied with such a solution, 
not someone who believes them to describe some well-determined reality. For in this reality 
Cantor's conjecture must be either true or false, and its undecidability from the axioms known 
today can only mean that these axioms do not contain a complete description of this reality; [...] 
not one plausible proposition is known which would imply the continuum hypothesis. Therefore 
one may on good reason suspect that the role of the continuum problem in set theory will be this, 
that it will finally lead to the discovery of new axioms which will make it possible to disprove 
Cantor's conjecture." [Kurt Gödel: "What is Cantor's continuum problem?", The American 
Mathematical Monthly 54,9 (1947) pp. 520 & 524] 
 
"A point of view which the author feels may eventually come to be accepted is that CH is 
obviously false. [...] Thus C is greater than ¡n, ¡ω, ¡a, where a = ¡ω, etc. This point of view 
regards C as an incredibly rich set given to us by one bold new axiom, which can never be 
approached by any piecemeal process of construction. Perhaps later generations will see the 
problem more clearly and express themselves more eloquently." [P. Cohen: "Set theory and the 
continuum hypothesis", Dover Publications (2008) p. 151] 

http://www.scientificamerican.com/article/infinity-logic-law/
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Physicists can be wrong.pdf
https://groups.google.com/forum/#!topic/sci.math/1eMr06qJa50%5B26-50%5D
https://books.google.de/books?id=lgDGTYNcOY4C&pg=PA181&lpg=PA181&dq=%22these+axioms+do+not+contain+a+complete+description+of+this+reality%22&source=bl&ots=SFdzQMF0O9&sig=ACfU3U3E0h9hGRmJ18oDmEEwKQkg6C3dyw&hl=de&sa=X&ved=2ahUKEwiU-uPkioLiAhXL8qQKHbDDCCEQ6AE
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 4.6 "Applications" of set theory 
 
In his paper on Grenzzahlen [E. Zermelo: "Über Grenzzahlen und Mengenbereiche", Fund. Math 
16 (1930) pp. 29-47] Zermelo railed against the "scientific reactionaries and antimathematicians", 
and he enlightened his contemporaries about the "enormous importance and the unlimited 
applicability of set theory". On the other hand in modern times doubts have been raised: With 
respect to pure and applied mathematics "it is clear that sooner or later there will be a question 
about why society should pay money to people who are engaged in things that do not have any 
practical applications". [Vladimir Voevodsky in "Интервью Владимира Воеводского" (1 Jul 
2012), translated by John Baez] Let us scrutinize then the unlimited applicability of set theory. 
 
 
 4.6.1 Test of set theory by its impact on sciences 
 
"I think that it is even possible that axioms could be tested by their impact on fields outside of 
mathematics like physics. It may sound like an outrageous speculation and admittedly we do not 
have any concrete example of such a possible impact, but in the next section we shall give an 
example {{cp. section 4.6.7 of the present chapter}}where the set theory we use may have some 
relevance to the mathematical environment in which a physical theory is embedded." [Menachem 
Magidor: "Some set theories are more equal", ResearchGate.net (2015)] 
 
 
 4.6.2 Transfinite conclusions in relativity and quantum theory 
 
"Have you realized what a richness of multitudes of transfinite conclusions and calculations of 
the most difficult and painstaking kind is immanent for instance in relativity theory and similarly 
in quantum theory. And nature acts precisely according to these results. The beam of the fixed 
star, the mercury {{perihelion rotation}} and the most entangled spectra here on earth and in the 
distance of 100000 light years? And all that should be pure chance?" [D. Hilbert, letter to O. 
Becker (autumn 1930?) published in Volker Peckhaus: "Becker und Zermelo"] 
 
 
 4.6.3 Dark energy density and fractal-Cantorian space-time 
 
From time to time there appear books or articles proposing the application of transfinite set 
theory to the scientific domain, preferably quantum theory and cosmology, on levels that escape 
every present experimental verification; see Mohamed S. El Naschie: "From highly structured E-
infinity rings and transfinite maximally symmetric manifolds to the dark energy density of the 
cosmos", Advances in Pure Mathematics 4 (Dec 2014) pp. 641-648 or Jerzy Król: "Model and 
set-theoretic aspects of exotic smoothness structures on R4", arXiv (2016). 
 
"M.S. El Naschie [...] began to work on his Cantorian version of fractal space-time. He showed 
that the n-dimensional triadic Cantor set has the same Hausdorff dimension as the dimension of a 
random inverse golden mean Sierpinski space to the power n-1. [...] The author is indebted to the 
many members of the fractal-Cantorian space-time community." [L. Marek-Crnjac: "A short 
history of fractal-Cantorian space-time", Chaos, Solitons and Fractals 41 (2009) pp. 2697-2705] 

http://web.archive.org/web/20170826035052/http:/baaltii1.livejournal.com/198675.html
https://golem.ph.utexas.edu/category/2017/10/vladimir_voevodsky_19662017.html
https://www.researchgate.net/publication/265480526_SOME_SET_THEORIES_ARE_MORE_EQUAL
https://kw.uni-paderborn.de/fileadmin/fakultaet/Institute/philosophie/Peckhaus/Schriften_zum_Download/becker_zermelo.pdf
http://www.scirp.org/Journal/PaperDownload.aspx?paperID=52405
http://www.scirp.org/Journal/PaperDownload.aspx?paperID=52405
http://www.scirp.org/Journal/PaperDownload.aspx?paperID=52405
http://de.arxiv.org/abs/1602.02667
http://de.arxiv.org/abs/1602.02667
http://de.arxiv.org/abs/1602.02667
https://de.scribd.com/document/123432405/space
https://de.scribd.com/document/123432405/space
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 4.6.4 String set theory 
 
"In the present paper I would like to develop a different point of views on the continuum. [...] As 
a background this point-set theoretic concept is influenced by individualism in modern 
civilization. 19th and 20th centuries are the centuries of individualism, and the individualism 
played an important role in the revelation of people and high advancement of science and 
technology. Historically individualism came from liberalism, which in turn came from Reform of 
Religion by earlier Protestants, and the fundamental roots can even go upstream to Apostle Paul. 
Anyway by historical reason Protestantism performed an important role to the development of 
civilization. It is marvellous, if it is taken into consideration that religion is conservative in 
nature, that Protestantism contributed the advancement of science that sometimes contradicts 
against Bible. (This is caused because Protestantism abandoned to be a religion.) [...] As a 
counterpart of point-set theory string-set theory is proposed. It is asserted that the string-set is the 
essence of continuum in one aspect [...] And importance of introducing string-set theoretical 
point of view not only to make mathematics useful but also correct crippled modern civilization." 
[Akihiko Takizawa: "String set theory" (2002)] 
 
 
 4.6.5 Holographic virtual universe? 
 
"An uncountable number of string-like vibrations creating subatomic and then atomic particles 
forming a nearly substance-less multiplex of universes! Particles of so little actual substance and 
with so much space between them that an electromagnetic field surrounds all objects and matter 
to keep everything from flowing through everything else. We never actually touch anything or 
anyone, only our fields rub against each other and all the things we come into contact with!" 
[T.D. Spoon: "String theory: The control mechanism of creation? Holographic virtual universe?", 
Alternative Reality News (2011)] 
 
 
 4.6.6 The Casimir effect 
 
A popular hobbyhorse of advocates of uncountability in physics is the Casimir effect. "The 
progress of the real photon is delayed as it travels through this quantum vacuum 'crystal', where it 
meets uncountable numbers of electrically charged virtual particles." [Tom Ostoma, Mike 
Trushyk: "The light velocity Casimir effect", arXiv (1999)] 
 
"Just to mention to which extent the point about 'counting' is subtle. If we trust the 'number of 
modes argument', on the one hand we have a slab of size L corresponding to an infinite but 
countable set of modes and on the other hand we have two semi-infinite spaces corresponding to 
an infinite and uncountable set of modes. The difference between the two should be infinite and 
that's about it end of the story ...." [gatsu in "Casimir effect as an entropic force" (1 Oct 2013)] 
 
"Alex Filippenko discusses the Casimer effect as an example of virtual particles which might also 
explain dark energy. He gives a hand waving argument which attempts to explain the effect as 
being caused by an uncountable number of virtual particle waves of arbitrary length outside the 
two parallel plates with a countable number of standing waves inside the plates." [Ricky Jimenez: 
"Cantor's uncountability theory explains Casimer effect?", sci.physics (6 Apr 2011)] 

https://arxiv.org/ftp/physics/papers/9911/9911062.pdf
https://physics.stackexchange.com/questions/79218/casimir-effect-as-an-entropic-force
https://groups.google.com/forum/#!topic/sci.physics/b0AGSejTIyY%5B1-25%5D
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 4.6.7 Entangled states in quantum mechanics: The EPR-paradox 
 
In 1935 Einstein, Podolsky, and Rosen (EPR) [1] proved by means of a Gedankenexperiment 
"that the description of reality as given by the wave function is not complete". Their approach has 
been transformed by D. Bohm [2] to the case of two entangled spin-1/2-particles in a common 
spin-0 state. Then J.S. Bell [3] has shown that the existence of "local hidden variables" would 
result in violating quantum mechanical results of correlated polarization measurements. He 
considers the product of measurement results performed in directions a and b. If the single result 
s depends on a "hidden variable" λ, then the product of the correlated results s1(a, λ) and s2(b, λ) 
yields an expectation value E(a, b). Corresponding expressions for a third direction c complete 
the famous Bell-inequality (with h/2π = 1 and |a| = |b| = |c| = 1): 
 
 |E(a, b) - E(a, c)| § E(b, c) + 1/4 . 
 
It is violated by the quantum theoretical expectation values ‚s1(a)ÿs2(b)Ú = -cos(a, b) for instance 
when b bisects the angle 2π/3 formed by a and c. 
 
After a lot of work done by many authors to establish an experimentally verifiable version of 
Bell's inequality the quantum mechanical predictions have been confirmed by several 
experiments (for a review see [4]). Since Bell's proof is based on a local theory, the experiments 
prove the existence of superluminal interactions (or of absolute determinism, i.e., the universe is 
operating like the frames of a movie). They are not in contradiction with relativity though, 
because the interaction cannot be used to transmit information with superluminal velocity. 
Nevertheless the existence of such spooky action at a distance is not very satisfactory physics. 
 
Therefore attempts have been made by I. Pitowsky [5], introducing non-measurable sets (where it 
may happen that almost all objects are red and almost all objects are small, but no object is small 
and red) and by myself [6], introducing negative probabilities, originally considered by Dirac, 
Bartlett, Wigner and others [7], to circumvent Bell's result which is based on a measurable and 
positive semidefinite probability distribution of the local hidden variables like the direction of a 
total spin vector S with |S| = ◊3/2 (where h/2π = 1). When integrating the probability functions 
w+(a, S) = 1/2 + aÿS for "spin up" and w-(a, S) = 1/2 - aÿS for "spin down" over the whole sphere 
the quantum theoretical expectation values are precisely reproduced. Further the functions satisfy 
w+ (a, S) + w-(a, S) = 1. But ranging from (1 - ◊3)/2 to (1 + ◊3)/2 they assume negative values. 
 
[1] A. Einstein, B. Podolsky, N. Rosen: "Can quantum-mechanical description of physical reality 
be considered complete?", Phys. Rev. 47 (1035) pp. 777-780. 
[2] D. Bohm: "Quantum theory", Dover, New York (1951) p. 614. 
[3] J.S. Bell: "On the Einstein-Podolsky-Rosen paradox", Physics 1,3 (1964) pp. 195-200. 
[4] W. Mückenheim: "Das EPR-Paradoxon und die Unbestimmtheit der Realität", Physikalische 
Blätter 39 (1983) pp. 331-336. 
[5] I. Pitowsky: "Resolution of the EPR and Bell paradoxes", Phys. Rev. Lett. 48 (1982) pp. 
1299-1302 & "Deterministic model of spin and statistics", Phys. Rev. D 27, pp. 2316-2326. 
[6] W. Mückenheim: "A resolution of the Einstein-Podolsky-Rosen paradox", Lett. Nuovo Cim. 
35 (1982) 300-304. 
[7] W. Mückenheim et al.: "A review of extended probabilities", Phys. Rep. 133 (1986) pp. 337-
401. 
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"When a physical theory is stated in terms of mathematical concepts like real numbers, Hilbert 
spaces, manifolds etc. it implicitly adapts all the mathematical facts which are accepted by the 
Mathematicians to be valid for these concepts. If the mathematical 'truths' may depend of the 
foundation of Set Theory then it is possible, at least in principle, that whether a given physical 
theory implies a particular physically meaningful statement may depend on the foundational 
framework in which the implicitly assumed Mathematics is embedded. 
 This may seem far fetched and it is very likely that physically consequences of a physical 
theory will never depend on the set theoretical foundation of the mathematical reasoning that 
accompanied the theory but the point of this paper is that this is still a definite possibility. [...] 
 I. Pitowsky used Continuum Hypothesis to construct hidden variable models for spin-1/2 
and spin-1 particles in quantum mechanics. His functions are not measurable and are therefore 
not directly subject to Bell-type no-go theorems [...] Also, under the same assumption Pitowsky 
constructed a function that almost violates the no-go theorem of Kochen and Specker [...] such 
that for every vector x œ S2 there are at most countably many exceptions [...]. We prove that no 
such function exists in some model of the Zermelo-Fraenkel set theory with the Axiom of 
Choice, ZFC, confirming a conjecture of Pitowsky. While this independence result probably does 
not have physical interpretation, it gives some weight to the conjecture that one could decide 
between different set theories on the basis of their scientific consequences. [...]  
 We prove [...] that if there exists a σ-additive extension of the Lebesgue measure to the 
power-set of the reals then Pitowsky models do not exist." [Ilijas Farah, Menachem Magidor: 
"Independence of the existence of Pitowsky spin models", arXiv (2012) p. 1f] 
 
"In an attempt to demonstrate that local hidden variables are mathematically possible, Pitowsky 
constructed 'spin-1/2 functions' [...] {{This}} construction uses the Continuum Hypothesis. Farah 
and Magidor took this as an indication that at some stage physics might give arguments for or 
against adopting specific new axioms of set theory. We would rather argue that it supports the 
opposing view, i.e., the widespread intuition 'if you need a non-measurable function, it is 
physically irrelevant'. [...] 
 Pitowsky used the Continuum Hypothesis to construct a spin-1/2 function model. 
Pitowsky suggested that the existence of such a function might not follow from the usual axioms 
of set theory alone, which has recently been confirmed by Farah and Magidor (2012). In the same 
paper, as well as in (Magidor, 2012), it has been argued that the spin-1/2 model is an indication 
that physical considerations might provide input on which new axioms should be adopted for set 
theory. 
 We do not share this opinion: [...] Pitowsky uses the Axiom of Choice for this model, but 
we think even that is unnecessary [...] 
 But in the end, Pitowsky probability turns out to be just a variant of super-determinism. 
Accordingly, the models are obviously consistent, but physically not relevant. (And doubly so: 
super-determinism is physically unfeasible, and hidden variables are pointless within super-
determinism.) 
 So we come to quite the opposite conclusion as Farah and Magidor: Instead of indicating 
connections between physics and set theory, Pitowsky's attempts of hidden variables rather seem 
to reaffirm the old intuition: 'if nontrivial set theory, non-constructive mathematics or a non-
measurable set is used in an essential way, it cannot be physically relevant'." [Jakob Kellner: 
"Pitowsky's Kolmogorovian models and super-determinism", arXiv (2016)] 

https://arxiv.org/abs/1212.0110
https://arxiv.org/abs/1606.06849
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 4.6.8 Could any physical mathematics be independent of ZFC? 
 
"One remark that Penelope Maddy makes several times in Naturalism in Mathematics, is that if 
the indispensability argument was really important in justifying mathematics, then set theorists 
should be looking to debates over quantum gravity to settle questions of new axioms. Since this 
doesn't seem to be happening, she infers that the indispensability argument can't play the role 
Quine and Putnam (and perhaps her earlier book?) argued that it does. [...] I don't know much 
about the details, but from what I understand, physicists have conjectured some deep and 
interesting connections between seemingly disparate areas of mathematics, in order to explain (or 
predict?) particular physical phenomena. These connections have rarely been rigorously proved, 
but they have stimulated mathematical research both in pursuing the analogies and attempting to 
prove them. Although the mathematicians often find the physicists' work frustratingly imprecise 
and non-rigorous, once the analogies and connections have been suggested by physicists, 
mathematicians get very interested as well.  
 If hypothetically, one of these connections was to turn out to be independent of ZFC, I 
could imagine that there would at least be a certain camp among mathematicians that would take 
this as evidence for whatever large cardinal (or other) principle was needed to prove the 
connection. Set theorists themselves haven't paid too much attention to these issues, because the 
interesting connections are in mathematical areas traditionally considered quite distant from set 
theory. Instead, they have traditionally looked at intra-set-theoretic considerations to justify large 
cardinals. But if it became plausible that some of these other debates would turn out to be 
connected, I'm sure they would start paying attention to the physics research, contrary to what 
Maddy suggests." [Kenny Easwaran: "Set theory and string theory", Antimeta, wordpress.com 
(29 Oct 2006)] 
 And a Greg answered: "This strikes me as a Very Good Point. I guess the next relevant 
question to ask is: is it at all reasonable (or even conceivable) that any mathematical claim that 
these physicists are making could end up being independent of ZFC?" [loc cit (30 Oct 2006)] 
 
Of course. Every physical result is independent of ZFC. 
 
 
 4.6.9 Fine structure of the Saturn rings 
 
"One of the remarkable observations made by the Voyager 2 probe was of the extremely fine 
structure of the Saturn ring system. [...] The Voyager 1 and 2 provided startling images that the 
rings themselves are composed of thousands of thinner ringlets each of which has a clear 
boundary separating it from its neighbours.  
 This structure of rings built of finer rings has some of the properties of a Cantor set. The 
classical Cantor set is constructed by taking a line one unit long, and erasing its central third. This 
process is repeated on the remaining line segments, until only a banded line of points remains." 
[H. Takayasu: "Fractals in the physical sciences", Manchester University Press (1990) p. 36] 
 
"Mandelbrot conjectures that radial cross-sections of Saturn's rings are fat Cantor sets." [NN: 
"Fractal folds", users.math.yale.edu] 
 
Are the rings made of anticountable super matter? The idea is not new however: 

http://antimeta.wordpress.com/2006/10/29/set-theory-and-string-theory/
http://users.math.yale.edu/public_html/People/frame/Fractals/Labs/PaperFoldingLab/FatCantorSet.html
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 4.6.10 A map of England 
 
"A map of England, contained within England, is to represent, down to the minutest detail, every 
contour and marking, natural or artificial, that occurs upon the surface of England. [...] For the 
map, in order to be complete, according to the rule given, will have to contain, as a part of itself, 
a representation of its own contour and contents. In order that this representation should be 
constructed, the representation itself will have to contain once more, as a part of itself, a 
representation of its own contour and contents; and this representation, in order to be exact, will 
have once more to contain an image of itself; and so on without limit. We should now, indeed, 
have to suppose the space occupied by our perfect map to be infinitely divisible, even if not a 
continuum. [...] That such an endless variety of maps within maps could not physically be 
constructed by men, and that ideally such a map, if viewed as a finished construction, would 
involve us in all the problems about the infinite divisibility of matter and of space, I freely 
recognize." [Josiah Royce: "The world and the individual", MacMillan, London (1901) p. 504f] 
 
 
 4.6.11 Fuzzy and rough set theory 
 
"Fuzzy Set Research in Production Management  

1. Job Shop Scheduling  
2. Quality Management  
3. Project Scheduling  
4. Facility Location and Layout  
5. Aggregate Planning  
6. Production and Inventory Planning  
7. Forecasting"  

[A.L. Guiffrida, R. Nagi: "Fuzzy set theory applications in production management research"] 
 
"Rough set theory has an overlap with many other theories dealing with imperfect knowledge, 
e.g., evidence theory, fuzzy sets, Bayesian inference and others. [...] Let us start our 
considerations from a very simple tutorial example concerning churn modeling in 
telecommunications [...]. In the table condition attributes describing client profile are: In – 
incoming calls, Out – outgoing calls within the same operator, Change – outgoing calls to other 
mobile operator, the decision attribute describing the consequence is Churn and N is the number 
of similar cases." [Zdzisław Pawlak: "Rough set theory and its applications", Journal of 
Telecommunications and Information Technology (3/2002) pp. 7-10] 
 
Unfortunately the Fuzzy- and Rough Set Theories are lacking any transfinitude. So they are off 
topic here. Further practical applications of set theory are unknown to the author. 
 
 
 4.6.12 The uses of set theory in mathematics 
 
 "1. The ideal of compact operators  
The purely analytic question 'Is the ideal of compact operators on Hilbert space the sum of two 
properly smaller ideals?' is equivalent to purely set-theoretic combinatorics.  
 2. A characterization of free groups  

https://archive.org/details/worldindividualg01roycuoft/page/504
http://neuro.bstu.by/ai/To-dom/My_research/failed 1 subitem/For-courses/Job-SSP/Fuzzy/Garbage.tmp/fuzzy-set-theory-applications.pdf
http://dlibra.itl.waw.pl/dlibra-webapp/Content/663/JTIT-2002_3_7.pdf
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The proof that 'an Abelian group is free if and only if it has a discrete norm' exploits the use of 
model theory within set theory.  
 3. The fundamental group  
The proof that 'the fundamental group of a nice space is either finitely generated or has 
cardinality of the first uncountable cardinal' uses methods related to consistency results.  
 4. The Hawaiian Earring  
Questions in strong homology theory are related to consistency results and the continuum 
hypothesis.  
 5. A Banach space with few operators  
An example of a nonseparable Banach space where every linear operator is a scalar 
multiplication plus an operator with separable range is connected to set theory through infinite 
combinatorics on the first uncountable ordinal.  
 6. The free left-distributive algebra on one generator  
Questions on free left-distributive algebras on one generator are connected to large cardinal 
theory.  
 I have presented a few theorems of mainstream mathematics that have been proved by set-
theoretic techniques." [Judith Roitman: "The uses of set theory", The Mathematical Intelligencer 
14,1 (1992) pp. 63-69] 
 
So we can be sure that all these theorems are uncertain. 
 
 
 4.6.13 Wiles' original proof of FLT 
 
"Even if a particular problem can be solved in principle in a weaker system, it is many times the 
case that the first time the proof is discovered or the more natural and simpler proof is discovered 
in a stronger system. An illustrative case is the story of Wiles' proof of Fermat last theorem. The 
original proof used Grothendieck's universes, hence formally it assumed the existence of 
inaccessible cardinals. As everybody expected they can be eliminated but the point is that 
{{when}} Wiles constructed his proof it came naturally for him to make the assumption that 
formally moved him away from ZFC. The interesting twist is that when I talked to several 
number theorists about the project of getting the proof in a weaker system like ZFC or PA they 
were not interested! The assumption of the existence of Grothendieck's universes (hence the 
assumption of the existence of unboundedly many inaccessible cardinals) seems to them such a 
natural extension of ZFC that having a proof of this Π1

0 statement in this theory looks like good 
enough ground for believing the truth of the theorem and an attempt to eliminate the use of the 
stronger axioms looks to them like an unnecessary logicians' finicking." [Menachem Magidor: 
"Some set theories are more equal", ResearchGate (2015) p. 6f] 
 
"In the case of Wiles, the structures involved are all finite. With some stretching of interpretation, 
maybe something is countably infinite." [Harvey Friedman: "Report from expert", FOM (6 Apr 
1999)] 
 
"Wiles' article 'Modular elliptic curves and Fermat's last theorem' uses Grothendieck duality over 
fields," [Colin McLarty: "Expert error", FOM (7 Apr 1999)] 
 
 

https://www.agnesscott.edu/lriddle/women/abstracts/roitman_abstract3.htm
https://www.researchgate.net/publication/265480526_SOME_SET_THEORIES_ARE_MORE_EQUAL
https://cs.nyu.edu/pipermail/fom/1999-April/002974.html
https://cs.nyu.edu/pipermail/fom/1999-April/002982.html
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 4.6.14 A list of "practical applications" of set theory 
 
"I'm asking about the practicality of the knowledge of the properties of infinite sets, and their 
cardinality. [...] Seeing as how there was so much resistance to infinite sets at the beginning, even 
among mathematicians, I wonder has the math of infinite sets be 'proven worthwhile' by having a 
practical application outside of mathematics, so that no one can say it's just some imaginative 
games?" [user2020: "What practical applications does set theory have?", MathOverflow (2010)] 
 
The answers are sobering. For example set theory is needed for topology, topology is needed for 
differential geometry, differential geometry is needed for general relativity. 
 
"Topology changes infinite sums from nonsense into legitimate mathematical objects because it 
allows us to talk about convergence." [Harry Gindi, loc cit] Limits of series have been 
meaningful before set theory – and will be after. (Unfortunately actual or completed infinity of 
set theory supports the wrong impression that limits of series are "infinite sums".) 
 
"There are many uses of infinite sets and their properties. [...] Transfinite induction covers all 
possible ways in which one could show that a program terminates, while the ordinal numbers are 
used to express how complex the proof of termination is (the bigger the number, the more 
complicated it is to see that the program will actually terminate)." [Andrej Bauer, loc cit] I'd like 
to see a programmer who checks his program by transfinite induction! 
 
The other answers are revolving around the useful symbolics (which is a virtue of finite set 
theory), grouping objects with a common property, measure theory, and transcendental numbers. 
 
"You need set theory to have measure theory and you need measure theory to have the analysis 
required to support, for example, Fourier series. Really, most of what is going on in real analysis 
(and hence in calculus) depends on having a predictable understanding of how infinite sums, 
sequences, and sets behave. So, elementary set theory and the ideas about infinite sets in 
particular are crucial for all kinds of 'practical' math." [S. Donovan, loc cit] Since the days of 
A.A. Fraenkel the assertion has been maintained that transfinite set theory is useful and 
indispensable as the basis of mathematics. With the same justification the sale of alcohol at 
gasoline stations could be claimed to be the basis of social harmony. 
 
The reader will search in vain any application of set theory in practical life. This is in accordance 
with Hilbert's statement: "The infinite is nowhere realized; it is neither present in nature nor 
admissible as the foundation of our rational thinking." [D. Hilbert: "Über das Unendliche", Math. 
Annalen 95 (1925) p. 190] 
 
But a set theorist will always find a way to defend his preconceived dogma: "I think that any 
language and framework which helps promote clear thinking and reasoning in mathematics is 
practical and pragmatic – just not in the limited way that people might be interpreting those 
words." [Todd Trimble, deleted at loc cit] 
 
Or is there, after all, a practical application yet – even in everyday language? "The major division 
of English nouns is into 'countable' and 'uncountable'." [EnglishClub: "Countable nouns"] 
 

http://mathoverflow.net/questions/10334/what-practical-applications-does-set-theory-have
https://www.englishclub.com/grammar/nouns-countable.htm
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V   Scepticism about transfinite set theory 
 
The present chapter is not destined to show or discuss arguments against transfinite set theory. 
This would go beyond its scope; plenty of arguments, including many mentioned by authors cited 
here, will be presented in chapter VI. Chapter V is destined merely to show that not all 
mathematicians, philosophers, and scientists agree with the necessity or even the existence of 
actual infinity, with infinite decimal sequences having a definite meaning, with transfinite set 
theory and its current interpretations. We see that a considerable minority is challenging these 
properties of transfinite set theory, and further, that even its strongest advocates now and then 
have uttered doubts. Not necessary to mention that all quoted clerics agree to the actual infinity of 
God. The quotes have been ordered alphabetically by the names of their authors with no regard to 
their mathematical status, because the comprehension of Cantor's ideas does not require advanced 
mathematical skills as Cantor himself repeatedly emphasized, cp. section 4.3. 
 
Abdelmalek Abdesselam   [...] no mathematical physics should use the metaphysics of the AC, 
[A. Abdesselam in "Does the axiom of choice appear to be 'true' in the context of physics?", 
Physics.StackExchange (5 Aug 2015) headline changed] 
 
Wilhelm F. Ackermann   The reviewer however cannot follow the author when he speaks of the 
possibility of a more than countable set of primitive symbols since such a system of names 
cannot exist after all. [W. Ackermann: "Review of Leon Henkin: 'The completeness of the first-
order functional calculus'", J. Symbolic Logic 15,1 (1950) p. 68] 
 
Pietro Dell'Acqua   We reconsider Cantor's diagonal argument for the existence of uncountable 
sets from a different point of view. After reformulating well-known theoretical results in new 
terms, we show that, contrary to what stated by Cantor, they do not imply uncountability. [P. 
Dell'Acqua: "A note on Cantor's diagonal argument", ResearchGate (Jan 2016)] 
 
James Ada   Cantor stated that we can have infinite possibilities within the finite. What he really 
was studying was the infinite possibilities within the only number. However my argument is we 
can only have infinite outside of finite. [J. Ada: "Georg Cantor was wrong about infinity", TED 
Conversations Archives (2012)] 
 
Mark Adkins   Cantor's diagonal proof of the existence of hierarchies of infinities is a flawed 
argument based upon a simple logical error. [M. Adkins: "Cantor's perpetual fallacy", sci.math 
(23 Nov 1999)] 
 
Jean-Baptiste le Rond d'Alembert   When understood well once, the supposition that one has 
made of infinitely small quantities will be felt to be only for abridging and simplifying reasoning. 
[...] It is not a matter, as we say ordinarily, of infinitely small quantities in the differential 
calculus, but, uniquely, a matter of the limits of finite quantities. And so the metaphysics of 
infinity and infinitely small quantities each larger or smaller, is totally useless to the differential 
calculus. The term infinitely small only makes us ready to abbreviate its expression. [J.-B. le 
Rond d'Alembert: "Differential calculus", Encyclopédie Vol. 4 (1754) p. 985ff] 
 
[...] on ne peut pas supposer la matiere actuellement divisée à l'infini, [J.-B. le Rond d'Alembert: 
"Percussion", Encyclopédie Vol. 12 (1765) p. 330ff] 

https://physics.stackexchange.com/questions/43853/does-the-axiom-of-choice-appear-to-be-true-in-the-context-of-physics
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/leon-henkin-the-completeness-of-the-firstorder-functional-calculus-the-journal-of-symbolic-logic-bd-14-1949-159166/5F4F4E31B4B95E92714175D6CB1FC28B
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/leon-henkin-the-completeness-of-the-firstorder-functional-calculus-the-journal-of-symbolic-logic-bd-14-1949-159166/5F4F4E31B4B95E92714175D6CB1FC28B
https://www.researchgate.net/publication/323152599_A_note_on_Cantor's_diagonal_argument
https://www.ted.com/conversations/13367/georg_cantor_was_wrong_about_i.html
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$27s$20perpetual$20fallacy%22/sci.math/mUZcQzGrtZs/Fcv4yjNTI2wJ
http://quod.lib.umich.edu/d/did/did2222.0001.091/--differential-calculus?rgn=main;view=fulltext
https://fr.wikipedia.org/w/index.php?title=Fichier:Diderot_-_Encyclopedie_1ere_edition_tome_12.djvu&page=330
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Al-Ghazali   offers an impressive argument which, starting from the impossibility of the 
existence of a simultaneously existing infinite set (presupposed as an axiom), derives the 
impossibility of a time without beginning. [Ludwig Neidhart: "Unendlichkeit im Schnittpunkt 
von Mathematik und Theologie", Dissertation, Augsburg (2005) p. 548] 
 
Al-Kindi   It is impossible for a body to have infinity, and in this manner it has been explained 
that any qualitative thing cannot have infinity in actuality. This orthodox Aristotelian claim is 
quickly followed by a very unorthodox one: Now time is quantitative, and it is impossible that 
time have infinity in actuality, time having a finite beginning. [Biagio G. Tassone: "Medieval 
thought and infinity" (2017)] 
 
Richard Alsenz   Infinite is a process which never ends. [...] Therefore, referring to a number as 
infinite is logically inconsistent. [R. Alsenz in "If infinity means not having an end, then how can 
some infinities be larger than other infinities?", Quora (2 May 2015)] 
 
Bhupinder Singh Anand   We can neither conclude that Cantor's diagonal argument determines 
an uncountable Dedekind real number, nor conclude from it that the cardinality of the Dedekind 
real numbers necessarily differs from that of the Dedekind (Peano) natural numbers. [B.S. 
Anand: "Three beliefs that lend illusory legitimacy to Cantor's diagonal argument", arXiv (2003)] 
 
Georg Anatoly   We all agree 0.333… = 1/3. But this is incorrect, they are different 
mathematical objects. One is an endless string of point threes, an infinity, a type that is 
incompatible with a finite 1/3. To say they are equal is to at some arbitrary point 'stop' the infinity 
and implicitly add an infinitesimal to 0.333… making it equal to 1/3. [Georg Anatoly in "I think 
mathematicians have got it wrong with infinity. Infinity is infinity. One infinity cannot be larger 
than another infinity. What do you think?", Quora (30 Aug 2018)] 
 
Anonymous   Like phrenology and astrology, Cantor's mathematics will eventually be 
recognized for what it really is – utter nonsense. Every field has its charlatans, and mathematics 
is no exception. [NN: "Nonsense, nonsense, nonsense!", Wikipedia, Talk: Cantor's diagonal 
argument / Archive 1] 
 
Thomas Aquinas   In the Summa Theologiae, then, the actually infinite turns out to be the kind 
of thing that by definition cannot exist, for anything which can exist can be surpassed, either in 
magnitude or in number. [Joseph William Yarbrough, III: "Philip the chancellor, Bonaventure of 
Bagnoregio, and Thomas Aquinas on the eternity of the world", Dissertation, Cornell University 
(May 2011) p. 141] 
 
Aristotle   What is continuous is divided ad infinitum, but there is no infinite in the direction of 
increase. [...] Our account does not rob the mathematicians of their science, by disproving the 
actual existence of the infinite in the direction of increase, in the sense of the untraversable. In 
point of fact they do not need the infinite and do not use it. They postulate only that the finite 
straight line may be produced as far as they wish. It is possible to have divided in the same ratio 
as the largest quantity another magnitude of any size you like. Hence, for the purposes of proof, it 
will make no difference to them to have such an infinite instead, while its existence will be in the 
sphere of real magnitudes. [...] It remains to dispose of the arguments which are supposed to 
support the view that the infinite exists not only potentially but as a separate thing. [Aristotle: 
"Physics, Book III", Part 7-8 (350 BC)] 

https://www.philso.uni-augsburg.de/institute/philosophie/Personen/Lehrbeauftragte/neidhart/Downloads/UnendlichkeitTeil2.pdf
https://www.philso.uni-augsburg.de/institute/philosophie/Personen/Lehrbeauftragte/neidhart/Downloads/UnendlichkeitTeil2.pdf
https://infinityonline.valzorex.com/medieval1.html
https://infinityonline.valzorex.com/medieval1.html
https://www.quora.com/If-infinity-means-not-having-an-end-then-how-can-some-infinities-be-larger-than-other-infinities
https://www.quora.com/If-infinity-means-not-having-an-end-then-how-can-some-infinities-be-larger-than-other-infinities
http://arxiv.org/abs/math.GM/0304310
https://www.quora.com/I-think-mathematicians-have-got-it-wrong-with-infinity-Infinity-is-infinity-One-infinity-cannot-be-larger-than-another-infinity-What-do-you-think
https://www.quora.com/I-think-mathematicians-have-got-it-wrong-with-infinity-Infinity-is-infinity-One-infinity-cannot-be-larger-than-another-infinity-What-do-you-think
https://www.quora.com/I-think-mathematicians-have-got-it-wrong-with-infinity-Infinity-is-infinity-One-infinity-cannot-be-larger-than-another-infinity-What-do-you-think
https://en.wikipedia.org/wiki/Talk:Cantor%27s_diagonal_argument/Archive_1
https://ecommons.cornell.edu/bitstream/handle/1813/33555/jwy7.pdf?sequence=1&isAllowed=y
https://ecommons.cornell.edu/bitstream/handle/1813/33555/jwy7.pdf?sequence=1&isAllowed=y
http://classics.mit.edu/Aristotle/physics.3.iii.html
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Vladimir I. Arnold   Mathematics is a part of physics. Physics is an experimental science, a part 
of natural science. Mathematics is the part of physics where experiments are cheap. [V.I. Arnold: 
"On teaching mathematics" (1997)] 
 
Richard Arthur   In any case where there is a requirement of a recursive connection between 
any pair of the things numbered, the Cantorian conception of the infinite will not be valid. This is 
because the set Ù of natural numbers ordered by the relation > (is 'greater than') is recursively 
connected if and only if every number is finite. If limit ordinals (Cantor's ω, ω2 etc.) are included, 
recursive connectedness fails. [R. Arthur: "Leibniz and Cantor on the actual infinite" (2001) p. 4] 
 
Petrus Aureoli   explained that the infinite as such always has successive character, never being 
permanent. The notion of actual infinity embraces a contradiction. [Anneliese Maier: "Die 
Vorläufer Galileis im 14. Jahrhundert", Edizioni di Storia e Letteratura, Roma (1949) p. 202] 
 
Averroes   Every actual number is something actually numbered and that which is actually 
numbered must be either even or odd, and that which is even or odd must necessarily be finite. 
[H.A. Wolfson: "Crescas' critique of Aristotle", Harvard Univ. Press, Cambridge (1929) p. 223] 
 
Arnon Avron   answers these questions: Do you agree that the continuum hypothesis is a 
meaningful statement that has a definite truth value, even if we do not know what it is? "No." Do 
you agree that the axiom which states the existence of an inaccessible cardinal is a meaningful 
statement that has a definite truth value, even if we do not know what it is? "No." [A. Avron in 
"Ten questions about intuitionism", intuitionism.org (2005)] 
 
John Baez   Mathematicians crave consensus. If any sort of argument is of the sort that it only 
convinces 50% of mathematicians, we'll either say it's "not mathematics", or discuss, polish 
and/or demolish the argument until it convinces either 99% of mathematicians or just 1%. 
(Example: Cantor's proofs.) If someone doesn't play the game according to the usual rules, we'll 
make up a new game and say they're playing that game instead, thus eliminating potential 
controversy. (Example: intuitionistic mathematics.) Finally, we reward people who quickly admit 
their errors, instead of fighting on endlessly. We say they're smart, not wimps. (Example: Edward 
Nelson.) People who fight on endlessly are labelled crackpots and excluded from the community. 
(Examples: too numerous to list here.) [J. Baez in "The (in)consistency of PA and consensus in 
mathematics", M-Phi (7 Oct 2011)] 
 
René Louis Baire   As you know, I share Borel's opinion {{about Zermelo's note}} in general, 
and if I depart from it, it is to go further than he does {{see Émile Borel in this chapter}}. [...] In 
particular, when a set is given (we agree to say, for example, that we are given the set of 
sequences of positive integers), I consider it false to regard the subsets of this set as given. I 
refuse, a fortiori, to attach any meaning to the act of supposing that a choice has been made in 
every subset of a set. [...] In order to say, then, that one has established that every set can be put 
in the form of a well-ordered set, the meaning of these words must be extended in an 
extraordinary way and, I would add, a fallacious one. [...] For me, progress in this matter would 
consist in delimiting the domain of the definable. And, despite appearances, in the last analysis 
everything must be reduced to the finite. [R.L. Baire, letter to J. Hadamard (1905)] 
 

http://pauli.uni-muenster.de/~munsteg/arnold.html
http://www.humanities.mcmaster.ca/~rarthur/papers/LeibCant.pdf
https://books.google.de/books?id=TGbOIleQJQgC&pg=PA202&lpg=PA202&dq=Maier+%22Vorl%C3%A4ufer+Galileis%22+Petrus+Aureoli&source=bl&ots=teN82Ywnum&sig=ACfU3U2IvxRlUcSZ1xm9QfVVqNmUGfx3lg&hl=de&sa=X&ved=2ahUKEwj2nr24l5DnAhUS_aQKHbkUAQIQ6AEwAXoECAgQAQ#v=onepage&
https://books.google.de/books?id=TGbOIleQJQgC&pg=PA202&lpg=PA202&dq=Maier+%22Vorl%C3%A4ufer+Galileis%22+Petrus+Aureoli&source=bl&ots=teN82Ywnum&sig=ACfU3U2IvxRlUcSZ1xm9QfVVqNmUGfx3lg&hl=de&sa=X&ved=2ahUKEwj2nr24l5DnAhUS_aQKHbkUAQIQ6AEwAXoECAgQAQ#v=onepage&
http://www.intuitionism.org/people/arnavr.html
http://m-phi.blogspot.de/2011/10/inconsistency-of-pa-and-consensus-in.html
http://m-phi.blogspot.de/2011/10/inconsistency-of-pa-and-consensus-in.html
http://math.i-learn.unito.it/pluginfile.php/72426/mod_resource/content/0/Cinq_Lettres_trad_inglese.pdf
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Ajaib Singh Banyal   [...] infinity means beyond our reach hypothetically, which could be 
attempted to reach, without success and definitely it is an endless process. [A.S. Banyal in "Does 
actual infinity exist?", ResearchGate (8 Aug 2012)] 
 
Dick Batchelor   Thus, all we can conclude from the diagonalization argument is that there is no 
maximal set of real numbers; this does not necessarily require that the set of real numbers has 
more members than a countable set. [D. Batchelor in "More Cantor", sci.math (28 Jul 1999)] 
 
Alastair Bateman   It seems to me that the proof given that 1 = 0.999... is flawed and cannot 
therefore, as I see it, be used by anyone to draw deep philosophical deductions about number 
groups that rely on it. [A. Bateman in "False proofs" (2006)] 
 
Andrej Bauer   The success of set theory has lead many to believe that it provides an 
unshakeable foundation for mathematics. It does not [...] Always remember that practically all 
classical mathematics was invented before modern logic and set theory. [A. Bauer in "Set theory 
and model theory", MathOverflow (30 Apr 2010)] 
 
Roger Bear   When a unary (i, ii, iii, ...) system is used to count the elements of an arbitrary 
(infinite) set, there are no diagonals, which immediately proves Cantor's 2nd diagonal argument 
wrong as math is always free in choosing whatever number (representation) system. [R. Bear: 
"Cantor's 2nd diagonal argument proven wrong", sci.math (13 Nov 2010)] 
 
Edouard Belaga   Ultimately, all modern transfinite set theory represents only a well designed 
fantasy founded on Zermelo's axiomatic, the fantasy which pushes to their limits the rich 
constructionist faculties of this system. All adaptations of these fantasies to even very modest 
aspects of the Continuum realities remain absolutely unsatisfactory. [...] the Continuum is not a 
set, a "bag of points", [...] the points on it appear as the consequence of our activities. [E. Belaga: 
"From traditional set theory – that of Cantor, Hilbert, Goedel, Cohen – to its necessary quantum 
extension", IHES/M/11/18 (2011) p. 24] 
 
Jean Paul van Bendegem   The third point is that under these conditions it is straightforward to 
show that the procedure "Give me any numeral n you can imagine, I will give you the next one" 
has to break down at a certain point. [...] What is being asked is to imagine a numeral so huge 
that it cannot be imagined. [J.P. van Bendegem: "Why the largest number imaginable is still a 
finite number", Logique et Analyse 165-166 (1999) p. 119] 
 
Nico Benschop   Cantor's diagonal procedure necessarily cannot start with a complete list, 
because the word "diagonal" means there is a square table, [N. Benschop in "Why Cantor was 
wrong", sci.math (20 Jul 1999)] 
 
Arthur F. Bentley   More and more for the whole science it becomes essential that unremitting 
attack upon it be made, no matter how many backs be broken in the struggle. It was Georg Cantor 
who forced it upon the present generation of mathematicians with his system of transfinities, a 
system [...] which in the end has brought into prominence elements which challenge the 
coherence and meaning of all mathematical knowledge whatsoever. [A.F. Bentley: "Linguistic 
analysis of mathematics", The Principia Press, Bloomington, Indiana (1932)] 
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George Berkeley   Every particular finite extension which may possibly be the object of our 
thought is an idea existing only in the mind, and consequently each part thereof must be 
perceived. If, therefore, I cannot perceive innumerable parts in any finite extension that I 
consider, it is certain they are not contained in it; but, it is evident that I cannot distinguish 
innumerable parts in any particular line, surface, or solid, which I either perceive by sense, or 
figure to myself in my mind: wherefore I conclude they are not contained in it. [G. Berkeley: "A 
treatise concerning the principles of human knowledge" (1710)] 
 
Paul Bernays   [...] it is not an exaggeration to say that platonism reigns today in mathematics. 
But on the other hand, we see that this tendency has been criticized in principle since its first 
appearance and has given rise to many discussions. This criticism was reinforced by the 
paradoxes discovered in set theory, even though these antinomies refute only extreme platonism. 
[...] Several mathematicians and philosophers interpret the methods of platonism in the sense of 
conceptual realism, postulating the existence of a world of ideal objects containing all the objects 
and relations of mathematics. It is this absolute platonism which has been shown untenable by the 
antinomies, particularly by those surrounding the Russell-Zermelo paradox. [...] The essential 
importance of these antinomies is to bring out the impossibility of combining the following two 
things: the idea of the totality of all mathematical objects and the general concepts of set and 
function; for the totality itself would form a domain of elements for sets, and arguments and 
values for functions. We must therefore give up absolute platonism. [...] The first step is to 
replace by constructive concepts the concepts of a set, a sequence, or a function, which I have 
called quasi-combinatorial. The idea of an infinity of independent determinations is rejected. One 
emphasizes that an infinite sequence or a decimal fraction can be given only by an arithmetical 
law, and one regards the continuum as a set of elements defined by such laws. [...] Nonetheless, if 
we pursue the thought that each real number is defined by an arithmetical law, the idea of the 
totality of real numbers is no longer indispensable, and the axiom of choice is not at all evident. 
[...] Let us proceed to the second step of the elimination. It consists in renouncing the idea of the 
totality of integers. [P. Bernays: "Platonism in mathematics" (1935) p. 7] 
 
Errett A. Bishop   Brouwer's criticisms of classical mathematics were concerned with what I 
shall refer to as "the debasement of meaning". [...] rejection of common sense in favour of 
formalism; debasement of meaning by wilful refusal to accomodate certain aspects of reality; [...] 
The codification of insight is commendable only to the extent that the resulting methodology is 
not elevated to dogma and thereby allowed to impede the formation of new insight. [...] (A) 
Mathematics is common sense. (B) Do not ask whether a statement is true until you know what it 
means. (C) A proof is any completely convincing argument. (D) Meaningful distinctions deserve 
to be maintained. [E.A. Bishop: "Schizophrenia in contemporary mathematics", Amer. Math. 
Soc. Colloquium Lecture, Seventy-eighth summer meeting, University of Montana, Missoula, 
Montana (1973)] 
 
Bishop has attracted a small band of followers. He argues, as Brouwer did, that much of standard 
mathematics is a meaningless game; [...] Most mathematicians respond to his work with 
indifference or hostility. [...] From his point of view, classical mathematics is a jumble of myth 
and reality. He prefers to do without the myth. From his point of view, it is classical mathematics 
that appears as an aberration; constructivism is just the refusal to participate in the acceptance of 
a myth. [P.J. Davis, R. Hersh, E.A. Marchisotto: "The mathematical experience", Birkhäuser, 
Boston (1995) p. 416] 
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Eckard Blumschein   This study also profits from endless public discussions and a brochure by 
Wolfgang Mückenheim: History of the Infinite (in German), Augsburg 2004 [...] Ë It is not 
allowed to use the quality "infinite" as a quantitative measure. Ë The definition of infinite 
numbers cannot be justified. Ë Numbers beyond the infinite are nonsensical. [...] Ë Any 
quantification of an infinite set is impossible. Ë There are neither as many nor more nor less real 
numbers than rational numbers. Ë Cantor has misinterpreted his second diagonal argument. [E. 
Blumschein: "Cantors Kontinuum, eine Bestandsaufnahme", de.sci.physik (4 Apr 2005)] 
 
Nico du Bois   Why should diagonalisation only be applied on the interval (0,1)? Cantorians 
always do it to explain diagonalisation. That is because it is easy and it seemingly leads to no 
contradictions. Try diagonalisation on — and you will have a problem. [N. du Bois in "Why 
Cantor was wrong", sci.math (19 Jul 1999)] 
 
Bernard Bolzano   From the only reason that two sets, A and B, are related to each other such 
that for every part a being in A we can choose, by a certain rule, a part b being in B to the end that 
all pairs (a + b) formed in this way contain every thing contained in A or B, and each thing only 
once – only from this reason it is, as we see, not at all allowed to conclude that these two sets, if 
they are infinite, with respect to the multitude of their parts (disregarding all their differences) are 
equal to each other; [...] It appears as if this property should persist for infinite sets too. It appears 
so, I say; but by closer inspection we see that it is not at all necessary because the reason of this 
for finite sets lies just in their finiteness and therefore lapses for infinite sets. [...] This conclusion 
obviously gets invalid as soon as the set of things in A is infinite because now not only our 
counting will never get to a last thing in A [...] the reason lapses to conclude that the multitudes of 
both sets are equal. [B. Bolzano: "Paradoxien des Unendlichen", Reclam, Leipzig (1851) §§ 21 & 
22] 
 
Bonaventure   The first premise: it is impossible to add to the infinite. This premise is known 
per se because everything which receives an addition becomes larger, "but nothing is larger than 
the infinite". [...] The second premise: it is impossible to order an infinite series. (Literally, "it is 
impossible that an infinite number of things be ordered".) [J.W. Yarbrough, III: "Philip the 
chancellor, Bonaventure of Bagnoregio, and Thomas Aquinas on the eternity of the world", 
Dissertation, Cornell University (May 2011) p. 157f] 
 
George Boolos   The difficulty we are confronted with is that ZFC makes a claim we find 
implausible. To say we can't criticize ZFC since ZFC is our theory of sets is obviously to beg the 
question whether we ought to adopt it despite claims about cardinality that we might regard as 
exorbitant. [G. Boolos: "Must we believe in set theory?" in R. Jeffrey (ed.): "Logic, logic, and 
logic", Harvard University Press (1998) pp. 120-132]  
 
Article 2 contains Boolos' defense of Fraenkel's, in contrast to Zermelo's, position that first-order 
but not second-order logic is applicable to set theory. Boolos criticizes the view of Charles 
Parsons (and D. A. Martin) that it makes sense to use second-order quantifiers when first-order 
quantifiers range over entities that do not form a set. Boolos' answer to the title of article 8, "Must 
We Believe in Set Theory?" is 'no': the phenomenological argument (due to Gödel) does not 
imply that the axioms of set theory correspond to something real, and the indispensability 
argument (due to Carnap) that mathematics is required by our best physical theory, is dismissed 
as "rubbish". [G. Mar: "Review of George Boolos: 'Logic, logic, and logic', Harvard University 
Press (1998)", Essays in Philosophy 1,2 (Jun 2000)] 
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Émile Borel   I prefer not to write alephs. [...] One may wonder what is the real value of these 
arguments that I do not regard as absolutely valid but that still lead ultimately to effective results. 
In fact, it seems that if they were completely devoid of value they could not lead to anything 
since they would be meaningless collections of words. This, I believe, would be too harsh. They 
have a value analogous to certain theories in mathematical physics, through which we do not 
claim to express reality but rather to have a guide that aids us, by analogy, in predicting new 
phenomena, which must then be verified. It would require considerable research to learn what is 
the real and precise sense that can be attributed to arguments of this sort. Such research would be 
useless, or at least it would require more effort than it would be worth. [É. Borel, letter to J. 
Hadamard (1905)] 
 
Borel declared that the Banach-Tarski paradox amounts to an inconsistency proof of the Axiom 
of Choice. [É. Borel: "Les paradoxes de l'infini" 3rd ed., Paris (1946) p. 210] 
 
So, in Borel's view, most reals, with probability one, are mathematical fantasies, because there is 
no way to specify them uniquely. [G. Chaitin: "How real are real numbers?", arXiv (2004)] 
 
Jorge Luis Borges   There is a concept which is the corruptor and the seducer of the others. I do 
not speak of Evil, whose limited empire is ethics; I speak of the infinite. [J.L. Borges: "Los 
avatares de la tortuga", Sur 63 (Dec 1939) p. 18] 
 
Åsmund Børsum   2Ù always corresponds to Ù, and you can say that the positive numbers grow 
twice as fast as the positive and negative numbers. This is a start to a common-sense 
understanding of infinity. [Åsmund Børsum in "Cantor was wrong", Wikipedia, User 
talk:Flabdablet (2008)] 
 
Andrew Boucher   Cantor and modern logicians would have us think that [...] the number of — is 
greater than the number of Ù. But their reasoning is fallacious. [A. Boucher: "Cantor and infinite 
size", sci.math (22 May 1999)] 
 
Edward Boyd   Infinity is a fallacy. [...] I am working on a formal proof. It will decimate large 
portions of modern mathematics and hopefully replace it with a more firm foundation. [E. Boyd 
in "What is the greatest paradox about the field of mathematics?", Quora (14 Jul 2019)] 
 
Ross Brady, Penelope Rush   As a long-time university teacher of formal logic and philosophy 
of mathematics, the first author has come across a number of students over the years who have 
cast some doubt on the validity of Cantor's Diagonal Argument. [...] Unwittingly, I have always 
given the standard response that the conclusion is inescapable, [...] What we aim to show in this 
paper is that there is also an important point to the student's concerns about Cantor's Diagonal 
Argument, thus making amends to these students. [R. Brady, P. Rush: "What is wrong with 
Cantor's diagonal argument?", Logique et Analyse 202 (2008) p. 185f] 
 
Franz Brentano   Actually infinite multitudes of things cannot be assumed without absurdities. 
[...] Also space and time are nothing actually infinite. [F. Brentano: "Psychologie vom 
empirischen Standpunkt", Vol. 2, Meiner, Hamburg (1959) p. 252ff] 
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Percy W. Bridgman   The ordinary diagonal Verfahren I believe to involve a patent confusion of 
the program and object aspects of the decimal fraction, which must be apparent to any who 
imagines himself actually carrying out the operations demanded in the proof. In fact, I find it 
difficult to understand how such a situation should have been capable of persisting in 
mathematics. Doubtless the confusion is bound up with the notions of existence; the decimal 
fractions are supposed to "exist" whether they can be actually produced and exhibited or not. But 
from the operational point of view all such notions of "existence" must be judged to be obscured 
with a thick metaphysical haze, and to be absolutely meaningless from the point of view of those 
restricted operations which can be allowed in mathematical inquiry. [...] One can obviously say 
that all the rules for writing down nonterminating decimals formulatable by the entire human race 
up to any epoch in the future must be denumerable [...] I do not know what it means to talk of 
numbers existing independent of the rules by what they are determined; operationally there is 
nothing corresponding to the concept. If it means anything to talk about the existence of numbers, 
then there must be operations for determining whether alleged numbers exist or not, and in 
testing the existence of a number how shall it be identified except by means of the rules? [...] 
From the operational point of view a transcendental is determined by a program or procedure of 
some sort; Mengenlehre has nothing to add to the situation. And this, as far as my elementary 
reading goes, exhausts the contributions which Mengenlehre has made in other fields. [P.W. 
Bridgman: "A physicist's second reaction to Mengenlehre", Scripta Mathematica 2 (1934) p. 
225ff] 
 
Luitzen Egbertus Jan Brouwer   Cantor's second number class does not exist. [...] we can create 
in mathematics nothing else but ending sequences, and further, on the ground of the clearly 
conceived "and so on", the order type ω, but only consisting of equal elements, so that we can 
never imagine the arbitrary infinite binary fractions as finished, [L.E.J. Brouwer: "Over de 
grondslagen der wiskunde", Thesis, Univ. Amsterdam (1907) Statement XIII & p. 142f] 
 
The belief in the universal validity of the principle of the excluded third in mathematics is 
considered by the intuitionists as a phenomenon of the history of civilization of the same kind as 
the former belief in the rationality of π, or in the rotation of the firmament about the earth. The 
intuitionist tries to explain the long duration of the reign of this dogma by two facts: firstly that 
within an arbitrarily given domain of mathematical entities the non-contradictority of the 
principle for a single assertion is easily recognized; secondly that in studying an extensive group 
of simple every-day phenomena of the exterior world, careful application of the whole of 
classical logic was never found to lead to error. [L.E.J. Brouwer: "Lectures on intuitionism – 
Historical introduction and fundamental notions" (1951), Cambridge University Press (1981)] 
 
Brouwer, in his dissertation, refutes the well-ordering theorem by pointing out that in the case of 
the continuum most of the elements are unknown, and hence cannot be ordered individually – 
"So this matter also turns out to be illusory." (Thesis p. 153) Examples of (according to Brouwer) 
meaningless word play are the second number class and the higher power sets. [D. van Dalen: 
"Mystic, geometer, and intuitionist: The life of L.E.J. Brouwer", Oxford Univ. Press (2002)] 
 
Jim Brown   It appears to me that infinity means something like "never ending" or "the count 
never ends". If that's infinity, then nothing can be larger than infinity. [J. Brown in "I think 
mathematicians have got it wrong with infinity. Infinity is infinity. One infinity cannot be larger 
than another infinity. What do you think?", Quora (4 Dec 2018)] 
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Han de Bruijn   I can accept very well that, for example, the natural numbers are "impossible of 
completion", hence so to speak "infinite". But I can not accept that, for example, there are "as 
many" natural numbers as there are even numbers. IMHO, there are twice as much. Simple. 
Please, don't explain why I'm "wrong". I can reproduce the official "proof" entirely by myself. An 
argument of my own holds approximately for every finite set of natural numbers. However, the 
bigger the set the better. Taking the "limit", there are exactly twice as much natural as there are 
even numbers. [H. de Bruijn: "Natural philosophy" (2015)] 
 
Jed Brunozzi   Firstly, saying the limit of Σ(1/k2) = π2/6 is incorrect. It pretends (incorrectly) that 
we have formed an algebraic statement of equality. It should read Σ(1/k2) Ø π2/6. Secondly, 
because of such statements, we want to call these irrational quantities (like π) numbers and 
incorrectly try to put them on the number line. Finally, this lures us into saying the number line is 
filled with irrational 'numbers' because we have convinced ourselves quantities like π are 
numbers, when in fact they are not. This I believe is at least one big problem with the misuse of 
the concept of infinity. It gives us a picture of numbers that is incorrect. [J. Brunozzi in "The law 
of logical honesty and the end of infinity", YouTube (23 Apr 2016)] 
 
Helmut Büch   Representations of numbers can only be finite representations of numbers, 
existing in the real world, be it in the brain, in a computer, on paper, or elsewhere. [H. Büch in 
"Das Kalenderblatt 100618", de.sci.mathematik (23 Jun 2010)] 
 
Otávio Bueno   Platonists often emphasize that it is because mathematical objects, relations, and 
structures exist that mathematics is ultimately objective. [...] This move, however, does not go 
through. It is unclear that the existence of mathematical objects, relations, and structures does any 
work to support the objectivity of mathematics. After all, if mathematical objects, relations, and 
structures turn out not to exist, it is unclear that anything would change in mathematical practice 
(Azzouni 1994). Mathematicians would continue to do their work in precisely the same way as 
they currently do: proposing, articulating, and refining mathematical definitions and principles, 
and drawing consequences from them. The actual existence of mathematical objects is largely 
irrelevant for that. [O. Bueno: "Relativism in set theory and mathematics", Wiley Online Library 
(2011) p. 560] 
 
Georg Cantor   "Infinite definitions" (that do not happen in finite time) are non-things 
{{Undinge}}. If König's theorem was true, according to which all "finitely definable" real 
numbers form an embodiment of cardinality ¡0, this would imply that the whole continuum was 
countable, which is certainly false. [G. Cantor, letter to D. Hilbert (8 Aug 1906)] 
 
Paola Cattabriga   In this article it is shown that, defining the relative complement of the self-
referring statement, Cantor's power set theorem cannot be derived. Moreover, it is given a 
refutation of the first proof, the so-called Cantor's diagonal argument. [P. Cattabriga: "Beyond 
uncountable", arXiv (2006)] 
 
Augustin-Louis Cauchy   We say that a variable quantity becomes infinitely small when its 
numerical value decreases indefinitely in such a way as to converge toward the limit zero. [...] 
We say that a variable quantity becomes infinitely large when its numerical value increases 
indefinitely in such a way as to converge toward the limit ¶. [A.-L. Cauchy: "Cours d'analyse de 
l'Ecole Royale Polytechnique", Paris (1821) p. 26f] 
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We cannot admit the assumption of an infinite number, of beings or of objects coexisting, 
without being trapped by manifest contradictions. [A. Cauchy "Sept lecons de physique 
générale", Gauthier-Villars, Paris (1868) p. 23] 
 
Ben Cawaling   Even granting arguendo Georg Cantor's tenet of actual or completed infinity, his 
diagonalization argument is untenable [...] [B. Cawaling: "Small flaw", Wikipedia, Talk: Cantor's 
diagonal argument / Archive 1] 
 
Paul A.C. Chang   I totally agree with WM. Applied Math is an indispensable part of various 
engineering disciplines because its application and usefulness in predictive models has been 
validated against real-world conditions again and again and again. If, for argument's sake, PA 
was proven inconsistent, then math merely becomes a defacto natural science like biology or 
chemistry, in the sense that the "validity" of math no longer stems from axioms, but rather 
validation against real world conditions and observations. [P.A.C. Chang in "The inconsistency 
of arithmetic", The n-Category Café (2 Oct 2011)] 
 
Yi Xiang Chin   I can match the natural numbers to all the real numbers. [Chin yi xiang in "Proof 
– There are more real numbers than natural numbers", YouTube (2017)] 
 
Adrian Chira   It is generally claimed that axiomatic set theory (such as Zermelo-Fraenkel set 
theory (ZFC)) avoids Curry's paradox by replacing the axiom of unrestricted comprehension by 
the standard axioms of axiomatic set theory. [...] It is here suggested however that the axioms 
don't succeed in avoiding the paradox. [A. Chira: "Curry's non-paradox and its false definition", 
viXra (2016)] 
 
Jon Cogburn   The proud announcement of the conquering of infinity is fatuous at best. 
Cantorian diagonalization rather showed (among other things) that we have no idea what we're 
talking about when we talk about infinity. [J. Cogburn in "Cantor's theorem and its discontents", 
Philosophical Percolations (3 Sep 2015)] 
 
Paul J. Cohen   However, in all honesty, I must say that one must essentially forget that all 
proofs are eventually transcribed in this formal language. In order to think productively, one must 
use all the intuitive and informal methods of reasoning at one's disposal. [...] It seemed that 
various people thought that this was a matter of great interest, to show how various branches of 
conventional mathematics could be reduced to particular formal systems [...] Thus, Russell and 
Whitehead [...] developed painstakingly in their very long work, Principia Mathematica, a theory 
of "types" and then did much of basic mathematics in their particular formal system. The result is 
of course totally unreadable, and in my opinion, of very little interest. Similarly, I think most 
mathematicians, as distinct from philosophers, will not find much interest in the various 
polemical publications of even prominent mathematicians. My personal opinion is that this is a 
kind of "religious debate". One can state one's belief but, with rare exceptions, there are few cases 
of conversion. [...] The only reality we truly comprehend is that of our own experience. [P.J. 
Cohen: "The discovery of forcing", Rocky Mountain Journal of Mathematics 32,4 (2002) pp. 
1078 & 1080 & 1099] 
 
Jonas Cohn   [...] first we prove that a completed infinite and an infinite aggregate are 
inconsistent. [J. Cohn: "Voraussetzungen und Ziele des Erkennens", Leipzig (1908) p. 273] 
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Caleb Cohoe   Several of Thomas Aquinas's proofs for the existence of God rely on the claim 
that causal series cannot proceed in infinitum. I argue that Aquinas has good reason to hold this 
claim given his conception of causation. [C. Cohoe: "There must be a first: Why Thomas 
Aquinas rejects infinite, essentially ordered, causal series", British Journal for the History of 
Philosophy 21,5 (2013)] 
 
Enrique Coiras   This paper provides some counterexamples to Cantor's contributions to the 
foundations of Set Theory. [E. Coiras: "Counterexamples to Cantorian set theory", arXiv (2014)] 
 
Thomas Colignatus   The notion of a limit in — cannot be defined independently from the 
construction of — itself. Occam's razor eliminates Cantor's transfinites. [T. Colignatus: "Contra 
Cantor pro Occam", viXra (2015) p. 1] 
 
The axiomatic system for set theory ZFC is shown to be inconsistent. [T. Colignatus: 
"Foundations of mathematics: A neoclassical approach to infinity" (2015)] 
 
Graham Cooper   Every single digit-sequence possible was listed the entire time, ¶ times each! 
[G. Cooper: "Here is my infinite list of reals! Count 'em!", sci.math (1 Mar 2011)] 
 
Alexandre Costa-Leite   answers these questions: Do you agree that the continuum hypothesis is 
a meaningful statement that has a definite truth value, even if we do not know what it is? "No." 
Do you agree that the axiom which states the existence of an inaccessible cardinal is a 
meaningful statement that has a definite truth value, even if we do not know what it is? "No." [A. 
Costa-Leite in "Ten questions about intuitionism", intuitionism.org (2005)] 
 
William L. Craig   [...] an actually infinite number of things cannot exist. For if an actually 
infinite number of things could exist, this would spawn all sorts of absurdities. [W.L. Craig: "The 
existence of God and the beginning of the universe", Truth: A Journal of Modern Thought 3 
(1991) pp. 85-96]  
 
Brian L. Crissey   Turing's proof of the insolubility of the Halting Problem prevents 
unpredictable irrationals from being ordered, which prevents their being real, if they exist at all. 
Thus the cardinality of the reals is the same as that of the integers. Transfinite mathematics is 
discredited and may be relegated to history. Much rewriting of mathematical texts lies ahead. [B. 
Crissey: "Unreal irrationals: Turing halts Cantor", MAA-SE at Elon University (2010)] 
 
Dirk van Dalen, Heinz-Dieter Ebbinghaus   On October 4, 1937 Zermelo [...] gives a refutation 
of "Skolem's paradox", i.e., the fact that Zermelo-Fraenkel set theory – guaranteeing the existence 
of uncountably many sets – has a countable model. Compared with what he wished to disprove, 
the argument fails. [...] In his first letter to Gödel of September 21, 1931 he had written that the 
Skolem paradox rested on the erroneous assumption that every mathematically definable notion 
should be expressible by a finite combination of signs, whereas a reasonable metamathematics 
would only be possible after this "finitistic prejudice" would have been overcome, "a task I have 
made my particular duty". [...] The remarks show that the role of logic in set theory was not quite 
clear to Fraenkel, no matter how much he admired Hilbert's proof theory. Apparently Skolem's 
arguments were beyond his expertise. [D. van Dalen, H.-D. Ebbinghaus: "Zermelo and the 
Skolem Paradox", The Bulletin of Symbolic Logic 6,2 (Jun 2000) pp. 145 & 148] 
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George Dance   Whatever number you could give, in the unary representation, you would leave 
out as many natural numbers as there are in Ù itself. Whatever number anyone could possibly 
represent in that way, call it x, must be finite; assuming Ù is infinite, the set X = {x+1, x+2, x+3, 
...} is infinite; X has the same cardinality as Ù, and therefore the same number of elements as Ù. 
[G. Dance in "Cantor's 'proof' of transfinite sets", sci.math (20 Mar 2003)] 
 
David van Dantzig   Whether a natural number be defined according to Peano, Whitehead and 
Russell and Hilbert as a sequence of printed signs (e. g. primes, affixed to a zero) or, according to 
Brouwer, as a sequence of elementary mental acts, in both cases it is required that each individual 
sequence can be recognized and two different ones can be distinguished. If – as it is usually done 
both by formalists, logicists and intuitionists – one assumes that by such a procedure in a limited 
time arbitrarily large natural numbers could be constructed, this would imply the rejection of at 
least one of the fundamental statements of modern physics (quantum theory, finiteness of the 
universe, necessity of at least one quantum jump for every mental act). Modern physics implies 
an upper limit, by far surpassed by 101010 for numbers which actually can be constructed in this 
way. Weakening the requirement of actual constructibility by demanding only that one can 
imagine that the construction could actually be performed – or, perhaps one should say rather, 
that one can imagine that one could imagine it – means imagining that one would live in a 
different world, with different physical constants, which might replace the above mentioned 
upper limit by a higher one, without anyhow solving the fundamental difficulty. [D. van Dantzig: 
"Is 10^10^10 a finite number?", Dialectica 9 (1955) p. 273] 
 
David K. Davis   If Cantor's work is invalid, modern mathematics goes up in smoke. The 
investment is too great – if something's wrong we'll just change logic. [D.K. Davis in "Cantor's 
transfinite numbers", sci.math (31 Oct 1996)] 
 
Richard Dedekind   The numbers are free creations of the human mind. They serve as a means 
to easen and to sharpen the perception of the differences of things. [R. Dedekind: "Was sind und 
was sollen die Zahlen?", Vieweg, Braunschweig (1888) preface]  
 
Marius Dejess   The pseudo idea of infinity has been replaced by smart 'mathematricksters' into 
the opposite, namely, a finite quantity, that is how they can make all kinds of nonsense 
mathematics with their mis-represented idea of an already pseudo idea of infinity. [M. Dejess in 
"What is a great representation of infinity?", Quora (22 Sep 2019)] 
 
Kevin Delaney   There are people in this world who love to mesh logic around and redefine 
terms. Such tactics can bring power in politics and money in business. Basing mathematics on the 
paradox ridden world of transfinite theory feeds this gamesmanship. [...] A second negative effect 
of transfinite theory is that by positioning transfinite theory as the basis of arithmetic and logic, 
transfinite theorists have accomplished the unintended goal of basing mathematics on mystical 
concepts: namely, the completed infinity. Such a result is highly attractive to the mystical mind. 
Again, classical logicians would abhor the idea of basing reasoning on mystical concepts, but the 
mystical mind adores it ... gaining further acceptance for transfinite theory. [...] Leopold 
Kronecker is often criticized for his constructivist stands, however, computing devices are limited 
to the mechanical logics championed by Kronecker. [K. Delaney: "Curing the Disease"] 
 

https://groups.google.com/forum/#!topic/sci.math/thCQp_6Zu4c%5B1451-1475%5D
http://onlinelibrary.wiley.com/doi/10.1111/j.1746-8361.1955.tb01332.x/abstract
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$27s$20transfinite$20numbers%22/sci.math/AS6X7jLJ-M4/YKKJo0EchZkJ
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$27s$20transfinite$20numbers%22/sci.math/AS6X7jLJ-M4/YKKJo0EchZkJ
http://www.opera-platonis.de/dedekind/Dedekind_Was_sind_2.pdf
http://www.opera-platonis.de/dedekind/Dedekind_Was_sind_2.pdf
https://www.quora.com/What-is-a-great-representation-of-infinity?__nsrc__=4
http://descmath.com/diag/cure.html


 145

Alois Dempf   The problem of the genuine infinity cannot be settled without the notion of spirit. 
It leads to the entire set of questions of personal-spiritual weltanschauung of faith and of religious 
objects or at least of its main subject the notion of God, and on the other hand to the atomistic 
mechanism. [A. Dempf: "Das Unendliche in der mittelalterlichen Metaphysik und in der 
Kantischen Dialektik", Veröffentlichungen des Katholischen Institutes für Philosophie, Albertus-
Magnus-Akademie zu Köln, Band II, Heft 1, Aschendorff, Münster (1926) p. 8] 
 
René Descartes   Only that wherein no limits show up in any respect I denote as infinite in 
proper sense. In this sense God is infinite. But that, wherein I merely cannot recognize an end in a 
certain direction, like the extension of sensorially recognizable space, the set of numbers, the 
division of quantity in parts, etc., I call indefinite but not infinite. [L. Neidhart: "Unendlichkeit im 
Schnittpunkt von Mathematik und Theologie", Dissertation, Augsburg (2005) p. 584f] 
 
Stephen R. Diamond   1. Infinitesimal quantities can't exist; 2. If actual infinities can exist, 
actual infinitesimals must exist; 3. Therefore, actual infinities can't exist. [S.R. Diamond: 
"Infinitesimals: Another argument against actual infinite sets", Juridical Coherence (25 Jan 
2013)] 
 
Wilhelm Dieck   In case of sets of only one element of our visualization or our thinking we can 
absolutely not talk about a collection since there is only one element. Further there is nothing 
well-distinguished and collected. The second kind of these extremely odd sets, the null set, is 
defined as having no element. "It is not a proper set but shall be regarded (in an improper sense) 
as a set." A set that actually isn't a set but shall be regarded as a set. Isn't that a contradictory 
notion? [W. Dieck: "Die Paradoxien der Mengenlehre", Annalen der Philosophie und 
philosophischen Kritik 5,1 (Dec 1925) p. 45] 
 
William Dilworth   The illusion that Cantor has each time come up with a "new number" 
involves a misreading of the decimal expressions he uses. By a straightforward inspection of 
decimals, as well as by a general professional consensus, many scalar numbers cannot be 
expressed exactly in decimal form. He who fails, through a lack of rigor, to remember the 
limitations of the decimal system, may imagine that he sees in Cantor's truncated decimal forms 
the "objective real numbers"; he slides into Cantor's subtle mistake. [...] "Yes Sir", the head of the 
mathematics department of a Univ. of Illinois section said matter-of-fact to my face, "The 
integers will become exhausted". Believe it or not, Georg Cantor made these remarkable claims 
stick with the world's mathematicians of his time, and they stick unto this day. The effects of the 
Cantorian grip on the professional mind have to be experienced to be believed. [...] So why have 
the "endless decimal expansions" (or binary expansions for that matter) been raised to such a 
status as to be equated with scalar numbers themselves? The answer, I believe, is now clear. 
Because the open admission that closed forms for scalar numbers, which forms can obviously be 
ordered and counted, are available in other expansion systems but not in the decimal or binary 
type, would lead rather quickly to the exposure of the number-theory fallacies in the Cantorian 
diagonal argument and the deductions made from it. [W. Dilworth: "A correction in set theory", 
Wisconsin Academy of Sciences, Arts and Letters 62 (1974) pp. 206 & 212f & 216] 
 
Norbert Domeisen   Concerning the usefulness: We find for almost infinitely many problems of 
practice at least one solution by finite mathematics. We are looking in vain however for any 
practical problem that could be solved with infinite mathematics. [N. Domeisen: "Texte zur 
Philosophie und Geschichte" (2016)] 
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If the mapping, choice, or projection cannot be finished, it does not yield a result but only the 
tautological statement that it is without end, endless. Aborting the process does not yield a result 
but trivially the state at abortion. Herewith Cantor's proof of the existence of uncountable infinite 
sets and of different transfinite cardinal numbers by the diagonal procedure has been refuted; 
Hilbert's paradise is lost. [N. Domeisen: "Der Zauber Cantors oder das verlorene Paradies"] 
 
Peter G. Doyle, John Horton Conway   What's wrong with the axiom of choice? Part of our 
aversion to using the axiom of choice stems from our view that it is probably not 'true'. [...] 
Cohen's result implies that there is no hope of describing a definite choice function that will work 
for 'all' non-empty sets of real numbers, at least as long as you remain within the world of 
standard Zermelo-Fraenkel set theory. And if you can't describe such a function, or even prove 
that it exists without using some relative of the axiom of choice, what makes you so sure there is 
such a thing? Not that we believe there really are any such things as infinite sets, or that the 
Zermelo-Fraenkel axioms for set theory are necessarily even consistent. Indeed, we're somewhat 
doubtful whether large natural numbers (like 805000, or even 2200) exist in any very real sense, 
[P.G. Doyle, J.H. Conway: "Division by three", arXiv (2006)] 
 
Manu Dube   For every row n, the number created by diagonalization differs from all the 
numbers represented in the table up to that row. [...] proving that d is different from all rows up to 
row n, for every n œ Ù, is not sufficient to prove that the number is different from all rows. [M. 
Dube: "Digital precision: Unlimited or absolute?", ResearchGate (2021)] 
 
Michael Dummett   In intuitionistic mathematics, all infinity is potential infinity: there is no 
completed infinite. [...] Rather, the thesis that there is no completed infinity means, simply, that 
to grasp an infinite structure is to grasp the process which generates it, that to refer to such a 
structure is to refer to that process, and that to recognize the structure as being infinite is to 
recognize that the process will not terminate. [...] The platonistic conception of an infinite 
structure as something which may be regarded both extensionally, that is, as the outcome of the 
process, and as a whole, that is, as if the process were completed, thus rests on a straightforward 
contradiction: an infinite process is spoken of as if it were merely a particularly long finite one. 
[...] But, since mathematical objects have no effect upon us save through our thought-processes, 
the conception of an analogous means of determining the truth-value of a statement involving 
quantification over an infinite mathematical totality is an absurdity. [M. Dummet: "Elements of 
intuitionism" 2nd ed., Clarendon Press, Oxford (2000) p. 40ff] 
 
Russell Easterly   Assume I am talking about ordinals. Things we count with. Like fingers and 
toes. Can we assume we never run out of toes? [R. Easterly: "How big is infinity?", sci.math (26 
Aug 2006)] 
 
Heinz-Dieter Ebbinghaus   Fraenkel was not sure about the correctness of the proof of the 
Löwenheim-Skolem theorem, and he seems to have had difficulties in analysing the role of logic 
with sufficient rigour to understand Skolem's paradox {{while}} von Neumann instantly 
recognized the importance of the results, but he reacted with scepticism about the possibility of 
overcoming the weakness of axiomatizations they reveal. [H.-D. Ebbinghaus: "Ernst Zermelo: An 
approach to his life and work", Springer (2007) p. 200] 
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John Einbu   In the first section it is shown that Cantor's diagonal method is not valid. [J. Einbu: 
"Representation of infinite numbers", International Journal of Mathematics and Mathematical 
Concepts (2014)] 
 
How is it possible to collect absolutely all integers in a quantity without this quantity having a 
maximum number? For me it is harder to believe this than it is to believe that the Christian God 
exists. [J. Einbu in "John Einbu – 'Finnes det en sann matematikk?'", matematikk.net (12 Jan 
2016)] 
 
Mikael Englund   All the foundational proof {{for 0.999... = 1.000...}} I have seen uses the 
underlying assumption of infinity to form the equality. But what if infinity can not be used cause 
there will always exist a tiny bit of error cause we can never compute infinity? [M. Englund in 
"Difficulties with real numbers as infinite decimals I", YouTube (2019)] 
 
Edgar E. Escultura   Therefore, Cantor's diagonal method is flawed. [E.E. Escultura: "The 
resolution of the great 20th century debate in the foundations of mathematics", Advances in Pure 
Mathematics 6 (2016) p. 147] 
 
Euclid   Proposition 20: The prime numbers are more numerous than any assigned multitude of 
prime numbers. {{Note that infinity is not mentioned.}} [Euclid: "The Elements", Book 9] 
 
Eustachius a Sancto Paulo   There is no actual categorematic infinite, not because it is 
repugnant to God's power, but because nature cannot suffer it. [Roger Ariew: "Descartes and the 
last scholastics", Cornell University Press, Ithaca (1999) p. 169] 
 
Ilijas Farah, Menachem Magidor   The new aspect that came up after Cohen's independence 
proofs of 1963 is that mathematical problems that were considered to be central to the particular 
discipline were shown to be undecided. So the very notion of mathematical truth was shaken. [I. 
Farah, M. Magidor: "Independence of the existence of Pitowsky spin models", arXiv (2012) p. 1] 
 
Solomon Feferman   No set-theoretically definable well-ordering of the continuum can be 
proved to exist from the Zermelo-Fraenkel axioms together with the axiom of choice and the 
generalized continuum hypothesis. [S. Feferman: "Some applications of the notions of forcing 
and generic sets", Talk at the Int. Symposium on the Theory of Models, Berkeley (1963)] 
 
[...] vast part if not all of scientifically applicable mathematics can be justified on the basis of 
purely arithmetical principles. At least to that extent, the question raised in two of the essays of 
the volume, "Is Cantor Necessary?", is answered with a resounding "no". [...] The actual infinite 
is not required for the mathematics of the physical world. [...] I am convinced that the platonism 
which underlies Cantorian set theory is utterly unsatisfactory as a philosophy of our subject 
despite the apparent coherence of current set-theoretical conceptions and methods. To echo Weyl, 
platonism is the medieval metaphysics of mathematics; surely we can do better. [S. Feferman, "In 
the light of logic", Oxford Univ. Press (1998) jacket flap & p. 30 & p. 248] 
 
Feferman shows in his article "Why a little bit goes a long way" on the basis of a number of case 
studies that the mathematics currently required for scientific applications can all be carried out in 
an axiomatic system whose basic justification does not require the actual infinite. [S. Feferman: 
private communication] 
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I came to the conclusion some years ago that CH {{continuum hypothesis}} is an inherently 
vague problem [...]. I believe there is no independent platonic reality that gives determinate 
meaning to the language of set theory in general, and to the supposed totality of arbitrary subsets 
of the natural numbers in particular, and hence not to its cardinal number. Incidentally, the 
mathematical community seems implicitly to have come to the same conclusion: it is not among 
the seven Millennium Prize Problems established in the year 2000 by the Clay Mathematics 
Institute, for which the awards are $ 1,000,000 each; and this despite the fact that it was the lead 
challenge in the famous list of unsolved mathematical problems proposed by Hilbert in the year 
1900, and one of the few that still remains open. [S. Feferman: "Philosophy of mathematics: 5 
questions", Academia (2007) p. 12] 
 
Walter Felscher   Concerning the application of transfinite numbers in other mathematical 
disciplines, the great expectations originally put on set theory have been fulfilled only in few 
special cases. [W. Felscher: "Naive Mengen und abstrakte Zahlen III", Bibliographisches Institut, 
Mannheim (1979) p. 25] 
 
Jailton C. Ferreira   A proof that the set of real numbers is denumerable is given. [...] Each real 
number of the interval [0, 1] can be represented by an infinite path in a given binary tree. [J.C. 
Ferreira: "The cardinality of the set of real numbers", arXiv (2013) p. 1] 
 
José Ferreirós   Because of the way in which Cantor combined romanticism with mathematics, 
modern methods with a vindication of rationalist metaphysics and theology, recent scientific 
trends with Platonism and an emphasis on the soul; it is not far fetched to label his orientation a 
reactionary modernism. Paraphrasing Thomas Mann, one might say that it was "a highly 
mathematical romanticism". [J. Ferreirós: "Paradise recovered? Some thoughts on Mengenlehre 
and modernism" (2008)] 
 
Ludwig Fischer   The proof of the existence of a diagonal number of such an origin can in no 
way prove the uncountability of the set of all real numbers. [L. Fischer: "Die unabzählbare 
Menge", Meiner, Leipzig (1942)] 
 
Reinhard Fischer   I've shown already that you cannot make this conclusion {{1 - 0.999... = 0}}, 
since a "point" 0.999… is not defined on the number line. [netzweltler in "The common mistake", 
sci.math (10 Oct 2016)] 
 
Peter Fletcher   What's wrong with set theory? I do not accept [...] that mathematics is the study 
of sets and that our knowledge of mathematics is derived from our set-theoretic intuition using 
classical logic. In this chapter I shall argue that 'set-theoretic intuition', as formalized in the 
Zermelo-Fraenkel axioms with the axiom of choice (ZFC), is conceptually incoherent. In the 
following chapter I shall argue that infinite quantifiers, the distinctive feature of classical logic, 
are meaningless. [P. Fletcher: "Truth, proof and infinity", Springer (1998) p. 13] 
 
It might be argued, therefore, that the reasons that led to the acceptance of actual infinity at the 
end of the nineteenth century have now been superseded. Potential infinity works just as well. [P. 
Fletcher: "Infinity" in "Philosophy of logic", Dale Jaquette (ed.), Elsevier (2007) p. 564] 
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Henry A. Flynt   No matter how much the content of mathematics exploits paradox, 
mathematicians express dedication to policing their doctrine against inconsistency. 
Mathematicians do not welcome those who attempt inconsistency proofs of favored theories. [...] 
I will propose that the main factor in the establishment of "truth" in mathematics is professional 
procedure and discipline. [...] Truth is negotiated on the basis of manipulation of import by 
distorting interpretations. Interpretation takes the form of discarding traditional intentions 
concerning mathematical structure: the privileged position of Euclidian geometry; the invariance 
of dimension; the association between integer and magnitude; uniqueness of the natural number 
series; etc. From time to time, results are discovered which patently embarrass the conventional 
wisdom, or controvert popular tenets. [The Gödel theorems.] Then follows a political 
manipulation, to distort the unwanted result by interpretation so that it is seen to "enhance" the 
popular tenet rather than to controvert it. [...] Even if my sense of the situation is right, the 
appearance of such a professionally compelling proof would be more a matter of packaging and 
selling than anything else. [...] The biggest hurdle such an attempted proof faces is professional 
discipline. Whether inconsistency proofs are recognized to have occurred is subject to entirely 
"political" manipulation. These circumstances have the effect of rendering the boundary between 
proofs, specious proofs, and disproofs meaningless. That is another reason for using the term 
pseudo-science for mathematics. [...] So, even though, for example, the Hausdorff-Banach-Tarski 
paradox has been called the most paradoxical result of the twentieth century, classical 
mathematicians have to convince themselves that it is natural, because it is a consequence of the 
Axiom of Choice, which classical mathematicians are determined to uphold, because the Axiom 
of Choice is required for important theorems which classical mathematicians regard as intuitively 
natural. [H. Flynt: "Is mathematics a scientific discipline?" (1996)] 
 
Thomas Forster   Mathematics doesn't need foundations – at least not of the kind that Set 
Theory was ever supposed to be providing – and the idea that Set Theory had been providing 
them annoyed a lot of people and did Set Theory much harm politically. [T. Forster: "The axioms 
of set theory" (2009)] 
 
C. Fortgens   For me the word infinite always has meant "without a definite bound". It never was 
a number. So you could not have infinite many natural numbers in a basket (or a set), because 
infinity is not a number. [C. Fortgens in "The law of logical honesty and the end of infinity", 
YouTube (23 Apr 2016)] 
 
Nicolas de la Foz   For instance, if we admit the one-to-one correspondence between Ù and —, 
then we are confronting two different kinds of infinity, the potential infinite represented by the 
asymptotic approximation of the naturals to the infinite (never reaching it), and the actual infinite 
represented by the set of all real numbers; so that, a complete bijection between both sets is not 
possible. [N. de la Foz: "Cantor + infinite = problems", sci.math (28 Dec 2003)] 
 
Adolf Abraham Fraenkel, Y. Bar-Hillel, A. Levy   Feferman and Levy showed that one cannot 
prove that there is any non-denumerable set of real numbers which can be well ordered. 
Moreover, they also showed that the statement that the set of all real numbers is the union of a 
denumerable set of denumerable sets cannot be refuted. [A.A. Fraenkel, Y. Bar-Hillel, A. Levy: 
"Foundations of set theory" 2nd ed., North Holland, Amsterdam (1984) p. 62] 
 
Edward Fredkin   DP {{Digital Philosophy}} implies that nature harbors no infinities, 
infinitesimals, continuities [E. Fredkin: "What is digital philosophy?", Digital Philosophy] 
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Pascoal Freitas   Infinite decimals just show us our decimal notation isn't perfect since we can't 
write down any measure using the decimal notation or the more general rational number notation. 
[P. Freitas in "Difficulties with real numbers as infinite decimals I", YouTube (3 May 2012)] 
 
Harvey Friedman   What if Wiles proved FLT using Universes. Would Wiles get credit for 
having established the truth of FLT? The answer is that he would definitely get credit for having 
established the truth of FLT. However, there would be considerable interest paid to the problem 
of removing Universes from the proof. In fact, in making the proof as "normal" as we now know 
it can be made. Thus in a sense, "a proper class of strongly inaccessible cardinals" – what 
Grothendieck used in his Universe work – is a kind of gray area for mathematics. [...] In my 
opinion, the Editorial Board and/or the referee would require that the use of Universes be 
explicitly mentioned. In any case, the acceptance of Universes does show that it is possible to get 
the mathematical community to accept at least some large cardinal hypotheses. [H. Friedman 
"Report from expert", FOM (6 Apr 1999)] 
 
Jacob Friedrich Fries   Schulze's proof {{of the parallel axiom, using infinite areas}} is not 
sound because he takes the infinite as a completed whole which is a contradiction. [G. Schubring: 
"Das mathematisch Unendliche bei J.F. Fries" in G. König (ed.): "Konzepte des mathematisch 
Unendlichen im 19. Jahrhundert", Vandenhoeck & Ruprecht, Göttingen (1990) p. 157]  
 
An infinite largeness or smallness never must be considered as a given whole. [J.F. Fries: "Die 
mathematische Naturphilosophie, nach philosophischer Methode bearbeitet", Heidelberg (1822) 
in G. König, L. Geldsetzer (eds.): "Jakob Friedrich Fries – Sämtliche Werke", Vol. 13, Aalen 
(1979) p. 254] 
 
Orrin Frink   It seems to me that the author, besides producing an interesting book, has made a 
good case for the contention that if we accept Brouwerism, we can get along theoretically without 
the notion of an infinite set, [...] If the continuum hypothesis is true, it is conceivable that 
someone may someday discover an effective way of well-ordering the real number continuum so 
that every number has only a countable number of predecessors. [O. Frink: "Review of Felix 
Kaufmann: 'Das Unendliche in der Mathematik und seine Ausschaltung', Deuticke, Leipzig 
(1930)", Bull. Amer. Math. Soc. 37,3 (1931) p. 149f] 
 
George S. Fullerton   When two lines are infinite, we have no point to measure from, and no 
point to measure to, and no measurement – therefore no comparison – is possible. [...] The terms 
longer, shorter, and equal, can, therefore, have no meaning as applied to infinite lines. They can 
be used only in speaking of the finite. We cannot, then, say that one infinite is greater or less than 
another, and just as little can we say that all infinites are equal; for any such proposition, however 
possible in words, is impossible in thought, and is an attempt to join contradictory notions. [G.S. 
Fullerton: "The conception of the infinite and the solutions of the mathematical antinomies: A 
study in psychological analysis", Lippincott, Philadelphia (1887) p. 22f] 
 
Nikhil Prashant Fulmare   What I believe is that infinity doesn't exist. So, it is impractical to 
compare 'infinities' with each other. [N.P. Fulmare in "I think mathematicians have got it wrong 
with infinity. Infinity is infinity. One infinity cannot be larger than another infinity. What do you 
think?", Quora (9 Jan 2019)] 
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Tom Fyfield   People need to wake up that they are living in a delusional fantasy world when 
they believe in the myth of infinity. [T. Fyfield in "Does the infinity concept in mathematics need 
truly any proof to refute it?", Quora (2019)] 
 
John Gabriel   Prof. Mueckenheim shares many revealing quotes from the very people who gave 
you set theory and real analysis, [...] His book should be used as a standard text book [...] But it is 
much more than just quotes. Mueckenheim explains the contradictions and absurdities in such a 
simple way that even an undergraduate will understand. Download it now, while it's free. [J. 
Gabriel: "To remove the scales from your eyes, read Prof. W. Mueckenheim's book on the 
transfinites. It's an eye-opener!", sci.math (6 Dec 2015)] 
 
This video reveals a proof by Prof. W. Mueckenheim that demonstrates clearly the flaws in set 
theory with respect to infinite sets. The proof is so simple that a high school student can 
understand. [J. Gabriel: "Academic ignorance and stupidity – part 28", YouTube (27 Jul 2016)] 
 
The proof by WM is a stroke of genius. [...] His disproof of infinite set theory is truly ingenious. 
WM uses the very same bogus and ill-formed mainstream concepts to show how set theory 
breaks without even one trying too hard. [J. Gabriel: "A proof that infinite set theory is flawed – 
by Prof. W. Mueckenheim", sci.math (28 & 31 Jul 2016)] 
 
Galileo Galilei   I consider that the attributes of greater, lesser, and equal do not suit infinities, of 
which it cannot be said that one is greater, or less than, or equal to, another. [G. Galilei: "Discorsi 
e Dimostrazioni Matematiche Intorno a Due Nuove Scienze", Univ. Wisconsin Press, Madison 
(1974) p. 40] 
 
Carl Friedrich Gauß   {{On a proof by Schumacher using triangles with two infinite sides}} I 
protest firstly against the use of an infinite magnitude as a completed one, which never has been 
allowed in mathematics. The infinite is only a mode of speaking, when we in principle talk about 
limits which are approached by certain ratios as closely as desired whereas others are allowed to 
grow without reservation." [C.F. Gauß, letter to H.C. Schumacher (12 Jul 1831)] 
 
Murray Gell-Mann   [...] among all the new structures being explored by mathematicians, the 
fraction that would even be of any interest to science would be so small as not to make it worth 
the time of a scientist to study them. But all that has changed in the last decade or two. It has 
turned out that the apparent divergence of pure mathematics from science was partly an illusion 
produced by obscurantist, ultra-rigorous language used by mathematicians, especially those of a 
Bourbaki persuasion, and by their reluctance to write up non-trivial examples in explicit detail. 
[...] Pure mathematics and science are finally being reunited and, mercifully, the Bourbaki plague 
is dying out. [M. Gell-Mann: "Nature conformable to herself", Bulletin of the Santa Fe Institute 7 
(1992) p. 7] 
 
Giacinto Sigismondo Gerdil   Essay about a mathematical proof against the eternal existence of 
matter and movement, derived from the proven impossibility of an actually infinite sequence of 
terms, whether being permanent or successive. [G.S. Gerdil: "Essai d'une démonstration 
mathématique contre l'existence éternelle de la matière et du mouvement, déduite de 
l'impossibilité démonstrée d'une suite actuellement infinie de termes, soit permanents, soit 
successifs", Opere edite et inedite, Vol. IV, Roma (1806) p. 261] 
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Laurent Germain   In this paper, I show that the cardinality of the set of real numbers is the 
same as the set of integers. I show also that there is only one dimension for infinite sets, ¡. [L. 
Germain: "The continuum is countable: Infinity is unique", arXiv (2008)] 
 
Narayan Ghosh   Not clear how the 'actual' and 'infinity' comes together. For any Mathematical, 
Physical or Cosmological concept of infinity perhaps no one can add the word actual. [N. Ghosh 
in "Does actual infinity exist?", ResearchGate (7 Jan 2013)] 
 
Josiah Willard Gibbs   The pure mathematician can do what he pleases, but the applied 
mathematician must be at least partially sane. [J.W. Gibbs, quoted in Morris Kline: 
"Mathematics: The loss of certainty", Oxford University Press (1982) p. 285]  
 
Olaf Gladis   In A* there are all possible combinations of arbitrary length of the elements of the 
alphabet. Therefore also — is a subset of A*. Since A* however is countably infinite, also — must 
be countably infinite. [O. Gladis: "Beweis für die Abzählbarkeit von R", de.sci.mathematik (10 
Oct 2008)] 
 
Kurt Gödel   The true reason for the incompleteness that is inherent in all formal systems of 
mathematics lies in the fact that the generation of higher and higher types can be continued into 
the transfinite whereas every formal system contains at most countably many. This will be shown 
in part II of this paper. {{Part II never appeared.}} In fact we can show that the undecidable 
statements presented here always become decidable by adjunction of suitable higher types (e.g., 
adding the type ω to system P). Same holds for the axiom system of set theory. [K. Gödel: "Über 
formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I", 
Monatshefte für Mathematik und Physik 38 (1931) p. 191] 
 
But the situation becomes entirely different if we regard the properties as generated by our 
definitions. For it is certainly a vicious circle to generate an object by reference to a totality in 
which this very object is supposed to be present already. [...] The result of the preceding 
discussion is that our axioms, if interpreted as meaningful statements, necessarily presuppose a 
kind of Platonism, which cannot satisfy any critical mind and which does not even produce the 
conviction that they are consistent. [K. Gödel: "The present situation in the foundations of 
mathematics" (1933) in S. Feferman et al. (eds.): "Kurt Gödel, collected works, Vol. III, 
unpublished essays and lectures", Oxford Univ. Press, (1995) p. 50] 
 
Walter Gomide   Therefore the introduction of the "Cantor ordinal metric" [...] allows us to 
subdivide the actual infinity into two parts: one, which we will call Fin, is composed only of 
potentially very large finite numbers that are reached through the successor function or through 
recursively defined operations; the other one, called Δ is composed of non-finite numbers that 
cannot be reached by any recursive operation or function defined on Fin: so to speak, Δ (the set 
of dark numbers) is the non-recursive portion of the actual infinity, and the numbers that belong 
to Δ are numbers that never can be defined in terms of numbers that belong to Fin. [...] In 
conclusion: Georg Cantor was very optimistic about his transfinite numbers and, in particular, 
this optimism was exacerbated in relation to the smallest of his infinities, that one with 
cardinality alef-zero: here, contrary to what Cantor imagined, human reason has already found 
its limits. [W. Gomide: "Dark numbers: The 'sayable' and 'unsayable' in arithmetic", 
Academia.edu (2020)] 
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Gorgias of Leontinoi   Since there is nothing larger than the infinite, the infinite does not exist 
either. [H. Diels: "Die Fragmente der Vorsokratiker", 6th ed., Weidmann, Berlin (1951) p. 280] 
 
Jehanger Grami, Angela Grami   In the present paper Cantor's proof will be refuted and the 
cardinality of the real numbers will be estimated by a constructive procedure directly and without 
an enumeration. [J. Grami, A. Grami: "Die reellen Zahlen sind abzählbar" (2010)] 
 
Atila Grande   Cantor's argument is useless outside the classroom. [A. Grande in "Proof – There 
are more real numbers than natural numbers", YouTube (2016)] 
 
Edward Grattan   A one-to-one mapping (i.e. a bijection) between natural numbers, and real 
numbers between 0 & 1, is constructed; the mapping formula is simple, direct, and easy to 
calculate and work with. The traditional Cantor diagonal argument is then traced through: but at 
each step we use the mapping formula to show that the number generated thus far, is present in 
our one-to-one mapping; thus contradicting the traditional conclusion of said diagonal argument. 
[E. Grattan: "A one-to-one mapping from the natural numbers to the real numbers" (2012)] 
 
Edward Green   Obviously all irrational numbers cannot be so specified, or they in fact would 
be countable. So most irrational numbers are poor lost souls which not only have non-repeating 
decimal representations, but can't even be named in any meaningful way – they are unknowable. 
[E. Green in "Shannon defeats Cantor = single infinity type", sci.math (10 Dec 2003)] 
 
S. Green   Kronecker was right ... there is no mathematics here. [S. Green in "Proof – There are 
more real numbers than natural numbers", YouTube (29 May 2009)] 
 
René Guénon   There can be no such thing as mathematical or quantitative infinity – the 
expression itself is meaningless, [R. Guénon: "Les Principes du Calcul infinitésimal", Gallimard, 
Paris (1946)] 
 
Paul Guldin   In my opinion no geometer will grant Cavalieri that the surface is, and could, in 
geometrical language be called "all the lines of such a figure"; never in fact can several lines, or 
all the lines, be called surfaces; for, the multitude of lines, however great that might be, cannot 
compose even the smallest surface. [P. Guldin: "Centrobaryca seu de centro gravitatis trium 
specierum quantitatis continuae", Vol. 4 (1641)] 
 
Francisco Gutierrez   Any string of 0s and 1s can be represented in this tree. Since the tree is 
infinite we can represent any infinite string, even if the string was constructed through 
diagonalization there will always be a path in the tree for that string. [...] This shows that we can 
map the natural numbers to the real numbers and therefore the real numbers are countable. [F. 
Gutierrez: "Was Cantor wrong?", Medium (2013)] 
 
Jeremy Gwiazda   There is no number of natural numbers. [J. Gwiazda: "Infinite numbers are 
large finite numbers", PhilPapers (2011)] 
 
Theodore Hailperin   [...] the actual infinite, although present in the usual completeness proofs, 
is not needed for a proper semantic foundation. [T. Hailperin: "Herbrand semantics, the potential 
infinite, and ontology-free logic", History and Philosophy of Logic 13,1 (1992) p. 69] 
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William Hale   I think that it is worthwhile to argue with the Cantorians. The arguments 
presented by the non-Cantorians do not have to influence all of Cantorians: it is enough to 
influence just a few, even one or two. [B. Hale in "Cantor's perpetual fallacy", sci.math (28 Nov 
1999)] 
 
Casper Storm Hansen   It is first argued that the reasons for being skeptical towards actual 
infinity are so strong that mathematics should not be based on it; it is much more unclear what is 
in the "Cantorian paradise" than normally assumed, and supertasks (including a new one 
presented here) imply absurd consequences of actual infinity. Instead we will have to make do 
with mental constructions and potential infinity. [C.S. Hansen: "Constructivism without 
verificationism", Doctoral Thesis, University of Aberdeen (2014) p. V] 
 
C.G. Axel Harnack   Whilst using here the new expressions for different classes of infinite 
numbers, introduced by Mr. Cantor, I'd like to remark that I cannot accept his general distinction 
between the "improper infinite" and the "proper infinite". [...] The summation of the terms of a 
convergent infinite series for example cannot be finished, but the resulting magnitude can be 
nameable. By continuing to operate with this magnitude, for instance adding further summands, 
we get the opportunity to talk about a definite continuation of the infinite process or to treat the 
notion of infinitely many summands as closed in itself. [...] {{J. Bernoulli}} advocates the 
necessity to fix the infinite as a completed magnitude. His mode of expression, there exists the 
infinitely large and the infinitely small, however is hardly admissible. Because the internal 
contradictions begin then and only then when one tries to attach to these limit notions a reality 
existing by itself in our thinking or in the outer world. [A. Harnack: "Ueber den Inhalt von 
Punktmengen", Math. Annalen 25 (1885) p. 244f] 
 
Felix Hausdorff   We have to violate the sacred axiom "totum parte majus". [F. Hausdorff: 
"Grundzüge der Mengenlehre", Veit, Leipzig (1914) p. 48] 
 
Tristan Haze   Of course, to try to refute Cantor's theorem is folly – the theorem certainly holds. 
But I think what the cranks who do try this are dimly feeling is something I feel too, only I have 
the good sense to realize that it lies not in the mathematics itself being false, but our 
interpretation of it being idiotic. [T. Haze: "Cantor's theorem and its discontents", Philosophical 
Percolations (9 Feb 2015)] 
 
Georg Wilhelm Friedrich Hegel   The infinite quantum, as infinitely big or infinitely small, 
itself is an infinite progress. It is quantum as a big or small and is simultaneously not-being of the 
quantum. The infinitely big and infinitely small are therefore pictures of the imagination which 
on closer inspection turn out as vain mist and shadows. [G.W.F. Hegel: "Wissenschaft der 
Logik", Holzinger, Berlin (2013) p. 276] 
 
Eric C.R. Hehner   It is popularly believed that Cantor's diagonal argument proves that there are 
more reals than integers. In fact, it proves only that there is no onto function from the integers to 
the reals; by itself it says nothing about the sizes of sets. Set size measurement and comparison, 
like all mathematics, should be chosen to fit the needs of an application domain. Cantor's 
countability relation is not a useful way to compare set sizes. [E.C.R. Hehner: "The size of a set" 
(2013)] 
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Martin Heidegger   Mathematics, which is seemingly the most rigorous and most firmly 
constructed of the sciences, has reached a crisis in its 'foundations'. In the controversy between 
the formalists and the intuitionists, the issue is one of obtaining and securing the primary way of 
access to what are supposedly the objects of this science. [M. Heidegger: "Being and time", 
Harper & Row, New York (1962) p. 29f] 
 
Arend Heijting   Brouwer was right that intuitionistic mathematics is the only form of 
mathematics which has a perfectly clear interpretation [...] and it is desirable that as much of 
mathematics as possible will be made constructive. [A. Heijting: "Address to Professor A. 
Robinson", Nieuw Arch. Wisk. (3) 21 (1973) p. 135] 
 
Geoffrey Hellman   What sense are we to make of the idea that certain sets, say highly 
inaccessible ones, are merely possible but not actual, that they might have existed but in fact do 
not? [...] "Which ones then are actual?", one may well ask. Where is the line between actual and 
merely possible to be drawn? [G. Hellman: "Maximality vs. extendability: Reflections on 
structuralism and set theory" (2002) p. 24] 
 
Jacques Herbrand   Herbrand thinks, however, that to require an infinite sequence of structures 
to be a sequence of extensions would necessarily include some form of the Axiom of Choice, 
which he rejects out of principle [...] Actually, he never even mentions any infinite model of 
arithmetic. [C.-P. Wirth et al.: "Lectures on Jacques Herbrand as a logician", arXiv (2014) pp. 41 
& 47] 
 
Charles Hermite   The impression that Cantor's memoirs make on us is distressing. Reading 
them seems, to all of us, to be a genuine torture ... . While recognizing that he has opened up a 
new field of research, none of us is tempted to pursue it. For us it has been impossible to find, 
among the results that can be understood, a single one having current interest. The 
correspondence between the points of a line and a surface leaves us absolutely indifferent and we 
think that this result, as long as no one has deduced anything from it, stems from such arbitrary 
methods that the author would have done better to withhold it and wait. [C. Hermite, letter to G. 
Mittag-Leffler (1883)] 
 
I never met a mathematician who to a higher degree than Hermite has been a realist in the sense 
of Plato, and yet I can claim that I never met a more decided opponent of the Cantorian ideas. 
This is the more a seeming contradiction, as he himself stated frankly: I am an opponent of 
Cantor because I am a realist. [H. Poincaré: "Letzte Gedanken: Die Mathematik und die Logik", 
Akademische Verlagsgesellschaft, Leipzig (1913) p. 162f] 
 
Gerhard Hessenberg   Also the infinitely many digits of a decimal fraction can successively be 
determined in an arbitrary way [...]. But a statement about the number defined by that process, 
which concerned only that number, would be possible only after completion of the process – and 
this process cannot be completed. [...] It is really paradox, to furnish this procedure, which does 
not reach an end, eventually with an end. But this paradox is founded in the notion of the set W, 
and it is clear from the outset that with the possibility of a subset of M being equivalent to W the 
gates are wide open for illogicality. [G. Hessenberg: "Grundbegriffe der Mengenlehre", offprint 
from Abhandlungen der Fries'schen Schule, Vol. I, no. 4, Vandenhoeck & Ruprecht, Göttingen 
(1906) §§ 103 & 104] 
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Craig Hicks   The non intuitive (and also not useful from an engineering perspective) feature of 
Ross' analysis is the "jump" in the limit to 0, with no convergence. [C. Hicks in "At each step of a 
limiting infinite process, put 10 balls in an urn and remove one at random. How many balls are 
left?", CrossValidated.StackExchange (21 Dec 2017)] 
 
David Hilbert   R. Dedekind has clearly recognized the mathematical difficulties in founding the 
notion of number and has delivered in an outmost sharp-minded way a construction of the theory 
of whole numbers for the first time. But I would call his method a transcendental one in so far as 
he derives the proof of the existence of the infinite in a way the basic idea of which, although 
being utilized by philosophers, I cannot recognize as possible and save because of the inevitable 
contradiction caused by the required notion of the totality of all things. [D. Hilbert: "Über die 
Grundlagen der Logik und der Arithmetik", A. Krazer (ed.): Verh. III. Intern. Math.-Kongr. in 
Heidelberg (1904), Teubner, Leipzig (1905) p. 175] 
 
[...] when I found it, I thought in the beginning that it causes invincible problems for set theory 
that would finally lead to the latter's eventual failure; now I firmly believe, however, that 
everything essential can be kept after a revision of the foundations, as always in science up to 
now. I have not published this contradiction. [D. Hilbert: "Logische Principien des 
mathematischen Denkens" (1905), lecture notes by E. Hellinger, Library of the Mathematics 
Seminar of the University of Göttingen, p. 204] 
 
Finally we will remember our original topic and draw the conclusion of all our reflections. The 
total result then is this: The infinite is nowhere realized; it is neither present in nature nor 
admissible as the foundation of our rational thinking – a remarkable harmony between being and 
thinking. [D. Hilbert: "Über das Unendliche", Math. Annalen 95 (1925) p. 190] 
 
Jon Ho   [...] what Cantor proposed [...] is an idea where any attempt at a definition will simply 
lead to contradiction. I mean does the uppermost infinity and lowermost infinity even make 
sense? [J. Ho in "Georg Cantor was wrong about infinity", TED Conversations Archives (2012)] 
 
Thomas Hobbes   Hobbes claimed that anything we conceive of must have a finite magnitude. 
Consequently, when we say that something is infinite, all we can justifiably mean is that "we are 
not able to conceive the ends, and bounds of the thing named; having no conception of the thing, 
but of our own inability". [...] Hence, actual infinity being ruled out, in Hobbes' mathematical 
universe, every figure at every stage of production is finite. [P. Mancosu: "Philosophy of 
mathematics and mathematical practice in the seventeenth century", Oxford University Press, 
Oxford (1996) p. 146] 
 
Otto Hölder   I consider an infinite totality, for instance the totality of the terms of an infinite 
sequence only then as well-defined, if there is a formulation given, i.e., if there is a general rule 
existing according to which all terms of the sequence are given simultaneously. [O. Hölder, letter 
to K. Weierstrass, quoted in Edoardo Confalonieri: "Beiträge zur Geschichte der mathematischen 
Werke von Karl Weierstrass, Teil II" (2013) p. 121] 
 
Igor Hrncic   Unfortunately, Cantor was wrong. His notion of transfinite bijection is flawed. 
Cantor introduced this notion of transfinite bijection as the additional axiom, even though without 
even realising this. [I. Hrncic: "The infinitesimal error", viXra (2017)] 
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Richard L. Hudson   That a list can be both complete and endless is a contradiction. [R.L. 
Hudson: "Cantor diagonal argument – reexamined", viXra (2018)] 
 
Guy N. Hurst   In reality, you could never come up with the diagonal number because it would 
be infinitely long – I can come up with a counter proof by saying the matching number is always 
further down the list. [G.N. Hurst in "Different infinites?", sci.math (29 Oct 2000)] 
 
Edmund G. Husserl   It is clear: for a strictly logical version we must not imply more to the 
notion infinite set than what is logically admissible; and that is mainly not the absurd intention of 
forming a real set. Logically unassailable is the idea of a certain unbounded process as well as the 
idea of everything falling into its domain. That and nothing more the notion of infinite set may 
absorb. [E.G. Husserl: "Philosophie der Arithmetik", Vol. I, Halle, Pfeffer (1891) p. 249] 
 
Aleksandar Ignjatovic   Some say that infinite processes can be completed, others say they 
definitely cannot be. A third group says depends on the situation. That group then may defer from 
one concrete situation to the next. Another group says everything is allowed which brings us to 
the right results (and those results happen to be based on that group's preference). Some make a 
difference between potential and actual infinity, others disregard this difference completely. So it 
is pretty chaotic out there. [...] My own preferences are that infinite processes cannot be 
completed under any circumstances and that potential infinity should be used instead of actual. 
For example, ◊2 can be thought of as, instead of having infinitely many decimals, in fact having 
as many as we want or need but finitely many. Pretty much like we practically use it, but in 
theory too. [A. Ignjatovic in "The law of logical honesty and the end of infinity", YouTube (23 
Apr 2016)] 
 
Eberhard Illigens   From the above it should follow that the discussed theory has not succeeded 
in founding a general notion of number and to introduce such numbers which denote a multitude 
or quantity not expressible by a rational number; [E. Illigens: "Zur Weierstrass'-Cantor'schen 
Theorie der Irrationalzahlen", Mathematische Annalen 33 (1889) p. 460] 
 
Aleric Inglewood   In my eyes, a number either exists or not. If it exists it may or may not be 
possible to describe it using decimals, but it should be possible to describe it, or there is no proof 
that it exists. For example the square-root of 2 exists because it is the solution to "x squared 
equals two", that is larger than zero. [A. Inglewood in "Difficulties with real numbers as infinite 
decimals I", YouTube (3 May 2012)] 
 
I know you don't believe that infinite is a meaningful concept, and neither do I (never did, not 
since I first heard about it). [A. Inglewood in "Problems with limits and Cauchy sequences", 
YouTube (23 May 2012)] 
 
David Isles   [...] the "natural numbers" of today are not the same as the "natural numbers" of 
yesterday. Although the possibility of such denotational shifts remains inconceivable to most 
mathematicians, it seems to be more compatible with the history both of the cultural growth (and 
of growth in individuals) of the number concept than is the traditional, Platonic picture of an 
unchanging, timeless, and notation-independent sequence of numbers. [D. Isles: "What evidence 
is there that 2^65536 is a natural number?", Notre Dame Journal of Formal Logic 33,4 (1992) p. 
478] 
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Dimitar Ivanov   If we also make the list of naturals that the reals are matched with incomplete, 
by say only using even numbers instead, we're faced with a scenario where the missing reals and 
the missing odds makes both lists incomplete. D. Ivanov in "I think mathematicians have got it 
wrong with infinity. Infinity is infinity. One infinity cannot be larger than another infinity. What 
do you think?", Quora (22 Sep 2018)] 
 
Mike Jacobs   If the theorem assumes that there are an infinite number of individual elements of 
matter and we know this is not the case for real matter then it is not a paradox. It is just a waste of 
time. I read in the book by Gibbons "Shrodingers Kittens etc etc" where he spends a few pages 
spouting out that there are profound physical consequences of the BTT {{Banach-Tarski 
Theorem}} in quantum theory. That is too incredible to be true. [...] It is possible to prove 
anything if you assume false statements. Life is too short to worry about hypothetical 
mathematical constructs. [M. Jacobs in "Banach Tarski paradox", sci.math (6 Nov 1998)] 
 
Jimmy James   [...] there is no end to the process of adding 10 balls and removing one. [J. James 
in "At each step of a limiting infinite process, put 10 balls in an urn and remove one at random. 
How many balls are left?", CrossValidated.StackExchange (30 Nov 2017)] 
 
William James   When I spoke of my 'mystification', just now, I had partly in mind the 
contemptuous way in which some enthusiasts for the 'new infinite' treat those who still cling to 
the superstition that 'the whole is greater than the part'. [...] I feel considerable shyness in 
differing from such superior minds {{like Russell} yet what can one do but follow one's own dim 
light? [W. James: "Some problems of philosophy", Longmans, New York (1916) pp. 179 & 183] 
 
Colin James III   Hence Cantor's diagonal argument is not supported {{by the Meth8 modal 
logic model checker}}. [C. James III: "Refutation of Cantor's diagonal argument", viXra (2017)] 
 
Edwin T. Jaynes   Infinite-set paradoxing has become a morbid infection that is today spreading 
in a way that threatens the very life of probability theory, and it requires immediate surgical 
removal. [...] we sail under the banner of Gauss, Kronecker, and Poincaré rather than Cantor, 
Hilbert, and Bourbaki. [...] we have to recognize that there are no really trustworthy standards of 
rigor in a mathematics that has embraced the theory of infinite sets. [...] We are, like Poincaré and 
Weyl, puzzled by how mathematicians can accept and publish such results {{as the Hausdorff 
sphere paradox}}; why do they not see in this a blatant contradiction which invalidates the 
reasoning they are using? [...] my belief in the existence of a state of knowledge which considers 
congruent sets on a sphere equally probable, is vastly stronger than my belief in the soundness of 
the reasoning which led to the Hausdorff result. Presumably, the Hausdorff sphere paradox and 
the Russell Barber paradox have similar explanations: one is defining weird sets with self-
contradictory properties, so, of course, from that mess it will be possible to deduce any absurd 
proposition we please. [...] For now, it is the responsibility of those who specialize in infinite-set 
theory to put their own house in order before trying to export their product to other fields. Until 
this is accomplished, those of us who work in probability theory or any other area of applied 
mathematics have a right to demand that this disease, for which we are not responsible, be 
quarantined and kept out of our field. In this view, too, we are not alone; and indeed have the 
support of many non-Bourbakist mathematicians. [E.T. Jaynes: "Probability theory: The logic of 
science", edited by G.L. Bretthorst, Cambridge Univ. Press (2003) pp. XXII & XXVII & 672f] 
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Pray Jei   There is only one Infinite, [P. Jei in "Here is my infinite list of reals! Count 'em!", 
sci.math (1 Mar 2011)] 
 
Henry Jeynes   I would say infinity is just infinity. Infinity never ends. If infinity ended, it would 
really be finite. [H. Jeynes in "I think mathematicians have got it wrong with infinity. Infinity is 
infinity. One infinity cannot be larger than another infinity. What do you think?", Quora (24 Aug 
2018)] 
 
Joseph F. Johnson   The universe uses real numbers, but only uses sets which are measurable, is, 
I think, the moral to be drawn from the Banach-Tarski paradox. Anyway, functional analysis only 
uses measurable functions ... . [J.F. Johnson in "Does the Banach-Tarski paradox contradict our 
understanding of nature?", Physics.StackExchange (10 Apr 2012)] 
 
Pravin K. Johri, Alisha A. Johri   There aren't infinite (actual) infinities. Not even one! [P.K. 
Johri, A.A. Johri: "The flaw in mathematics" (2016)] 
 
Peter P. Jones   A simple application of combinatorics with set theory suggests that the real 
numbers are countable. [P.P. Jones: "P(N) and countability", ResearchGate (2017)] 
 
Hans Joss   Cantor's proof is about dogmatic stubbornly-religious trust. [H. Joss in "Cantors 
Diagonalbeweis widerlegt", de.sci.mathematik (12 Mar 2005)] 
 
Dieter Jungmann   The definition of equicardinality of infinite sets is logically doubtful. Its 
consistency never has been proved but is presumed. [D. Jungmann in "Fragen an Dieter 
Jungmann", de.sci.mathematik (26 Jan 2001)] 
 
Herman Jurjus   But aren't there people out there who can imagine 'potentially' infinite sets, but 
not 'actual' infinite sets? To those people, would Cantor's argument make sense? [H. Jurjus in 
"Problem with Cantor's diagonal argument", sci.math (14 Feb 2002)] 
 
Theodore Kaczynski   The entire structure of pure mathematics is a monstrous swindle, simply a 
game, a reckless prank. You may well ask: "Are there no renegades to reveal the truth?" Yes, of 
course. But the facts are so incredible that no one takes them seriously. So the secret is in no 
danger. [Wikiquote] 
 
László Kalmár   I think, second order categoricity results are deceiving: they serve only to 
puzzle ordinary mathematicians who do not know enough logic to distinguish between first order 
and second order methods. One can say humorously, while first order reasonings are convenient 
for proving true mathematical theorems, second order reasonings are convenient for proving false 
metamathematical theorems. [L. Kalmár: "On the role of second order theories" in I. Lakatos 
(ed.): "Problems in the philosophy of mathematics", North Holland, Amsterdam (1967) p. 104] 
 
Akihiro Kanamori, Menachem Magidor   The adaptation of strong axioms of infinity is thus a 
theological venture, involving basic questions of belief concerning what is true about the 
universe. [A. Kanamori, M. Magidor: "The evolution of large cardinal axioms in set theory" in 
G.H. Müller und D.S. Scott (eds.): "Higher set theory", Springer, Berlin (1978) p. 104] 
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Immanuel Kant   The true (transcendental) notion of the infinite is that the successive synthesis 
of the unit in traversing of a quantum never can be finished. [...] Because the notion of the totality 
itself is in this case the idea of a completed synthesis of the parts, and this completion, and 
therefore also its notion, is impossible. [I. Kant: "Critik der reinen Vernunft", Hartknoch, Riga 
(1781) chapter 77] 
 
Jean-Michel Kantor   One central agent of the connection between mathematics and religion is 
the concept of infinity (but it is not the only one!). [...] until the Cantorian parthenogenesis 
between mathematics and religion [...] A second theme running through many chapters of the 
book is the search for a global vision uniting mathematics and religion. [J.-M. Kantor: "Review 
of Teun Koetsier and Luc Bergmans (eds.): 'Mathematics and the Divine. A Historical Study', 
Elsevier, Amsterdam (2005)", The Mathematical Intelligencer 30,4 (2008) p. 70f] 
 
Beatriz Karwai   [...] you can indeed create all real numbers in a countable manner. So the 
cardinality of real numbers is the same as the cardinality of natural numbers. [B. Karwai in 
"Proof – There are more real numbers than natural numbers", YouTube (2019)"] 
 
Bassam King Karzeddin   The endless digits numbers (without being all as zeros) are not 
accepted in maths if they are on the left of the decimal notation, so must be the case on the right 
direction of the decimal notation, both are divergent in two opposite directions, one to the large 
infinite, the other towards the tiny infinitum. [B.K. Karzeddin in "Only an absolute moron makes 
statements such as these ...", sci.math (8 Oct 2016)] 
 
Felix Kaufmann   If you understand – contrary to the results of our investigations – the diagonal 
procedure as a proof of the existence of uncountable transfinite domains, the question rises how 
the Löwenheim-Skolem antinomy is compatible with the diagonal procedure. [...] The rise to 
higher cardinalities than ¡0 is excluded. It follows in particular that a meaning cannot be attached 
to the notion of the set of all decimal fractions, the "number continuum". So the continuum 
problem disappears. [F. Kaufmann: "Das Unendliche in der Mathematik und seine 
Ausschaltung", Wissenschaftliche Buchgesellschaft Darmstadt (1968) pp. 163 & 168] 
 
Jakob Kellner   Of course we know that, e.g., the Axiom of Choice is required for many 
mathematical theorems (such as: every vector space has a basis), which in turn can be applied in 
physics. However, on closer inspection it turns out that for all concrete instances that are used, 
the axiom of choice is not required. The same applies even for the existence of an infinite set: 
One can use a very constructive, "finitary" form of mathematics that is perfectly sufficient for 
physics. [...] the old intuition: "if nontrivial set theory, non-constructive mathematics or a non-
measurable set is used in an essential way, it cannot be physically relevant". [J. Kellner: 
"Pitowsky's Kolmogorovian models and super-determinism", arXiv (2016) p. 11f] 
 
Joseph Kempenstein   I have found a spectacular contradiction in the analysis based upon ZFC, 
which once and for all should teach the Cantor disciples here otherwise. [J. Kempenstein: "Klarer 
Widerspruch in der mengenbasierten Analysis", de.sci.mathematik (3 Feb 2006)] 
 
Peter Kepp   The second diagonal argument is a circular argument, the conclusions are not valid. 
[P. Kepp: "Logik des Formalismus, Teil V" (2017)] 
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Mohammad Shafiq Khan   It is a settled issue in philosophy that infinity cannot exist. [M.S. 
Khan in D. Chow: "No end in sight: Debating the existence of infinity", Live Science (20 Sep 
2013)] 
 
Marcos Kiesekamp   You quote Ackermann, a genius mathematician, who however thought in 
another world. He would have been in best correspondence with WM, but his view is considered 
as outdated today. M. Kiesekamp: "Mit Meta-Mathematik gegen den Reduktionismus", 
de.sci.mathematik (1 Feb 2020)] 
 
You mention that Cantor's proof of the cardinality of the power set is wrong. That is trivial from 
the logical standpoint. I know and understand that. [...] Every proof of uncountability needs the 
diagonal argument, sometimes it is well hidden, but it can only be concealed. Therefore no 
logical proof of uncountability is possible. M. Kiesekamp: "Mit Meta-Mathematik gegen den 
Reduktionismus", de.sci.mathematik (1 & 2 Feb 2020)] 
 
Torsten Kildal   I don't believe in a "definite" infinite. Infinite is an indefinite magnitude. [T. 
Kildal in "B-Baum", de.sci.mathematik (10 Jun 2005)] 
 
Minseong Kim   This paper exposes a contradiction in the Zermelo-Fraenkel set theory with the 
axiom of choice (ZFC). [M. Kim: "Inconsistency of the Zermelo-Fraenkel set theory with the 
axiom of choice and its effects on the computational complexity", arXiv (2016)] 
 
Laurence Kirby   I argue for the use of the adjunction operator (adding a single new element to 
an existing set) as a basis for building a finitary set theory. [L Kirby: "Finitary set theory", Notre 
Dame Journal of Formal Logic 50,3 (2009) p. 227] 
 
Morris Kline   The hope of finding objective, infallible laws and standards has faded. The Age 
of Reason is gone. [...] What is characteristic of pure mathematics is its irrelevance to immediate 
or potential applications. [...] Should one design a bridge using theory involving infinite sets or 
the axiom of choice? Might not the bridge collapse? [...] No proof is final. New counterexamples 
undermine old proofs. The proofs are then revised and mistakenly considered proven for all time. 
But history tells us that this merely means that the time has not yet come for a critical 
examination of the proof. [...] Mathematics has been shorn of its truth; it is not an independent, 
secure, solidly grounded body of knowledge. [M. Kline: "Mathematics: The loss of certainty", 
Oxford University Press (1980) pp. 7 & 285 & 313 & 351f] 
 
Teun Koetsier, Luc Bergmans   Mathematics in its relation with the divine has played a special 
role in the course of history. [...] Mathematics is abstract and it often seems absolute, universal, 
eternal and pure. More than other kinds of knowledge it possesses characteristics that we 
associate with the divine. [T. Koetsier, L. Bergmans: "Mathematics and the divine: A historical 
study", Elsevier (2005) p. 4] 
 
Andrej Nikolaevič Kolmogorov   [...] objects whose existence is postulated by this axiom 
{{Zermelo's axiom of choice}} appeared to be not only useless but sometimes destructive to the 
simplicity and rigorousness of crucial mathematical theories. [A.N. Kolmogorov: "Modern 
debates on the nature of mathematics", Nauchae Slovo 6 (1929) pp. 41-54] 
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Kalevi Kolttonen   In this article I will suggest an alternative definition of cardinality that I 
regard as more natural than Cantor's definition. Using the alternative definition, the cardinality of 
Ù and — is actually proven to be equal. [K. Kolttonen: "Alternative definition of cardinality" (18 
Oct 2018)] 
 
Julius König   It is easy to show that the finitely defined elements of the continuum determine a 
subset of the continuum that has cardinal number ¡0. [...] The assumption that the continuum can 
be well-ordered therefore has lead to a contradiction. [J. König: "Über die Grundlagen der 
Mengenlehre und das Kontinuumproblem", Math. Ann. 61 (1905) pp. 156-160] 
 
Nancy Kopell, Gabriel Stolzenberg   [...] contemporary mathematics has imposed upon itself 
arbitrary limits. [...] The arbitrary limits to which we refer have their origins in a revolutionary 
change in mathematical world-view which took place during the period 1870 - 1930 (i.e., the 
period that begins with Weierstrass' "rigorous" codification of analysis and ends with Hilbert's 
formalist program for "saving" it). Before 1870, pure mathematics had a flourishing empirico-
inductive tradition which included, though not as its "foundations", a growing logico-deductive 
component. The hallmark of the empirico-inductive tradition was its primary concern with the 
phenomena of mathematics. Its theories were theories about the phenomena, just as in a physical 
theory. [...] By 1930, the situation had changed completely. By then, there was a nearly universal 
acceptance of the modern strictly logico-deductive conception of pure mathematics and the 
empirico-inductive tradition had been virtually suppressed. [...] Today the "official" position is 
still that mathematics is not about anything. Yet, for those who are not content merely to play a 
game, the need for meaning is as real as was the need for rigor. [N. Kopell, G. Stolzenberg: 
"Commentary on Bishop's talk", Historia Math. 2,4 (1975) pp. 519-521] 
 
András Kornai   This paper takes the first steps in developing a theory of "explicit finitism" 
which puts explicit limits on the size of finite objects. [A. Kornai: "Explicit finitism", 
International Journal of Theoretical Physics 42,2 (2003) p. 301] 
 
Kazuhiko Kotani   Finally, the diagonal argument is shown to be inapplicable to the sequence of 
the potentially infinite number of potentially infinite binary fractions, which contains all n-bit 
binary fractions in the interval [0,1) for any n. [K. Kotani: "A refutation of the diagonal 
argument", Open Journal of Philosophy 6 (2016) p. 282] 
 
Gerhard Kowalewski   Cantor considered the sequence of his alephs as "something holy", as 
"the steps that lead to the throne of God". [G. Kowalewski: "Bestand und Wandel", München 
(1950) p. 201] 
 
Mizik Kreyol   There can only be one Infinity and it is necessarily Absolute. [M. Kreyol in "The 
law of logical honesty and the end of infinity", YouTube (2017)] 
 
Vivek Krishna   It seems like the original argument is relying on the assumption that list of 
natural numbers ends somewhere and we come up with a new decimal number to disprove one-
one correspondence. [V. Krishna: "I don't understand the concept of different sizes of infinity", 
Math.StackExchange (30 Oct 2016)] 
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Leopold Kronecker   Often it has been said that mathematics should start with definitions. The 
mathematical theorems should be deduced from the definitions and the postulated principles. But 
definitions themselves are an impossibility, as Kirchhoff used to say, because every definition 
needs notions which have to be defined themselves, and so on. We cannot, like Hegel's 
philosophy does, develop the being from the nothing. [...] The whole mathematics is there to be 
applied. [...] Mathematics is a natural science – not better, not more complete, and not simpler the 
phenomena can be described than mathematically. [...] If nothing else but the digits up to a 
certain position are known of decimal fractions, then not even two of them can be added. [...] 
Again and again it is confused whether a decimal fraction is known up to a certain digit or 
whether its formula Σn=1

¶ f(n)/10n is known, i.e., f(n) for every n. [L. Kronecker: "Über den 
Begriff der Zahl in der Mathematik", Public lecture in summer semester 1891 at Berlin – 
Kronecker's last lecture. Retranscrit et commenté par Jacqueline Boniface et Norbert 
Schappacher: Revue d'histoire des mathématiques 7 (2001) pp. 225f & 251 & 252f & 268f] 
 
I believe that we will succeed one day to "arithmetize" the whole contents of all these 
mathematical theories, that is to base it solely on the concept of number in its stricter sense, i.e., 
to get rid of the added modifications and extensions (namely the irrational and continuous 
magnitudes) which mainly have been caused by the applications on geometry and mechanics. [K. 
Hensel (ed.): "Leopold Kroneckers Werke" III, Teubner, Leipzig (1895-1931) p. 253] 
 
I don't know what predominates in Cantor's theory – philosophy or theology, but I am sure that 
there is no mathematics there. {{I could not verify this quote, but Cantor authenticates it in a 
letter to G. Mittag-Leffler of 9 Sep 1883:}} "Kronecker, who visited me at the beginning of July, 
declared with the friendliest smile that he had much correspondence about my last paper with 
Hermite in order to demonstrate to him that all that was only 'humbug'." 
 
Lucas B. Kruijswijk   At the moment you say that infinite sets are of the same size when there 
exists a bijection, then you already introduce some of the choices Cantor made. But those are 
choices, not proofs. [...] there are at least two choices you can make: a) You may refer to — even 
when there is no logical system that can list all its elements (this is Cantor's choice). b) You must 
be aware that — is never complete in your logical system (alternative to Cantor). I don't think 
choice b is very attractive, but to my opinion it is a way you can try to go. However, I always 
questioned if saying that |Ù| < |—| has any more meaning than saying that irrational numbers are 
green. [...] I think the people that don't like Cantor have the greatest problem with the fact that 
whatever system you use, — contains numbers which can not be expressed. At least I can say 
about it, it is a fair concern. [L.B. Kruijswijk in "Shannon defeats Cantor = single infinity type", 
sci.math (11 & 12 Dec 2003)] 
 
Peng Kuan   The diagonal number created by Cantor's diagonal argument is the "new guest" in 
the "hotel" of the list which has infinitely many members. So, it can be fitted in the list. [P. Kuan: 
"Cardinality of the set of binary-expressed real numbers", Academia (2015) p. 3] 
 
Gustavo Lacerda   answers these questions: Do you agree that the continuum hypothesis is a 
meaningful statement that has a definite truth value, even if we do not know what it is? "No." Do 
you agree that the axiom which states the existence of an inaccessible cardinal is a meaningful 
statement that has a definite truth value, even if we do not know what it is? "No." [G. Lacerda in 
"Ten questions about intuitionism", intuitionism.org (2005)] 
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Joseph-Louis de Lagrange   It is well known that higher mathematics continually uses infinitely 
large and infinitely small quantities. Nevertheless, geometers, and even the ancient analysts, have 
carefully avoided everything which approaches the infinite; and some great modern analysts hold 
that the terms of the expression "infinite magnitude" contradict one another. The Academy hopes, 
therefore, that it can be explained how so many true theorems have been deduced from a 
contradictory supposition, and that a principle can be delineated which is sure, clear – in a word, 
truly mathematical – which can appropriately be substituted for "the infinite". [J.-L. Lagrange: 
"Prix proposes par l'Academie Royale", Nouveaux memoires de l'Academie Royale des Sciences 
et Belles Lettres de Berlin, Vol. 15, Decker, Berlin (1784) pp. 12-14] 
 
Detlef Laugwitz   [...] according to our view it is meaningless to talk about the set of all points of 
the continuum. [...] Numbers facilitate counting, measuring, and calculating. [...] The numbers 
belong to the realm of thinking, the continuum belongs to the realm of visualizing. I repeat, for 
me the continuum is not identical with the set —. [...] the logical irrationality results from 
transforming the infinitely increasing number of digits of the potential infinite into an actual 
infinite and identifying ◊2 with the never ending decimal representation 1.4142... [D. Laugwitz: 
"Zahlen und Kontinuum", Bibl. Inst., Zürich (1986) p. 13ff] 
 
Shaughan Lavine   A system of finite mathematics is proposed that has all of the power of 
classical mathematics. [...] The finite mathematics of sets is comprehensible and usable on its 
own terms, without appeal to any form of the infinite. [S. Lavine: "Finite mathematics", Synthese 
103,3 (1995) p. 389]  
 
Henri Léon Lebesgue   {{Fréchet and Lebesgue refused to present Tarski's theorem: (For all 
infinite sets X there exists a bijection of X to XäX) fl (Axiom of Choice).}} Fréchet wrote that an 
implication between two well known propositions is not a new result. Lebesgue wrote that an 
implication between two false propositions is of no interest. [J. Mycielski: "A system of axioms 
of set theory for the rationalists", Notices of the AMS 53,2 (2006) p. 209] 
 
Gottfried Wilhelm Leibniz   Whenever it is said that a certain infinite series of numbers has a 
sum, I am of the opinion that all that is being said is that any finite series with the same rule has a 
sum, and that the error always diminishes as the series increases, so that it becomes as small as 
we would like. For numbers do not in themselves go absolutely to infinity, since then there would 
be a greatest number. [G.W. Leibniz: "Numeri Infiniti" (1676) A VI 3, p. 503] 
 
Leibniz's actual but syncategorematic infinite is thus distinct from Aristotle's potential infinite, in 
that it embraces an infinity of actually existents, but it also differs profoundly from Cantor's 
theory of the actual infinite as transfinite in that it denies the existence of infinite collections or 
sets that are the basis of transfinite set theory. [Richard T.W. Arthur: "Leibniz's actual infinite in 
relation to his analysis of matter" (2010)] 
 
Mary Leng   Mary Leng defends a philosophical account of the nature of mathematics which 
views it as a kind of fiction. On this view, the claims of our ordinary mathematical theories are 
more closely analogous to utterances made in the context of storytelling than to utterances whose 
aim is to assert literal truths. [M. Leng: "Mathematics and reality", Oxford Univ. Press (2010)] 
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Antonio León   It seems reasonable that Plato were platonic in Plato's times, but is certainly 
surprising the persistence of that primitive way of thinking in the community of contemporary 
mathematicians [...] But for those of us who believe in the organic nature of our brains and in its 
abilities of perceiving and knowing modelled through more than 3600 million years of organic 
evolution, platonism has no longer sense. And neither self-reference nor the actual infinity may 
survive away from the platonic scenario. [A. Leon Sanchez: "Extending Cantor's paradox", arXiv 
(2008) p. 16f] 
 
Michael Lew   There will be infinitely many balls in the urn at 12 PM. [M. Lew in "At each step 
of a limiting infinite process, put 10 balls in an urn and remove one at random. How many balls 
are left?", CrossValidated.StackExchange (24 Nov 2017)]  
 
Keith A. Lewis   1. If a number is indescribable and unrepresentable, it is irrelevant. The set of 
relevant numbers has cardinality equal to the naturals. 2. No continuum has been discovered in 
physics – everything seems to change in finite units called quanta. That's the real world. 3. The 
Dedekind cut paradox. Rationals on [0,1] are totally ordered and countable, yet there are an 
uncountable number of cuts based on this total ordering. [K.A. Lewis in "Objections to Cantor's 
theory (Wikipedia article)", sci.math (19 Jul 2005)] 
 
Seth Lloyd   "Information is physical." This statement of Landauer has two complementary 
interpretations. First, information is registered and processed by physical systems. Second, all 
physical systems register and process information. [S. Lloyd: "Computational capacity of the 
universe", arXiv (2001)] 
 
John Locke   The infinity of numbers, to the end of whose addition every one perceives there is 
no approach, easily appears to any one that reflects on it. But, how clear soever this idea of the 
infinity of number be, there is nothing yet more evident than the absurdity of the actual idea of an 
infinite number. [J. Locke: "An essay concerning human understanding" Chapter XVII: Of 
infinity (1690)] 
 
Paul Lorenzen   During the renaissance, in particular with Bruno, the actual infinite is carried 
over from God to the world. The finite world models of present science show clearly, how the 
superiority of the idea of an actual infinite has come to an end with classical (modern) physics. In 
this light the inclusion of the actual infinite into mathematics, which explicitly began during the 
end of the last century with G. Cantor, appears disconcerting. In the intellectual framework of our 
century – in particular when considering existential philosophy – the actual infinite appears really 
as an anachronism. [...] In arithmetic [...] there does not exist a motive to introduce the actual 
infinite. The surprising appearance of an actual infinite in modern mathematics therefore can only 
be understood by taking geometry into consideration. [...] A finite decimal fraction can be written 
out, an infinite one can never be written. To talk about a sequence of infinitely many digits is 
therefore – if it is not nonsense at all – at least a hazardous business. [...] Similar to the 
elimination of the infinitely small at that time {{in the 19th century when the naive notion of 
continuity was replaced by the ε-δ-definition}} now the infinitely great (more precisely the actual 
infinite) has to be shown dispensable. The motivating force of this reform is not based on a 
haughty purism but on the wish to restore the absolute safety and reliability of mathematics that 
presently is in danger to be lost in the set theoretic contradictions or their circumvention by rather 
arbitrary set theoretic formalisms. [P. Lorenzen: "Das Aktual-Unendliche in der Mathematik", 
Philosophia naturalis 4 (1957) pp. 3-11] 
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Much more difficult, it seems to me, will it be to meet the objections raised on the moral level by 
the formalists, namely that Constructivists should not waste their time, especially that they should 
not try to persuade other people to waste their time too, with cumbersome and perhaps unusual 
attempts to reconstruct the achievements of the traditionally given higher parts of mathematics. 
Instead, they should join the big game of axiomatic set theory: "You will become famous if you 
please famous people – and all famous mathematicians like axiomatic set theory". [...] Of course, 
then we would have no text-books with theorems about the hierarchy of transfinite cardinals. But 
we have also no text-books any more about the hierarchy of angels. No one seriously regrets this 
– though of course scholastic theology could be formalized. [P. Lorenzen: "Constructive 
mathematics as a philosophical problem", Compositio Mathematica 20 (1968) p. 137f] 
 
Harvey Lubin   The concept of "infinity" is anti-science, and the use of infinity as a constant by 
mathematicians and scientists, whether they know it or not, plays into the hands of advocates of 
religions and other forms of the supernatural, who also describe the objects of their beliefs as 
infinite. [...] Unfortunately, the recognition of infinity in science is also an excellent justification 
for zealots to convince others that, since science accepts infinity as a reality, deities that are just 
as infinite and unknowable are also reality. [H. Lubin in "To settle infinity dispute, a new law of 
logic", Quanta Magazine (20 Jul 2014)] 
 
Laureano Luna   As I see it, WM has clearly made the point that there is a pairing procedure 
able to produce a one-one application between nodes and paths as the construction of the binary 
tree goes on. [...] So, if the binary tree is the outcome in the limit of a constructive procedure, the 
pairing procedure will end up in a bijection between the set of all nodes and the set of all paths. 
[LauLuna: "WM on the binary tree", sci.logic (19 Oct 2008)] 
 
Laureano Luna, William Taylor   Cantor's proof that the powerset of the set of all natural 
numbers is uncountable yields a version of Richard's paradox when restricted to the full definable 
universe, that is, to the universe containing all objects that can be defined not just in one formal 
language but by means of the full expressive power of natural language: this universe seems to be 
countable on one account and uncountable on another. [L. Luna, W. Taylor: "Cantor's proof in 
the full definable universe", Australasian Journal of Logic 9 (2010) p. 10] 
 
Nikolai Nikolaevich Luzin   I cannot consider the set of positive integers as given, for the 
concept of the actual infinite strikes me as insufficiently natural to consider it by itself. [N.N. 
Luzin, letter to K. Kuratowski, quoted in N.Y. Vilenkin: "In search of infinity", Birkhäuser, 
Boston (1995) p. 126]  
 
Saunders Mac Lane   The clear understanding of formalism in mathematics has led to a rather 
fixed dogmatic position which reads: Mathematics is what can be done within axiomatic set 
theory using classical predicate logic. I call this doctrine the Grand Set Theoretic Foundation. 
[...] It is my contention that this Grand Set Theoretic Foundation is a mistakenly one-sided view 
of mathematics and also that its precursor doctrine (Dedekind cuts) was also one-sided. [...] 
Second, set theory is largely irrelevant to the practice of most mathematics. Most professional 
mathematicians never have occasion to use the Zermelo-Fraenkel axioms, while others do not 
even know them. [S. Mac Lane: "Mathematical models: A sketch for the philosophy of 
mathematics", The American Mathematical Monthly, Vol. 88,7 (1981) p. 467f] 
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Menachem Magidor   A typical reaction of a certain mathematical community when one of its 
central problems was shown to be independent is to try and ostracize the offending problem by 
labeling it as "ill defined", "vague" etc. [...] I find this kind of reaction somewhat intellectually 
dishonest. [M. Magidor: "Some set theories are more equal", ResearchGate (2015)] 
 
Ron Maimon   I consider Banach Tarsky type results to be far worse than unphysical, they go so 
far as to be non-mathematical – they should be considered false even as pure mathematics. [...] 
There is absolutely no mathematical theorem which depends on uncountable choice which is of 
use to mathematicians, and it is well past the time to scrap this nonsense. [...] It means that you 
don't need to take the uncountable ordinals seriously. [R. Maimon in "Does the Banach-Tarski 
paradox contradict our understanding of nature?", Physics.StackExchange (2 Feb 2012) & (25 Jul 
2013) & (9 Aug 2013)] 
 
Yuri I. Manin   Already during Cantor's life time, the reception of his ideas was more like that of 
new trends in the art, such as impressionism or atonality, than that of new scientific theories. It 
was highly emotionally charged and ranged from total dismissal (Kronecker's "corrupter of 
youth") to highest praise (Hilbert's defense of "Cantor's Paradise"). (Notice however the 
commonly overlooked nuances of both statements which subtly undermine their ardor: 
Kronecker implicitly likens Cantor to Socrates, whereas Hilbert with faint mockery hints at 
Cantor's conviction that Set Theory is inspired by God.) [Y.I. Manin: "Georg Cantor and his 
heritage", arXiv (2002) p. 10] 
 
Pedro Mascarós   We say that in an interval, there exist numbers that we can't even construct ... 
[...] we have clear evidence that they are really in some place over there, ok, but ... can we really 
choose them if we don't know where they really are or their names? Is it not like a set of words 
that you cannot say or a set of invisible and untouchable ducks or something like that? [P. 
Mascarós in "Infinity: does it exist??", YouTube (28 Sep 2014)] 
 
Robert Leon Massey   And G. Cantor's 'diagonal' argument for proving higher order infinity can 
not be simulated by finite memory computers as R. Penrose claims. Real computers only generate 
a finite number of rational numbers or repeating integers [Bob Massey in "Cantor's transfinite 
numbers", sci.math (3 Nov 1996)] 
 
Miles Mathis   I have seen many proofs of Cantor's theorem that the irrationals (or reals) are 
uncountable, and none is at all convincing. [...] no matter how many irrationals you have to 
count, you will always have an integer available to count it with. Always. Therefore, the claim 
that there are more irrationals or reals than integers or rationals is nonsense. [...] All the math 
that takes place in the transinfinite is quite simply false. Notice that I do not say it is physically 
baseless, or mystical, or avant garde, or any other half-way adjective. It is false. It is wrong. It is a 
horrible, terrible mistake, one that is very difficult to understand. It is further proof that Modern 
math and physics have followed the same path as Modern art and music and architecture. It can 
only be explained as a cultural pathology, one where self-proclaimed intellectuals exhibit the 
most transparent symptoms of rational negligence. They are outlandishly irrational, and do not 
care that they are. They are proud to be irrational. They believe – due to a misreading of 
Nietzsche perhaps – that irrationality is a cohort of creativity. Or it is a stand-in, a substitute. A 
paradox therefore becomes a distinction. A badge of courage. [...] If we somehow survive this 
cultural pathology, the future will look upon our time in horror and wonderment. [M. Mathis: 
"Introductory remarks on Cantor"] 
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Rinette Mathlener   lndeed, the interpretation of actual infinity leads to contradictions as seen in 
the paradoxes of Zeno. It is difficult for a human being to understand actual infinity. Our logical 
schemes are adapted to finite objects and events. Research shows that students focus primarily on 
infinity as a dynamic or neverending process. Individuals may have contradictory intuitive 
thoughts at different times without being aware of cognitive conflict. [R. Mathlener: "Die 
problematiek van die begrip oneindigheid in wiskundeonderrig en die manifestasie daarvan in 
irrasionale getalle, fraktale en die werk van Escher", Dissertation, University of South Africa, 
Pretoria (2008)] 
 
Damien Mattei   In Cantor theory infinite is considered as if you have an infinite process. Then 
it exists a step when this process is terminated. It seems to me that this the contrary of the notion 
of infinite. [D. Mattei: "Cantor's diagonal proof", sci.math (3 Apr 1998)] 
 
Ardeshir Mehta   All that Cantor has proved is that X is not on the list above n, no matter how 
large n may be. But he has not proved that X is not in the (not-yet-listed – and indeed unlistable, 
because infinitely large) part of the table after n ... and he cannot prove that! After all, no matter 
how large n gets, the part of the table after n still remains infinitely larger than the part of the 
table before n. And note that no matter how large n gets, the list after n can never be "brought up" 
to be included in the part of the list before n. This is because the part of the list before n is 
necessarily finite, while the part of the list after n must be infinitely long! [A. Mehta: "A simple 
argument against Cantor's diagonal procedure" (2001)] 
 
Oualid Merzouga   The situation is even worse when you realize that most of the numbers (in 
the current modern mathematic framework) are not numbers we even comprehend, we can't 
represent them in any way, we can't do arithmetic with them, we don't even know about them. [O. 
Merzouga in "Difficulties with real numbers as infinite decimals I", YouTube (2012)] 
 
James R. Meyer   According to Ross & Littlewood, every ball labeled n that is put into the vase 
is eventually removed in a subsequent step, the step n, and hence, by noon the vase must be 
empty. It's easy to see the fallacy. The process is an infinite unending process that is not 
completed. [J.R. Meyer: "The balls in the urn paradox (Ross-Littlewood)" (2018)] 
 
Heinz Middelmann   In this book it is shown that all infinite sets have same cardinality as the 
set of prime numbers und therefore as the set of natural numbers. This also holds for the power 
sets of the infinite sets. There is only one infinity in mathematics. [H. Middelmann: "Gezähmte 
Unendlichkeiten" (Sep 2018)] 
 
John Stuart Mill   Numbers are in the strictest sense names of objects. Two is certainly the name 
of things that are two, two spheres, two fingers and so on. [J.S. Mill in a remark to J. Mill: "An 
analysis of the phenomena of the human mind II", A.M. Kelley, New York (1967) p. 92] 
 
Jon Miller   There are even (intelligent) people who (claim that they) are unable to believe in 
infinite sets at all. To them, Cantor's argument makes no sense. There are people who deny the 
law of the excluded middle. To them, proving that not-A is false does not prove that A is true. [J. 
Miller in "Problem with Cantor's diagonal argument", sci.math (15 Feb 2002)] 
 
S.S. Mirahmadi   The set Ù of all natural numbers does not exist. [S.S. Mirahmadi, Qom 
seminary, Qom, Iran (Sep 2013)] 
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François Napoléon Marie Moigno   Are actually infinite numbers possible? Can we by adding 
unit after unit or groups of units after groups of units arrive at an actually infinite number? To the 
question thus posed the simple sensible answer is no, without hesitation, obviously no. [...] there 
is no passage from the finite to the infinite possible, no connection between the numbers and the 
infinite can be assigned. Galilée, Torricelli, Guldin, Cavalieri, Newton, Leibnitz, Rolle, Gerdil 
and a lot of others also have clearly shown this. [M. Moigno: "Impossibilité du nombre 
actuellement infini", Appendix to Augustin Cauchy: "Sept lecons de physique générale", 
Gauthier-Villars, Paris (1868) pp. 77 & 81] 
 
Philip Molyneux   The use of the term "infinity" as a noun, and even the use of a symbol for it 
(whether ¶, ¡0, or whatever), seems to imply that it is a defined entity or quantity, and one to 
which a comparative or even possibly a superlative could possibly be applied. However, this is 
evidently a category error, for the use of the alternative ("AngloSaxon") form of the word as 
"endlessness" reveals that it refers to the absence of a feature to a process, that is, to the absence 
of any limitation to the length of this process. The parallels here are such terms as "blackness" 
(the absence of light in the environment, or the absence of reflectivity for a surface) or "vacuum" 
(the absence of material content) where again comparatives or superlatives evidently cannot be 
applied – one material object cannot be "blacker" than another, and one void cannot be more 
vacuous than another. Such considerations in viewing "infinity" otherwise then is what the 
science-popularising author Lancelot Hogben may have meant when referred to this area as a 
"semantic quagmire". [P. Molyneux: "Some critical notes on the Cantor diagonal argument", 
viXra (2017) p. 9] 
 
Stephen Montgomery-Smith   I can see Kronecker's point of view, which I guess is that 
Cantor's theories depend upon the existence of mathematical objects that don't seem to exist in 
real life (e.g. what is a real number, really?). If the anti-Cantorians argued at this level, I think 
that I would essentially be in agreement with them. [S. Montgomery-Smith in "Objections to 
Cantor's theory (Wikipedia article)", sci.math (19 Jul 2005)] 
 
Adrian W. Moore   The (truly) infinite, I claim, can never be subjugated. Indeed I would go 
further: the (truly) infinite, as a unitary object of thought, does not and cannot exist. This is not to 
say that the concept of the infinite has no legitimate use. One such use, if I am right, is precisely 
to claim that the infinite does not exist. [A.W. Moore: "The infinite", 3rd ed., Routledge, Oxon 
(2019) Preface] 
 
When it is claimed that P(ω) is not unconditionally uncountable, we have no way of 
understanding this except as the demonstrably false claim that it is not uncountable at all. [A.W. 
Moore: "Set theory, Skolem's paradox and the Tractatus", Analysis 45 (1985) pp. 13-20] 
 
Gregory H. Moore   Evidently, Zermelo did not know of the English debate in 1906 over his 
proof and Axiom by G.H. Hardy, E. Hobson, Jourdain, and Russell. Of these mathematicians, 
only Hardy and Jourdain accepted Zermelo's Axiom of Choice, and none was quite satisfied with 
Zermelo's proof. [G.H. Moore: "The origins of Zermelo's axiomatization of set theory", Journal 
of Philosophical Logic 7,1 (1978) pp. 316 & 320] 
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Andrzej Mostowski   Such results show that axiomatic set-theory is hopelessly incomplete. 
Certainly nobody expected the axioms of set-theory to be complete, but it is also certain that 
nobody expected them to be incomplete to such a degree. [...] Of course if there are a multitude 
of set-theories then none of them can claim the central place in mathematics. [A. Mostowski: 
"Recent results in set theory" in I. Lakatos (ed.): "Problems in the philosophy of mathematics", 
North Holland, Amsterdam (1967) p. 93f] 
 
Luboš Motl   Nothing in physics depends on the validity of the axiom of choice because physics 
deals with the explanation of observable phenomena. [L. Motl in "Does the axiom of choice 
appear to be 'true' in the context of physics?" (edited), Physics.StackExchange (10 Nov 2012)] 
 
Carl Mummert   However, there is not even a formula that unequivocally defines a well 
ordering of the reals in ZFC. [...] Worse, it's even consistent with ZFC that no formula in the 
language of set theory defines a well ordering of the reals (even though one exists). That is, there 
is a model of ZFC in which no formula defines a well ordering of the reals. [C. Mummert in "Is 
there a known well ordering of the reals?", Math.StackExchange (11 Oct 2010)] 
 
Roberto Musmeci   Cantor’s demonstration of the denumerability of the rational numbers is 
based on the wrong use of the term all and, in the tabular representation, on the wrong use of the 
limits. [R. Musmeci: "Not denumerability of rational numbers", Academia (2021)] 
 
Jan Mycielski   Imagine for a while that infinite objects of classical mathematics are as 
inconsistent as a triangular circle. [J. Mycielski: "Analysis without actual infinity", Journal of 
Symbolic Logic 46,3 (1981) p. 625] 
 
David Hilbert in 1904 [...] wrote that sets are thought-objects which can be imagined prior to 
their elements. At the request of the referee who asked what is a thought-object let me add: I 
understand it to be a thought about an object which may exist or not. Thus it is an 
electrochemical event in the brain or/and its record in the memory. In particular it is a physical 
thing in space time. Of course it is difficult to characterise any physical phenomena. But we have 
the ability to recognize thoughts as identical or different, just as we have the ability to recognize a 
silent lightning from a thunderous one. Hence I understand Hilbert's words as follows: 
mathematicians imagine sets which do not exist, but their thoughts about sets do exist and they 
can arise prior to the thoughts of most elements in those sets. [J. Mycielski: "Russell's paradox 
and Hilbert's (much forgotten) view of set theory" in G. Link (ed.): "One hundred years of 
Russell's paradox: mathematics, logic, philosophy", De Gruyter, Berlin (2004) p. 533] 
 
Edward Nelson   But numbers are symbolic constructions; a construction does not exist until it is 
made; when something new is made, it is something new and not a selection from a pre-existing 
collection. [E. Nelson: "Predicative arithmetic", Princeton Univ. Press, Princeton (1986) p. 2] 
 
If I give you an addition problem like 
    37460225182244100253734521345623457115604427833    
 + 52328763514530238412154321543225430143254061105 
and you are the first to solve it, you will have created a number that did not exist previously. [E. 
Nelson: "Confessions of an apostate mathematician", Princeton] 
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Let us distinguish between the genetic, in the dictionary sense of pertaining to origins, and the 
formal. Numerals (terms containing only the unary function symbol S and the constant 0) are 
genetic; they are formed by human activity. All of mathematical activity is genetic, though the 
subject matter is formal. Numerals constitute a potential infinity. Given any numeral, we can 
construct a new numeral by prefixing it with S. Now imagine this potential infinity to be 
completed. Imagine the inexhaustible process of constructing numerals somehow to have been 
finished, and call the result the set of all numbers, denoted by Ù. Thus Ù is thought to be an 
actual infinity or a completed infinity. This is curious terminology, since the etymology of 
"infinite" is "not finished". We were warned. Aristotle: Infinity is always potential, never actual. 
Gauss: I protest against the use of infinite magnitude as something completed, which is never 
permissible in mathematics. We ignored the warnings. With the work of Dedekind, Peano, and 
Cantor above all, completed infinity was accepted into mainstream mathematics. Mathematics 
became a faith-based initiative. Try to imagine Ù as if it were real. A friend of mine came across 
the following on the Web: www.completedinfinity.com Buy a copy of Ù! Contains zero – 
contains the successor of everything it contains – contains only these. Just $100. Do the math! 
What is the price per number? Satisfaction guaranteed! Use our secure form to enter your credit 
card number and its security number, zip code, social security number, bank's routing number, 
checking account number, date of birth, and mother's maiden name. The product will be shipped 
to you within two business days in a plain wrapper. My friend answered this ad and proudly 
showed his copy of Ù to me. I noticed that zero was green, and that the successor of every green 
number was green, but that his model contained a red number. I told my friend that he had been 
cheated, and had bought a nonstandard model, but he is color blind and could not see my point. I 
bought a model from another dealer and am quite pleased with it. My friend maintains that it 
contains an ineffable number, although zero is effable and the successor of every effable number 
is effable, but I don't know what he is talking about. I think he is just jealous. [E. Nelson: 
"Hilbert's mistake", Princeton (2007)] 
 
John von Neumann   At present we can do no more than note that we have one more reason here 
to entertain reservations about set theory and that for the time being no way of rehabilitating this 
theory is known. [J. v. Neumann: "Eine Axiomatisierung der Mengenlehre", Journal für die reine 
und angewandte Mathematik 154 (1925) p. 240] 
 
Anne Newstead   We argue [...] that the classical realist account of the continuum has 
explanatory power in mathematics and should be accepted, much in the same way that "dark 
matter" is posited by physicists to explain observations in cosmology. In effect, the indefinable 
real numbers are like the "dark matter" of real analysis. [A. Newstead: "On the reality of the 
continuum discussion note", Philosophy 83,1 (2008) Abstract] 
 
Isaac Newton   I don't here consider Mathematical Quantities as composed of Parts extreamly 
small, but as generated by a continual motion. Lines are described, and by describing are 
generated, not by any apposition of Parts, but by a continual motion of Points. [...] Time by a 
continual flux, and so in the rest. These Geneses are founded upon Nature, and are every day seen 
in the motion of Bodies. [I. Newton: "Introductio ad Quadraturam Curvarum" (1691)] 
 
Mike Oliver   AC does not make new falsifiable predictions, but by facilitating the 
conceptualization of set theory, it makes new falsifiable predictions easier to make – in practice, 
for humans. [M. Oliver in "! Cantor", sci.math (26 Apr 1999)] 
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Nektarios Orfanoudakis   Not even infinity exists, just different "versions" of incomplete 
"potential infinities". [N. Orfanoudakis in "I think mathematicians have got it wrong with 
infinity. Infinity is infinity. One infinity cannot be larger than another infinity. What do you 
think?", Quora (16 Apr 2019)] 
 
Tony Orlow   I completely agree with your conclusion, Wolfgang. Starting with the subroot 
node {{of the Binary Tree}}, which has a branch from itself to itself, and one to the "root", each 
additional node produces a new unique path at each step. There are exactly as many paths as 
nodes, as they are produced one at a time from the addition of new nodes. [T. Orlow in "A new 
view on the binary tree", sci.math (4 Jan 2015)] 
 
Christopher Ormell   Russell concludes that the main body of real numbers 'must be' of the 
'lawless' variety. The author scrutinises these so-called 'lawless decimals' and concludes that they 
are mythical. [C. Ormell: "The continuum: Russell's moment of candour", Philosophy 81,4 
(2006) Abstract] 
 
Rob Osborn   Actually, Cantor's arguments of infinity are disputed by many including the math 
itself. [...] to state that one could make a new number from a collection of unknowns is ludicrous 
as Cantor suggested. All I say is show me the math showing how one infinity couldn't include 
any number not already in that set. Cantor's diagonal argument only checks numbers in a finite 
set not an infinite set as he thinks. [R. Osborn in "The infinite. Part 6. Mathematics, physics and 
religion in the 19th century", By Common Consent (18 Jan 2012)] 
 
Geng Ouyang   [...] the potential infinite and actual infinite, number conception and numerical 
theory as well as limit theory in traditional infinite system are all with some fatal defects. [G. 
Ouyang in "Is there a cognitive breaking point in mathematics?", Quora (11 Dec 2016)] 
 
If we can {{have different mappings between two infinite sets}}, what conclusion should people 
choose in front of two opposite results, why? [G. Ouyang in "If infinity means not having an end, 
then how can some infinities be larger than other infinities?", Quora (14 Apr 2018)] 
 
Eray Ozkural   Merely a finitist viewpoint is sufficient, and it resolves each and every antinomy 
in the set theory and logic with no extra effort. [E. Ozkural in "Objections to Cantor's theory 
(Wikipedia article)", sci.math (20 Jul 2005)] 
 
Donald G. Palmer   Cantor has not proven that the diagonal constructive process results in a 
unique infinite decimal. The missing part of the proof is that he assumes the limit of this process 
produces a unique decimal. He does not prove this point, but states it. [D.G. Palmer in "Cantor 
and infinite size", sci.math (28 May 1999)] 
 
Juan-Esteban Palomar Tarancón   [...] it is proved that Cantor's Theorem need not imply the 
existence of a tower of different-size infinities, because the impossibility of defining a bijection 
between any infinite countable set and its power can be a consequence of the existence of any 
intrinsic property which does not depend on size. [J.-E. Palomar Tarancón: "The existence of 
intrinsic set properties implies Cantor's theorem. The concept of cardinal revisited.", Int. J. Open 
Problems Compt. Math. 5,2 (2012) Abstract] 
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I also think that infinity denotes an endless process and it has a potential or virtual reality. 
Nevertheless, this claim requires a multivalued logic, or at least, a three valued one, in which the 
truth-values are True, False and Undefined. [J.-E. Palomar Tarancón: "Does actual infinity 
exist?", ResearchGate (26 Aug 2012)] 
 
Dear Wolfgang, I appreciate your manuscript {{the present Source Book}}. It is very valuable 
for me. [J.-E. Palomar Tarancón: "Does actual infinity exist?", ResearchGate (17 Nov 2016)] 
 
Rohit Parikh   Does the Bernays' number 67257729 actually belong to every set which contains 0 
and is closed under the successor function? The conventional answer is yes but we have seen that 
there is a very large element of fantasy in conventional mathematics which one may accept if one 
finds it pleasant, but which one could equally sensibly (perhaps more sensibly) reject. [R. Parikh: 
"Existence and feasibility in arithmetic", Journal of Symbolic Logic 36 (1971) p. 507] 
 
Steve Patterson   There are no infinite sets. [...] Infinite sets do not exist; Cantor was wrong; and 
it will take nothing less than an intellectual revolution to place mathematics back on firm 
foundations. [S. Patterson: "Cantor was wrong | There are no infinite sets" (20 Jul 2016)] 
 
Joachim Pense   Here we only talk about pathologies of modelling the continuum as a "point 
set". Of course all real numbers occuring "in the nature" are afflicted with imprecision. [...] For 
me they don't exist as individuals. [J. Pense in "Wenigstens hierüber sollte in einer sci-
Newsgroup Einigkeit erzielt werden können", de.sci.mathematik (18 Jun 2006)] 
 
Karma Peny   But any set of unique (non-repeating) natural numbers, excluding zero, must 
contain at least one number that is equal-to or greater-than the size of the set. Why does (and how 
can) this rule suddenly not hold when the set contains 'infinitely many' elements? It seems we can 
pick and choose which fundamental rules of mathematics suddenly no longer apply where 
infinity is involved, as long as our choices support the idea that infinity is a valid concept. All this 
is, of course, complete nonsense. [K. Peny: "Let's visit infinity for a bit of fun", Extreme Finitism 
(14 Sep 2014)] 
 
Mathematics would be a more staid and boring subject without all the weird and wondrous things 
that infinity brings with it. But do we really want mystic beliefs at the heart of a discipline that is 
traditionally associated with logic and rigour? [K. Peny: "Mainstream mathematics is based on a 
belief in the supernatural", Extreme Finitism (21 Oct 2014)] 
 
Jaroslav Peregrin   Our view of the world is so infiltrated by contemporary mathematics based 
on Cantor's set theory that we count infinite sets among the uttermost realities. However, on 
second thought it is quite clear that there is no infinite set we could really encounter within our 
'real' world. Everyone of us can be confronted (at once, but also during the whole span of his life) 
with at most a finite number of objects. The only aspect of reality that may be felt as amounting 
to infinity is unlimitedness, the possibility to continue various processes over and over without 
any limit. In other words, there is no actual infinity, there is at most potential infinity. There is no 
'real' infinite set of objects, but there are 'real' devices which make it possible to 'generate' objects 
without any limitation ('ad infinitum'). We can never encounter the set of all natural numbers; [...] 
However, if there are no real infinite sets beyond those grounded in a finite number of generating 
rules, then there are also no functions with infinite domains beyond functions defined via finite 
rules. [J. Peregrin: "Structure and meaning", Semiotica 113 (1997) p. 83] 
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Benedictus Pererius   But that there is no actual infinity is not only in accordance with the 
decrees of the Philosopher {{Aristotle}} but also with the holy scripture which reads God made 
all in weight, number, and measure. [B. Pererius: "De communibus omnium rerum naturalium 
principiis et affectionibus libri quindecim" Vol. X (1579) p. 568] 
 
J.A. Perez   This article undertakes a critical reappraisal of arguments in support of Cantor’s 
theory of transfinite numbers. The following results are reported: - Cantor’s proofs of 
nondenumerability are refuted by analyzing the logical inconsistencies in implementation of the 
reductio method of proof and by identifying errors. Particular attention is given to the 
diagonalization argument and to the interpretation of the axiom of infinity. - Three constructive 
proofs have been designed that support the denumerability of the power set of the natural 
numbers, P(Ù), thus implying the denumerability of the set of the real numbers —. These results 
lead to a Theorem of the Continuum that supersedes Cantor’s Continuum Hypothesis and 
establishes the countable nature of the real number line, suggesting that all infinite sets are 
denumerable. Some immediate implications of denumerability are discussed. [J.A. Perez: 
"Addressing mathematical inconsistency: Cantor and Gödel refuted", arXiv (2010)] 
 
Tilman Pesch   The line all points of which have a finite distance is itself finite. [T. Pesch: 
"Institutiones philosophiae naturalis secundum principia S. Thomae Aquinatis", Freiburg, Herder 
(1880) § 425] 
 
David Petry   The "anti-Cantorian" view has been around ever since Cantor introduced his ideas. 
[...] It was the advent of the internet which revealed just how prevalent the anti-Cantorian view 
still is; [D. Petry: "Update: Objections to Cantor's theory", sci.logic & sci.math (20 Jul 2005)] 
 
So why are intellectuals attracted to such stupid ideas as Cantor's Theory? Due to the structure of 
our society, intellectuals tend to value cleverness, consistency, complexity, and even 
sensationalism, more highly than truth. We live in a sick society. Cantor's Theory sucks more 
than any theory has ever sucked before. [D. Petry: "Cantor's theory sucks", sci.math (18 May 
2005)] 
 
Here's a quote from Doron Zeilberger: [...] That sounds to me a great deal like what W. 
Mueckenheim is advocating. I wonder why WM wastes his time playing with losers on sci.math. 
[D. Petry: "Mueckenheim's views have some support from well respected mathematicians", 
sci.math (20 Jul 2014)] 
 
In a recent article, WM wrote: "Existence in mathematics means existence in mathematical 
discourse. [...] ideas that nobody can have, do not exist. To assume the existence of ideas that 
nobody can have means to introduce most primitive religious ideas that destroy all sober thinking 
including mathematics." What WM is saying there is quite reasonable, though hardly original. I 
would guess that the whole point he has been trying to make in the 30,000 or so articles he has 
posted in the last two decades is that Cantor's diagonal argument does not compel us to believe 
that there exist things we cannot talk about, which leads to the conclusion that Cantor's talk about 
uncountable sets is silliness. I think he's right. [D. Petry: "WM starts to make sense", sci.math (4 
Nov 2015)] 
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So Wittgenstein, like Mueckenheim, was saying that mathematics does have meaning – it's a 
language that helps us reason about the real world – but Cantor's set theory does not have such 
meaning, and hence it is just an unnecessary game. [D. Petry: "Wittgenstein vs Mueckenheim", 
sci.math (23 Jan 2020)] 
 
As I see it, the mathematics community has been taken over by a destructive quasi-religious cult. 
I feel I have a moral obligation to speak out. [D. Petry: "The subject formerly known as 
mathematics", sci.math (19 Dec 2015)] 
 
Charles Petzold   Turing's conclusions cast real doubts on a Platonistic interpretation of 
mathematics and imply instead an extreme Constructivist philosophy where mathematics is 
limited by time, resources, and energy. [C. Petzold: "Reading Brian Rotman's 'ad infinitum …'" 
(25 May 2008)] 
 
Johannes Philoponos   Even less impossible than the simultaneous existence of an actual infinite 
is the successive addition to an infinite because it would contradict the definition of the infinite as 
the not traversable. [J. Philoponos: "De aeternitate mundi contra Proclum", Teubner, Leipzig 
(1894) p. 10] 
 
Martin Pitt   [...] there are only countably many irrational numbers which we can describe with 
an algorithm [...] . So you cannot represent almost all real numbers with algorithms anyway. [M. 
Pitt in "Difficulties with real numbers as infinite decimals II", YouTube (8 May 2012)] 
 
Dima Podolsky   Can't you just add the new number to the list? Yeah, it would create a new 
decimal, so add it to the list. Just like adding fractions onto the end of the fraction list. [D. 
Podolsky in "Infinity is bigger than you think – Numberphile", YouTube (6 Jul 2012)] 
 
Henri Poincaré   One of the characteristic features of Cantorism is that, instead of rising to the 
general by erecting more and more complicated constructions, and defining by construction, it 
starts with the genus supremum and only defines, as the scholastics would have said, per genus 
proximum et differentiam specificam. Hence the horror he has sometimes inspired in certain 
minds, such as Hermite's, whose favourite idea was to compare the mathematical with the natural 
sciences. For the greater number of us these prejudices had been dissipated, but it has come about 
that we have run against certain paradoxes and apparent contradictions, which would have 
rejoiced the heart of Zeno of Elea and the school of Megara. Then began the business of 
searching for a remedy, each man his own way. For my part I think, and I am not alone in so 
thinking, that the important thing is never to introduce any entities but such as can be completely 
defined in a finite number of words. Whatever be the remedy adopted, we can promise ourselves 
the joy of the doctor called in to follow a fine pathological case. [H. Poincaré: "Science and 
method: The future of mathematics", Nelson, London (1914) p. 44f] 
 
There is no actual infinity. The Cantorians forgot this, and so fell into contradiction. [H. 
Poincaré: "Science and method: Last efforts of logisticians", Nelson, London (1914) p. 195] 
 
1. Never consider other objects than those which can be defined by a finite number of words. 2. 
Never forget that every proposition about the infinite is only a substitution, an abbreviated 
expression of a proposition about the finite. [H. Poincaré: "Letzte Gedanken: Die Logik des 
Unendlichen", übers. von K. Lichtenecker, Akad. Verlagsgesellschaft, Leipzig (1913) p. 141f] 
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Concerning the second transfinite cardinal number ℵ1, I am not completely convinced of its 
existence. We reach it by considering the collection of ordinal numbers of cardinality ℵ0; it is 
clear that this collection must have a higher cardinality. But the question is whether it is closed, 
that is whether we may talk about its cardinality without contradiction. In any case an actual 
infinite can be excluded. [H. Poincaré: "Über transfinite Zahlen", Teubner, Leipzig (1910) p. 48] 
 
N.A. Popov, V.A. Levin, A.N. Popov   We think we have succeeded in finding the mistake of 
Cantor which is pointed to by Bertrand Russell. Though he failed to solve the paradox of Cantor, 
he made the important step along the required investigation line. [N.A. Popov, V.A. Levin, A.N. 
Popov: "Resolution of Cantor's set theory contradictions based on analysis of unsatisfiable 
definitions", Proceedings of the Second International A.D. Sakharov Conference on Physics, I.M. 
Dremin, A.M. Semikhatov (eds.), World Scientific, Singapore (1997) p. 313f] 
 
Gerhard Prandstätter   I have needed some time to understand what you want to express with 
this argument {{In the binary tree there cannot be more separated paths than generators of 
separated path, namely nodes.}} and how simple it is. If I am not completely in error I would say 
it is irrefutable. [G. Prandstätter in "Wikipedia: Paradoxien der Mengenlehre", de.sci.mathematik 
(31 Mar 2007)] 
 
Graham Priest   Of course, suggestions have been made as to how to get around these problems, 
but none is adequate. One suggestion is that large categories, such as the collection of all groups, 
should be regarded as proper classes, that is, subcollections of the hierarchy which do not 
themselves occur in the hierarchy, and which cannot be members of any other collection. But this 
will not work. First, proper classes, if we are to take them seriously (and not just as façons de 
parler), are a masquerade. The cumulative hierarchy was proposed as an analysis of the notion of 
set. It is supposed to contain all sets. If we are forced to admit that there are sets outside the 
hierarchy, this just shows that the analysis is wrong. And calling them by a different name is just 
a trivial evasion. Moreover, the insistence that proper classes cannot be members of other 
collections can have no satisfactory rationale. If they are determinate collections with determinate 
members, there is no reason why we should not consider them to be members of other 
collections, for example their singletons. [G. Priest: "In contradiction", 2nd ed., Oxford Univ. 
Press, Oxford (2006) p. 34]  
 
Janos Projnow   There is only one Infinity, called: Universe. [...] Cantor has failed, all of those 
theoretical infinite"s" belong to the only one infinity, is the Universe, which is not theoretical, but 
is true. [J. Projnow in "I think mathematicians have got it wrong with infinity. Infinity is infinity. 
One infinity cannot be larger than another infinity. What do you think?", Quora (17 Sep 2018)] 
 
Alexander R. Pruss   I shall argue that it can be reasonable to be sceptical of this principle 
{{bijection as measure of cardinality}}, and that there is an epistemic possibility that all infinite 
sets have the same size as the set of natural numbers and that there is even an epistemic 
possibility that the collection of all sets has the same size as the set of natural numbers. [A.R. 
Pruss: "Might all infinities be the same size?", Australasian Journal of Philosophy (2019)] 
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Willard Van Orman Quine   As a foundation for mathematics, then, set theory is far less firm 
than what is founded upon it; for common sense in set theory is discredited by the paradoxes. 
[W.V.O. Quine: "The ways of paradox and other essays", Harvard University Press (1966) p. 31f] 
What is called giving the meaning of an utterance is simply the uttering of a synonym, couched, 
ordinarily, in clearer language than the original. If we are allergic to meanings as such, we can 
speak directly of utterances as significant or insignificant, and as synonymous or heteronymous 
one with another. [...] Consider, for example, the crisis which was precipitated in the foundations 
of mathematics, at the turn of the century, by the discovery of Russell's paradox and other 
antinomies of set theory. These contradictions had to be obviated by unintuitive, ad hoc devices; 
our mathematical myth-making became deliberate and evident to all. [W.V.O. Quine: "On what 
there is", in "From a logical point of view", 2nd ed., Harvard Univ. Press (1953) pp. 11f & 18] 
 
Ken Quirici   To show there is no bijection from a set S to its power set T: [...] The problem for 
me is: yes, there's a clear contradiction. But we're actually making two assumptions: the existence 
of the bijection, and the existence of the set D. Can't we simply say that the bijection could still 
exist, but there would be no set D defined as above, for it? [K. Quirici: "Cantor diagonal 
argument blues", sci.math (27 Jan 2005)] 
 
Frank Ramsey   Suppose a contradiction were to be found in the axioms of set theory. Do you 
seriously believe that a bridge would fall down? [F. Ramsey, quoted in D. MacHale: "Comic 
sections", Dublin (1993)] 
 
Eli Rapaport   We reject Cantor's notion of multiple infinities, which is based on an incorrect 
understanding of the concept of infinity. [E. Rapaport: "Infinity without size" (2020)] 
 
Harold Ravitch   Gödel, in the "Supplement to the Second Edition" of "What is Cantor's 
Continuum Problem?" remarked that a physical interpretation could not decide open questions of 
set theory, i.e. there was (at the time of his writing) no "physical set theory" although there is a 
physical geometry. [H. Ravitch: "On Gödel's philosophy of mathematics" Chapter I (1998)] 
 
James Reese   An "infinite set" is a logical contradiction. [J. Reese in "Why infinite sets don't 
exist", YouTube (2019)] 
 
Charles Bernard Renouvier   Renouvier, in the interest of the PC {{Principle of 
Contradiction}}, fought a life long battle against "completed" infinity [...] for him, the rejection 
of infinity was just a special expression of the PC. [E. Conze: "Der Satz vom Widerspruch" 
(1932), "The principle of contradiction", Lexington Books (2016) p. 304] 
 
John Ringland   [...] any representable set cannot be an infinite set and any infinite set cannot be 
actually represented. Furthermore, in the context of computational metaphysics, representation is 
equivalent to existence. If something is represented and it takes part in the overall simulation of 
the universe then it exists in that universe but if it cannot be represented then it cannot exist. [...] 
No one has ever written out an infinite number of integers thereby actually representing the set of 
integers. It is only ever referred to but never fully represented. [J. Ringland: "Does infinity 
exist?"] 
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Peter Ripota   The measure of all sets with countably many elements is 0; the measure of all sets 
with uncountably many elements is 1. In between and beyond there is nothing. Using the axiom 
of choice this immediately leads to a contradiction. For instance it is possible to exhaust the 
circumference of the circle by means of this controversial (but necessary) axiom in such a clever 
way that a set is created, the measure of which is either 0 or 1ÿ¶ = ¶. However, that cannot be 
because the circumference of the circle is well known to have measure π. Speedily the 
mathematicians weaseled out in the usual manner by asserting: There are nonmeasurable sets. 
What those sets are they will decide if once again it does not work. [P. Ripota: "Von ρ zu Ω"] 
 
David Roberts   There is only one infinity. Cantor, with his pile of infinities overlooked 
something fundamental: that you cannot get to infinity, that infinity does not belong to the 
domain of maths but to theology, [D. Roberts in "I think mathematicians have got it wrong with 
infinity. Infinity is infinity. One infinity cannot be larger than another infinity. What do you 
think?", Quora (3 Sep 2018)] 
 
Tom Robertson   How can an infinite list, such as any which is generated by any function which 
maps natural numbers to real numbers, be completed? If it can't, and if it therefore can't be 
"Cantorized", how can it prove that there are real numbers not on the list? [T. Robertson: "A 
loophole in Cantor's argument?", sci.math (23 Apr 1999)] 
 
Abraham Robinson   (i) Infinite totalities do not exist in any sense of the word (i.e., either really 
or ideally). More precisely, any mention, or purported mention, of infinite totalities is, literally, 
meaningless. (ii) Nevertheless, we should continue the business of Mathematics "as usual", i.e., 
we should act as if infinite totalities really existed. [...] 
 I feel quite unable to grasp the idea of an actual infinite totality. To me there appears to 
exist an unbridgeable gulf between sets or structures of one, or two, or five elements, on one 
hand, and infinite structures on the other hand [...] I must regard a theory which refers to an 
infinite totality as meaningless in the sense that its terms and sentences cannot posses the direct 
interpretation in an actual structure that we should expect them to have by analogy with concrete 
(e.g., empirical) situations. [A. Robinson: "Formalism 64", North-Holland, Amsterdam, p. 230f] 
 
The great fascination that contemporary mathematical logic has for its devotees is due, in large 
measure, to the ever increasing sophistication of its techniques rather than to any definitive 
contribution to our understanding of the foundations of mathematics. [A. Robinson: "From a 
formalist's point of view", Dialectica 23,1 (1969) p. 45] 
 
Brouwer's intuitionism is closely related to his conception of mathematics as a dynamic activity 
of the human intellect rather than the discovery of an immutable abstract universe. This is a 
conception for which I have some sympathy and which, I believe, is acceptable to many 
mathematicians who are not intuitionists. [A. Robinson quoted in J. Dauben: "Abraham 
Robinson. The creation of nonstandard analysis", Princeton University Press, Princeton, NJ 
(1995) p. 461] 
 
Marc Rochow   {{From the argument of the binary tree}} it follows: Georg Cantor's set theory is 
a product of fantasy, not in touch with reality and without any theoretical foundation. [M. 
Rochow: "Die Geschichte des Unendlichen" (17 Jul 2010)] 
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Brian Rotman   The author's entry point is an attack on the notion of the mathematical infinite in 
both its potential and actual forms, an attack organized around his claim that any interpretation of 
"endless" or "unlimited" iteration is ineradicably theological. [B. Rotman: "Ad infinitum ... The 
ghost in Turing's machine", Stanford University Press (1993) Advertisement] 
 
Carlo Rovelli   The idea that the mathematics that we find valuable forms a Platonic world fully 
independent of us is like the idea of an Entity that created the heavens and the earth, and happens 
to very much resemble my grandfather. [C. Rovelli: "Michelangelo's stone: An argument against 
Platonism in mathematics", arXiv (2015) p. 6] 
 
Juha Ruokolainen   At least from the computational point of view we can only possess and 
process a finite amount of finitely precise information in a finitely long period of time. If we do 
not take into account any physical or other limitations to available space and time resources, then 
we may allow us to possess and process indefinitely large yet finite amount of indefinitely yet 
finitely precise information in an indefinitely yet finitely long period of time. [J. Ruokolainen: 
"Constructive nonstandard analysis without actual infinity", Dissertation, Univ. Helsinki (2004)] 
 
Bertrand Russell   Russell had formulated his Multiplicative Axiom, later recognized as 
equivalent to the Axiom of Choice, independently of Zermelo but had serious doubts about its 
truth. [G.H. Moore: "The origins of Zermelo's axiomatization of set theory", Journal of 
Philosophical Logic 7 (1978) pp. 307-329] 
 
At first it seems obvious, but the more you think about it, the stranger the deductions from this 
axiom {{of Choice}} seem to become; in the end you cease to understand what is meant by it. 
[B. Russell quoted in N.Y. Vilenkin: "In search of infinity", Birkhäuser, Boston (1995) p. 123] 
 
The cardinal contradiction is simply this: Cantor has a proof that there is no greatest cardinal, and 
yet there are properties (such as "x = x") which belong to all entities. Hence the cardinal number 
of entities having a property must be the greatest of cardinal numbers. Hence a contradiction. [p. 
31] The objections to the theory are [...] that a great part of Cantor's theory of the transfinite, 
including much that it is hard to doubt, is, so far as can be seen, invalid if there are no classes or 
relations; [p. 45] An existent class is a class having at least one member. [p. 47] Whether it is 
possible to rescue more of Cantor's work must probably remain doubtful until the fundamental 
logical notions employed are more thoroughly understood. And whether, in particular, Zermelo's 
axiom is true or false is a question which, while more fundamental matters are in doubt, is very 
likely to remain unanswered. The complete solution of our difficulties, we may surmise, is more 
likely to come from clearer notions in logic than from the technical advance of mathematics; but 
until the solution is found we cannot be sure how much of mathematics it will leave intact. [p. 53] 
[B. Russell: "On some difficulties in the theory of transfinite numbers and order types", Proc. 
London Math. Soc. (2) 4 (1907)] 
 
Charles Sauerbier   This paper offers a contrary conclusion to Cantor's argument, together with 
implications to the theory of computation. [...] The conclusions Cantor offered are a non sequitur. 
[C. Sauerbier: "Cantor's problem", arXiv (2009) pp. 1 & 5] 
 
Erdinç Sayan   I want to argue that the set of real numbers is, like the set of natural numbers (or 
the set of counting numbers), denumerably infinite, not nondenumerably infinite. [E. Sayan: 
"Contra Cantor: How to count the 'uncountably infinite'", Academia (2 Sep 2016)] 
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Vladimir Y. Sazonov   The "vague" set F of feasible numbers intuitively satisfies the axioms 0 
œ F, F + 1 Œ F and 21000 – F, [V.Y. Sazonov: "On feasible numbers", Logic and Computational 
Complexity (31 May 2005) Abstract] 
 
Arthur Schönflies   It is well kown that set theory has lead to certain logical paradoxes which 
more and more are considered as an extremely unpleasant addition. A simple resolution of the 
appearing contradictions has not yet occured, as far as I know. [...] Hitherto logicians have only 
operated with logical chains consisting of a finite number of conclusions. But since Cantor 
mathematicians operate with infinite chains; [A. Schönflies: "Über die logischen Paradoxien der 
Mengenlehre", Jahresbericht der Deutschen Mathematiker-Vereinigung (1906) pp. 19 & 23] 
 
Peter Schurr   When addition, multiplication, and raising to a power (and their inverse 
functions) cannot change the quantity of the considered set, then mathematics is no longer 
concerned. What is tried here, namely to extend the principle of relativity by means of so-called 
"cardinalities" to different infinities, and hereby to fetch the actual infinite into the realm of 
mathematics, appears to me not only very dubious but fatally false. [P. Schurr: "Cantors Ende", 
de.sci.mathematik (3 Jan 2006)] 
 
Kurt Schütte   If we define the real numbers in a strictly formal system, where only finite 
derivations and fixed symbols are permitted, then these real numbers can certainly be enumerated 
because the formulas and derivations on the basis of their constructive definition are countable. 
[K. Schütte: "Beweistheorie", Springer (1960)] 
 
Hermann A. Schwarz   Today I received by mail an offprint of "Mittheilungen zur Lehre vom 
Transfiniten" {{Communications concerning the theory of the transfinite by Cantor}} with a 
handwritten dedication: "H.A. Schwarz in memory of our old friendship dedicated by the author." 
After having had the opportunity to go through it leisurely, I cannot conceal that it appears to me 
as a pathological aberration. What on earth have the Fathers of the Church to do with the 
irrational numbers? I really hope my fear might not come true, that our patient has left the 
straight and narrow like the poor Zöllner {{Johann Karl Friedrich Zöllner (1834-1882) was a 
professor of astrophysics who later got involved in depth in philosophical studies and after all 
became an adherent of spiritism}} who never found the way back to scientific business. The 
more I think over these cases the more I am forced to get aware of the similarity of symptoms. 
Might we manage to lead the poor young man back to serious work! Otherwise it will come to a 
bad end with him. [H.A. Schwarz, letter to K. Weierstrass (17 Oct 1887)] 
 
Martin Semerád   [...] cardinality of — depends on the representation! [M. Semerád in "Cantor 
was right!", sci.math (19 Jun 2005)] 
 
Yaroslaw D. Sergeyev   Hilbert’s Grand Hotel has an infinite number of rooms [...] The 
traditional answer is that it is possible to put the newcomer in the first room. The ①-way of 
doing confirms this result but shows a thing that was invisible traditionally – the guest from the 
last room should go out of the Hotel. [...] The instruments used on the traditional view for this 
purpose are just too weak to distinguish two different numbers in the records 2.000000... and 
1.99999... [Y.D. Sergeyev: "Numerical infinities and infinitesimals", EMS Surv. Math. Sci. 4 
(2017) pp. 242  & 289] 
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Ken Seton   An ongoing and polarizing problem in this territory is that you must be either: (A) a 
stubborn finitist who behaves like a devil splashed with holy water at the mere mention of a word 
starting with "inf" or (B) a fawning acolyte endlessly singing praises to the transfinitum; mea 
culpa mea culpa, set theory can do no wrong. Believe it or not, there exist many rooms between 
the two. [...] set theory asserts that the simple infinite set is a horrible schizomorphic hybrid of 
the actual and potential infinite [K. Seton in "Discussion: From dark numbers to dark 
propositions", Academia.edu (Dec 2020)] 
 
Doron Shadmi   Strictly speaking, Actual infinity is too strong to be used as an input. Potential 
infinity (which never reaches Actual infinity, and therefore cannot be completed) is the name of 
the game. [...] Cantor uses simultaneously two different models [...] that are clearly contradicting 
each other. Therefore this proof does not hold. In short, the transfinite system does not exist. [D. 
Shadmi: "Transfinities?", HSN Forum Mathematics (12 Nov 2004)] 
 
Andrew P. Shane   I propose an algorithm that (in infinite time) will enumerate all of the real 
numbers between zero and one. [A.P. Shane: "An algorithm for the enumeration of all real 
numbers between 0 and 1", Rensselaer Polytechnic Inst., Troy, NY (10 Apr 1999)] 
 
Gary Shannon   I define the following function to be recursive [...] This procedure will put the 
integers in one-to-one correspondence with the reals between 0 and 1 without omitting any reals. 
[G. Shannon in "Cantor and the mad man", sci.math (12 Jan 2002)] 
 
Jim N. Sharon   [...] infinity is a concept that means "keeps going". The concept of a biggest 
number is meaningless, and therefore so is the concept of the size of an infinite set. [J.N. Sharon: 
"Infinite nonsense 2: Cantor" (1 Sep 2016)] 
 
Saharon Shelah   When modern set theory is applied to conventional mathematical problems, it 
has a disconcerting tendency to produce independence results rather than theorems in the usual 
sense. The resulting preoccupation with "consistency" rather than "truth" may be felt to give the 
subject an air of unreality. [S. Shelah: "Cardinal arithmetic for skeptics", arXiv (1992) p. 1] 
 
Stephen G. Simpson   Ultrafinitism: Infinities, both potential and actual, do not exist and are not 
acceptable in mathematics. Finitism: Potential infinities exist and are acceptable in mathematics. 
Actual infinities do not exist and we must limit or eliminate their role in mathematics. 
Predicativism: We may accept the natural numbers, but not the real numbers, as a completed 
infinite totality. Quantification over Ù is acceptable, but quantification over —, or over the set of 
all subsets of Ù, is unacceptable. Infinitism: Actual infinities of all kinds are welcome in 
mathematics, so long as they are consistent and intuitively natural. Of these four positions, the 
finitist one seems to be the most objective. [...] The real world contains many potential infinities. 
[...] However, the real world does not appear to contain any actual infinities. For this reason, 
actual infinities are suspect. In order to maintain objectivity in mathematics, it seems necessary to 
limit the use of actual infinities. We introduce them only as "convenient fictions". [...] There is no 
clear way to integrate ZFC-based mathematics with the rest of human knowledge. The unity of 
mathematics is good, but the unity of human knowledge would be even better. [...] both set 
theory and religious faith can claim to be in a "strong" position vis a vis skeptics, by avoiding 
reliance on facts which can be questioned. I reject such claims on grounds of lack of objectivity. 
[S.G. Simpson: "Potential versus actual infinity: Insights from reverse mathematics" (2015)] 
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Ankur Singla   As you know that infinity is an indeterminate quantity and you can't compare two 
indeterminate quantities. It's just like comparing mathematics with biology. [A. Singla in "If 
infinity means not having an end, then how can some infinities be larger than other infinities?", 
Quora (28 Apr 2015)] 
 
Thoralf Skolem   There is no possibility of introducing something absolutely uncountable, but 
by a pure dogma. [T. Skolem: "Über einige Grundlagenfragen der Mathematik", Norske 
Videnskaps-Akademi, Mat.-naturv. Klasse No. 4, Oslo (1929)] 
 
In order to obtain something absolutely nondenumerable, we would have to have either an 
absolutely nondenumerably infinite number of axioms or an axiom that could yield an absolutely 
nondenumerable number of first-order propositions. [...] It is easy to show that Zermelo's axiom 
system is not sufficient to provide a complete foundation for the usual theory of sets. [p. 296] I 
believed that it was so clear that axiomatization in terms of sets was not a satisfactory ultimate 
foundation of mathematics that mathematicians would, for the most part, not be very much 
concerned with it. But in recent times I have seen to my surprise that so many mathematicians 
think that these axioms of set theory provide the ideal foundation for mathematics; therefore it 
seemed to me that the time had come to publish a critique." [p. 300f] [T. Skolem: "Some remarks 
on axiomatized set theory" (1922) quoted in J. van Heijenoort: "From Frege to Gödel – A source 
book in mathematical logic, 1879-1931", Harvard University Press, Cambridge (1967)] 
 
He {{Poincaré}} is reported to have said in a talk at the international congress of mathematicians 
at Rome in 1908 that in future set theory would be considered as a disease from which one has 
recovered. [...] It seems indeed that Hilbert wants to maintain Cantor's opinions in their old 
absolutistic sense. I find that rather strange. It is indicative that he never felt the necessity to 
consider the relativism that I have proven for every finitely formulated set axiomatics. [...] Firstly 
I have given a more precise grounds for the general set theoretic relativism, which has the 
particular consequence that the absolutely uncountable has no justification on an axiomatic basis. 
[T. Skolem: "Über die Grundlagendiskussionen in der Mathematik", Den Syvende Skandinav. 
Matematikerkongr. Oslo (1929). "Selected Works in Logic", J.E. Fenstak (ed.), Scand. Univ. 
Books, Universitetsforlaget, Oslo (1970)] 
 
Presumably, the reason for this division of the contents of "Einleitung in die Mengenlehre" into 
two different books is that the subject matter has grown too large. The reviewer, however, is not 
enthusiastic about this division since such a textbook as the present one will be read primarily by 
students and they might form the impression that classical set theory is securely founded just as 
other parts of mathematics, e.g. arithmetic. Such an impression would, however, be misleading. 
[...] On the other hand, it must be conceded that the lack of knowledge of the results of 
foundational research will not mean much to mathematicians who are not especially interested in 
the logical development of mathematics. [T. Skolem: "Review of A.A. Fraenkel: 'Abstract set 
theory'", Mathematica Skandinavica 1 (1953) p. 313] 
 
Hartley Slater   The natural numbers can be put into one-one correspondence with the even 
numbers, it is well known, but does that settle that they have the same number? We have equal 
reason to say that they have a different number, since there are more of them. [H. Slater: "The 
uniform solution of the paradoxes" (2004)] 
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Jim Slattery   If, as I think most physicists tend to believe, space is impossible without matter 
then the states of the universe are limited to the possible permutations of the atoms in the 
universe and their internal structure. This appears to be finite and it is difficult to state that a 
number that could not be represented in the universe is real. [J. Slattery in "Does actual infinity 
exist?", ResearchGate (7 Jan 2013)] 
 
Jerzy Slupecki   I do not understand quantifiers since they refer often to actually infinite 
universes of abstract objects and I do not believe in the existence of such universes. [J. Slupecki, 
private communication reported in J. Mycielski: "On the tension between Tarski's nominalism 
and his model theory (definitions for a mathematical model of knowledge)", Annals of Pure and 
Applied Logic 126 (2004) pp. 215-224] 
 
John Smith   As you state, I say that one infinite set cannot be bigger than another. I can already 
hear mathematicians everywhere screaming at me. I have seen the proofs, but remain 
unconvinced. [J. Smith in "I think mathematicians have got it wrong with infinity. Infinity is 
infinity. One infinity cannot be larger than another infinity. What do you think?", Quora (24 Aug 
2018)] 
 
Detlef D. Spalt   Cantor's set theory is not consistently compatible with Weierstraß's analysis. 
[...] The continuum does not consist of points. [D.D. Spalt: "Eine kurze Geschichte der Analysis", 
Springer (2019)] 
 
Lawrence Spector   For numbers to be useful to calculus and science, they must have names; the 
word number must have its customary meaning. [L. Spector: "Are the real numbers really 
numbers?", TheMathPage (2015)] 
 
Baruch de Spinoza   Take Spinoza's example [...] of assigning a number to the infinite measure 
of the universe in feet. He argues that we could also count that distance in inches, making it 12 
times the infinity of the measurement in feet. This would make one infinity be twelve times 
another infinity, which Spinoza regarded as absurd. [S.H. Eklund: "A cardinal sin: The infinite in 
Spinoza's philosophy", DigitalCommons@Macalester College (2014)] 
 
Rudolf Sponsel   Clearly that {{infinite set}} does not exist as a completed and finished entity, 
except as a self-contradictory delusion – and that has only a delusional reality content. [R. 
Sponsel in "Ist das schon 'mal jemandem aufgefallen?", de.sci.mathematik (23 Dec 2015)] 
 
Radhakrishnan Srinivasan   Physics today has been overrun by modern mathematicians, who 
have plugged in infinitary reasoning wholesale into theories of Physics. I am sure the old-timers, 
including mathematical physicists like Poincaré, will be turning in their graves at this 
development. [R. Srinivasan in "Cantor's uncountability theory explains Casimer effect?", 
sci.math (8 Apr 2011)] 
 
Radhakrishnan Srinivasan, H.P. Raghunandan   Cantor's diagonal argument cannot be legally 
formulated in NRA, and there is no 'cardinality' for any collection ('super-class') of real numbers. 
[R. Srinivasan, H.P. Raghunandan: "Foundations of real analysis and computability theory in 
non-Aristotelian finitary logic", arXiv (2005) Abstract] 
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Andrew Stanworth   Cantor's assumption of the existence of a 'simply infinite sequence' leads to 
a clear contradiction and must, therefore, be false. [A. Stanworth: "The natural numbers are 
uncountable", sci.logic (5 Jul 2004)] 
 
Christian Stapfer   [...] considered from outside "existence" as deductibility in ZFC can always 
supply only countable objects. [C. Stapfer in "[WM] Der Cantorsche Satz", de.sci.mathematik 
(13 Jun 2005)] 
 
Don Stockbauer   The answer to Cantor is the cybernetic one, that there is just the potential 
infinity, which can exist in the physical world, e.g., when you program a spacecraft to report once 
a day "forever", knowing that physical processes will end it, and then there's the actualized 
infinity, a mathematical playtoy, which cannot fit into the real world. [D. Stockbauer in "Update: 
Objections to Cantor's theory", sci.math (18 Aug 2005)] 
 
Gabriel Stolzenberg   I am of the opinion – and I share this opinion with the other so-called 
"constructivists" among the mathematicians – that the science of pure mathematics in the last part 
of the 19th century has been caught in a certain intellectual trap, [G. Stolzenberg: "Kann die 
Untersuchung der Grundlagen der Mathematik uns etwas über das Denken sagen?" in P. 
Watzlawick (ed.): "Die erfundene Wirklichkeit. Wie wissen wir, was wir zu wissen glauben?", 
Piper, München (1985)] 
 
Albrecht Storz   After having in depth scrutinized Dr. Mückenheim's arguments and having seen 
also several interesting sites by other authors in the internet [...] I come to the conclusion that 
there are definitely properly thought-out and worked-out attacks on the concept of transfinite 
numbers. [A. Storz: "Hat Cantor doch geirrt?", de.sci.mathematik (7 Jan 2005)] 
 
Peter Suber   [...] the Skolem paradox would create a serious contradiction [...] Most 
mathematicians agree that the Skolem paradox creates no contradiction. But that does not mean 
they agree on how to resolve it. [P. Suber: "The Löwenheim-Skolem theorem" (1997)] 
 
Alfred Tarski   People have asked me, "How can you, a nominalist, do work in set theory and 
logic, which are theories about things you do not believe in?" ... I believe that there is value even 
in fairy tales and the study of fairy tales. [A. Burdman-Feferman, S. Feferman: "Alfred Tarski – 
life and logic", Cambridge Univ. Press (2004) p. 52] 
 
Rudolf Taschner   Most mathematicians however accept the message as the final say that 
modern mathematics consists of idle chatter. And it is miraculous to see how they feel happy in 
this remaining ruin. [R. Taschner: "Das Unendliche ist nur ein Wort – oder irren die 
Mathematiker womöglich?", Die Presse, Wien (18 Jan 2012)] 
 
Max Tegmark   [...] today's best theories similarly need a major shakeup, by retiring an incorrect 
assumption. Which one? Here's my prime suspect: ¶. [...] we have no direct observational 
evidence for either the infinitely big or the infinitely small. [...] In practice, we physicists have 
never managed to measure anything to more than about 17 decimal places. Yet real numbers with 
their infinitely many decimals have infested almost every nook and cranny of physics [...] Not 
only do we lack evidence for the infinite, but we don't actually need the infinite to do physics [...] 
we need to question infinity. I'm betting that we also need to let go of it. [M. Tegmark: "What 
scientific idea is ready for retirement? – Infinity", Edge.org (2014)] 
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Neil Tennant   A constructivist version of a mathematical theory is adequate for all the 
applications to be made of the theory within natural science: [N. Tennant: "Logic, mathematics, 
and the natural sciences", ResearchGate (2007)] 
 
Bertrand Thébault   Con’s about transfinite numbers: After a century of "existence": no useful 
scientific applications. [B. Thébault: "Was Leopold Kronecker right about transfinity?", 
BoldRIFT (2020)] 
 
Christian Thiel   The constructivistic foundational critic has found the following faults: First it is 
not allowed to start with the assumption that the collection of real numbers is a set. [...] This 
contradiction sheds as much doubt on the assumption of the existence of the set of all binary 
sequences as on the assumption of their countability. [C. Thiel: "Philosophie und Mathematik", 
Wissenschaftliche Buchgesellschaft, Darmstadt (1995) p. 197f] 
 
Chris M. Thomasson   All I can say is that .999... will never equal 1 with respect to infinite 
precision. [...] 1 - 0.999... will always be greater than zero with respect to infinite precision. 
[C.M. Thomasson in "The common mistake", sci.math (10 Oct 2016)] 
 
Wolfgang Thumser   It is clear that the set of all numbers having a finite description is countable 
[W. Thumser in "Das Kalenderblatt 100117", de.sci.mathematik (23 Jan 2010)] 
  
I know that many – how do you say? – "Mengenlehrer" {{set-teachers}} imagine the natural 
numbers as kind of sack containing everything that never has been inserted. This, in my opinion, 
philosophical nonsense (with all its consequences recognized by you, including the potential and 
actual nonsense) is owed to an antiquated interpretation of the formal logical propositions, going 
back to Cantor's definition as a collection. [W. Thumser in "Anwort an Kluto", de.sci.mathematik 
(9 Nov 2008)] 
  
William P. Thurston   On the most fundamental level, the foundations of mathematics are much 
shakier than the mathematics that we do. Most mathematicians adhere to foundational principles 
that are known to be polite fictions. For example, it is a theorem that there does not exist any way 
to ever actually construct or even define a well-ordering of the real numbers. There is 
considerable evidence (but no proof) that we can get away with these polite fictions without 
being caught out, but that doesn't make them right. Set theorists construct many alternate and 
mutually contradictory "mathematical universes" such that if one is consistent, the others are too. 
This leaves very little confidence that one or the other is the right choice or the natural choice. 
[W.P. Thurston: "On proof and progress in mathematics", arXiv (1994) p. 10] 
 
Ray Tomes   [...] mathematicians tell me that there are an infinite number of integers which do 
not have an infinite number of digits in them. I say that is impossible because for any given 
maximum chosen integer there are exactly that many smaller integers and so only for an infinite 
maximum are there an infinite number of smaller ones. [R. Tomes: "I say Cantor was wrong!", 
sci.math (5 Jan 1999)] 
 
Shack Toms   It seems that the Cantor proof, at least in that form, might only be proving that the 
position on the list cannot be made definite. [S. Toms: "Cantor's diagonalization", sci.math (13 
Apr 1997)] 
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Salvatoris Tongiorgi   Let X be the origin of a line. Are there points in the line which have an 
infinite distance from X or not? If no such points are given the line is finite. [...] Actually infinite 
multitudes are inconsistent. [S. Tongiorgi: "Institutionis philosophicae", 4th ed., Goemaere, 
Brussels (1868) p. 171f] 
 
Gert Treiber   The discrepancy between cardinality and ordinality in the transfinite raised in me 
serious doubts about Cantor's theory. [G. Treiber: "Die Grundlagenkrise der Mathematik – Ein 
Wissenschaftsskandal", tredition, Hamburg (2014) p. 41] 
 
Jim Trek   Calculus does not need any concept of infinity in order to provide limits, derivatives, 
integrals, and differentials. [J. Trek: "Finitists", sci.math (5 Feb 1999)] 
 
Toru Tsujishita   We may say that by discriminating between "actual finiteness" and "ideal 
finiteness", we obtain a better system of handling infinity than the "actual infinity" offers. [T. 
Tsujishita: "Alternative mathematics without actual infinity", arXiv (2012) p. 6] 
 
Valentin F. Turchin   For actual infinity we have no place in our system of concepts. On the 
intuitive level, we cannot imagine anything that would qualify as actual infinity, because neither 
we, nor our evolutionary predecessors never had anything like that in experience. When we try to 
imagine something infinite, e.g., infinite space, we actually imagine a process of moving from 
point to point without any end in sight. This is potential, not actual, infinity. On a more formal 
level we can demonstrate the incompatibility of the concept of actual infinity with our cybernetic 
understanding of meaning. [...] Thus we cannot use the concept of actual infinity at all. [V.F. 
Turchin: "Infinity", Principia Cybernetica Web (Sep 1991)] 
 
Alasdair Urquhart   The second volume ends with the correspondence with Ernst Zermelo, one 
that Gödel must have found very frustrating because of Zermelo's inability to understand the 
basic ideas of the incompleteness theorems. Zermelo did not seem to be capable of grasping the 
basic ideas of formal syntax and formal derivations, but instead inveighed against the "finitistic 
prejudice" of contemporary mathematicians, telling Gödel that his proof contained a gap. Gödel 
patiently replied with a letter in which he tried to dispel Zermelo's misunderstandings, but 
received a response exhibiting still further muddle and confusion, on which Gödel broke off the 
correspondence. [A. Urquhart: "Review of 'Kurt Gödel, Collected Works, vols IV and V'", Rev. 
Mod. Logic 10 (2004) p. 197] 
 
Qureshi Muhammad Usman   There are at least hundreds if not thousands of people out there 
like you and me who know that this one infinity being greater than same other stuff is pure BS. 
[Q.M. Usman in "I think mathematicians have got it wrong with infinity. Infinity is infinity. One 
infinity cannot be larger than another infinity. What do you think?", Quora (17 Sep 2018)] 
 
J.L. Usó-Doménech, J. Nescolarde-Selva, M. Belmonte-Requena, H. Gash   Cantor's work on 
set theory is linked to infinity and has implications for belief in God. [J.L. Usó-Doménech et al.: 
"Walking through Cantor's paradise and Escher's garden: Epistemological reflections on the 
mathematical infinite (I)" Cybernetics and Systems 46 (2015)] 
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Bill Vallicella   The numbers are not 'out there' waiting to be counted; they are created by the 
counting. In that sense, their infinity is merely potential. [B. Vallicella: "On potential and actual 
infinity", Maverick Philosopher (4 Aug 2010)] 
 
Rod Vance   I certainly like the idea that finite computations are more fundamental than sets and 
by "constructivist" I probably emphasise less the intuitionist logic and more the idea of things 
being defined by a finite "computation" (constructive proof). [R. Vance in "Does the Banach-
Tarski paradox contradict our understanding of nature?", Physics.StackExchange (9 Aug 2013)] 
 
Reynaldo Velasco   I have been skeptical of transfinite numbers. I have several arguments 
against it. [R. Velasco in "Difficulties with real numbers as infinite decimals I", YouTube (2018)] 
 
Wim Veldman   In fact, as soon as we agree upon the meaning of negation (P and ŸP cannot 
hold together, whatever be the proposition P) we have to accept it {the diagonal argument}}. But 
in intuitionism we may find an explanation for our uneasiness. [W. Veldman: "Investigations in 
intuitionistic hierarchy theory", Thesis, Krips Repro, Meppel (1981)] 
 
Kumaraswamy Vela Velupillai   Ostensibly, Cantor won the intellectual battle, but only 
'temporarily'. [K.V. Velupillai: "Freedom, anarchy and conformism in academic research", 
ASSRU (Sep 2011) p. 7] 
 
Peter Velzen   Infinity is not a number, it is a process that has no end. So an infinit amount of 
anything can never exist. [P. Velzen in "Difficulties with real numbers as infinite decimals II", 
YouTube (8 May 2012)] 
 
Suki K. Venkatesan   [...] contrary to classical mathematics, it is possible to count the real 
numbers in (0, 1) in an orderly sequence. [S.K. Venkatesan: "Zeno’s paradox, countability, 
uncountability and the continuum hypothesis", GitHub (2020)] 
 
Naum Yakovlevich Vilenkin   The most contentious aspect of set theory is the attempt to 
construct all mathematics on a set-theoretic base (the so-called "bourbakism"). Many scholars 
hold radically different views on this issue. [N.Y. Vilenkin: "In search of infinity", Birkhäuser, 
Boston (1995) p. 135]  
 
Slavica Vlahovic, Branislav Vlahovic   The main part of the paper is devoted to show that the 
real numbers are denumerable. [S. Vlahovic, B. Vlahovic: "Countability of the real numbers", 
arXiv (2004) p. 2] 
 
Gilbert Voeten   Why do the fans of Cantor always insult their antagonists to be crank? After all 
Cantor himself was crank. Who thinks to have overcome Infinity must be crank. That Cantor was 
crank is a historical fact. [G. Voeten in "! Cantor", sci.math (27 Apr 1999)] 
 
Vladimir Voevodsky   [...] mathematics is on the verge of a crisis, or rather, two crises. The first 
is connected with the separation of "pure" and applied mathematics. It is clear that sooner or later 
there will be a question about why society should pay money to people who are engaged in things 
that do not have any practical applications. [V. Voevodsky in "Интервью Владимира 
Воеводского" (1 Jul 2012), translated by J. Baez] 
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Petr Vopenka   Probably the most convincing answer was given by P. Vopenka in his 
Alternative Set Theory – [...] According to him, actual infinity is only an illusion and the whole 
classical set theory can be embedded into AST where actual infinity does not exist. [V. Novak in 
"Does actual infinity exist?", ResearchGate (13 Oct 2012)] 
 
Adriaan van der Walt   This is motivated in part one by showing that Cantor's famous diagonal 
proof, which is an algebraic formulation of Euclidean Cosmology, rests on the fallacy that an 
infinite decimal fraction can be identified by specifying its finite digits. [A. van der Walt: 
"Cantor's fallacy and the Leibnizean cosmology" viXra (2015)] 
 
Gertrud Walton   The fallaciousness of Cantor's abstract procedure, on careful inspection, is 
immediately evident; the simplest possible presentation should therefore suffice. [G. Walton: 
"Cantor's diagonal: an instance of the absurd fallaciousness of abstract procedure", sapere aude 
(19 Jul 2012)] 
 
Seth Ward   [...] supposing the eternity of the world, or the infinity of generations doth force the 
minde to contradictions, and consequently the fiction is vain, and utterly impossible; and as we 
have argued in the way of generation, so we may likewise in every thing where there is motion or 
mutation, [S. Ward: "A philosophicall essay towards an eviction of the being and attributes of 
God, immortality of the souls of men, truth and authority of scripture", Oxford (1652) p. 16f] 
 
Nik Weaver   ZFC is not a good choice to be the standard foundation for mathematics. It is 
unsuitable in two ways. Philosophically, it makes sense only in terms of a vague belief in some 
sort of mystical universe of sets which is supposed to exist aphysically and atemporally (yet, in 
order to avoid the classical paradoxes, is somehow "not there all at once"). Pragmatically, ZFC 
fits very badly with actual mathematical practice insofar as it postulates a vast realm of set-
theoretic pathology which has no relevance to mainstream mathematics. We might say that it is 
both theoretically and practically unsuited to the foundational role in which it is currently cast. 
[N. Weaver: "Is set theory indispensable?" (2009) p. 17] 
 
Alan Weir   Naturalistically minded philosophers, which probably means the majority of 
philosophers at the moment, tend to be suspicious of mathematical Platonism, with its 
commitment to unbounded infinities of abstract objects outside of space, time, and the causal 
flux. [A. Weir: "Review of Mary Leng: 'Mathematics and reality'", Brit. J. Philos. Sci. 5,3 (2014) 
pp. 657-664] 
 
Curt Welch   When I was shown Cantor's diagonal proof that the number of reals was not 
countable back in college, I thought it was a fascinating proof. [...] I now believe the proof is 
totally bogus. And the huge body of work built on top of the concept is likewise, totally bogus. 
[C. Welch: "Cantor's diagonal proof wrong?", sci.math (14 Nov 2004)] 
 
Eduard Wette   The author aims [...] to make cognizant numerically the exterior as well as the 
interior finite limits of controllably regulated mathematics [...] At a time where metamathematical 
considerations still are based on set theory it may appear bold or foolish if one tackles on such a 
low level to criticize not only the ideas of "actual" infinities in classical mathematics but also the 
attitude to the "potentially" infinite in constructivistic mathematics and to suspect them as self-
deceptions by "verbally" suggested topics. [E. Wette: "Vom Unendlichen zum Endlichen", 
Dialectica 24,4 (1970) pp. 303f & 321] 
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Hermann Weyl   Brouwer made it clear, as I think beyond any doubt, that there is no evidence 
supporting the belief in the existential character of the totality of all natural numbers, and hence 
the principle of excluded middle in the form "Either there is a number of the given property γ, or 
all numbers have the property Ÿγ" is without foundation. [...] The sequence of numbers which 
grows beyond any stage already reached by passing to the next number, is a manifold of 
possibilities open towards infinity; it remains forever in the status of creation, but is not a closed 
realm of things existing in themselves. That we blindly converted one into the other is the true 
source of our difficulties, including the antinomies – a source of more fundamental nature than 
Russell's vicious circle principle indicated. Brouwer opened our eyes and made us see how far 
classical mathematics, nourished by a belief in the "absolute" that transcends all human 
possibilities of realization, goes beyond such statements as can claim real meaning and truth 
founded on evidence. According to this view and reading of history, classical logic was 
abstracted from the mathematics of finite sets and their subsets. (The word finite is here to be 
taken in the precise sense that the members of such set are explicitly exhibited one by one.) 
Forgetful of this limited origin, one afterwards mistook that logic for something above and prior 
to all mathematics, and finally applied it, without justification, to the mathematics of infinite sets. 
This is the Fall and original sin of set-theory, for which it is justly punished by the antinomies. 
Not that such contradictions showed up is surprising, but that they showed up at such a late stage 
of the game! Thanks to the notion of "Wahlfolge", that is a sequence in statu nascendi in which 
one number after the other is freely chosen rather than determined by law, Brouwer's treatment of 
real variables is in the closest harmony with the intuitive nature of the continuum; this is one of 
the most attractive features of his theory. But on the whole, Brouwer's mathematics is less simple 
and much more limited in power than our familiar "existential" mathematics. It is for this reason 
that the vast majority of mathematicians hesitate to go along with his radical reform. [H. Weyl: 
"Levels of infinity: Selected writings on mathematics and philosophy", Peter Pesic (ed.), Dover 
Publications (2012) p. 140f] 
 
The leap into the beyond occurs when the sequence of numbers that is never complete but 
remains open toward the infinite is made into a closed aggregate of objects existing in 
themselves. Giving the numbers the status of ideal objects becomes dangerous only when this is 
done. [p. 38] It cannot be denied, however, that in advancing to higher and more general theories 
the inapplicability of the simple laws of classical logic eventually results in an almost unbearable 
awkwardness. And the mathematician watches with pain the larger part of his towering edifice 
which he believed to be built of concrete blocks dissolve into mist before his eyes. [p. 54] In a 
recent appraisal of Russell's contribution to mathematical logic he {{Gödel}} says that the 
paradoxes reveal "the amazing fact that our logical intuitions are self-contradictory". I confess 
that in this respect I remain steadfastly on the side of Brouwer who blames the paradoxes not on 
some transcendental logical intuition which deceives us but on an error inadvertendly commited 
in the passage from finite to infinite sets. [p. 234] [H. Weyl: "Philosophy of mathematics and 
natural science", Princeton Univ. Press (2009)] 
 
Cantor's notion of countability depends on the sequence of natural numbers. This notion is known 
to have caused Richard's antinomy. Its common version reads: The possible combinations of 
finitely many letters form a countable set, and since every determined real number must be 
definable by a finite number of words, there can exist only countably many real numbers – in 
contradiction to Cantor's classical theorem and its proof. [H. Weyl: "Das Kontinuum", Veit, 
Leipzig (1918) p. 18] 
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Thomas Whichello   Cantor came to his beliefs about infinity owing to the fact that mathematics 
had not yet been soundly analyzed on a grammatical basis. Once the nouns are clearly 
distinguished from the adjectives, many of the inferences which he derived from his technically 
correct proofs become invalidated, and our traditional and intuitive conception of infinity is 
restored. [T. Whichello: "An attempted refutation of Georg Cantor's inferences" (2018)]  
 
Bruno Whittle   In § 1 I will give an initial argument against the claim that Cantor established 
that there are infinite sets of different sizes. [B. Whittle: "On infinite size" in K. Bennet, D.W. 
Zimmerman (eds.): "Oxford studies in metaphysics, Vol. 9", Oxford Univ. Press (2015) p. 3] 
 
Norman J. Wildberger   Does mathematics require axioms? Occasionally logicians inquire as to 
whether the current 'Axioms' need to be changed further, or augmented. The more fundamental 
question – whether mathematics requires any Axioms – is not up for discussion. That would be 
like trying to get the high priests on the island of Okineyab to consider not whether the Divine 
Ompah's Holy Phoenix has twelve or thirteen colours in her tail (a fascinating question on which 
entire tomes have been written), but rather whether the Divine Ompah exists at all. Ask that 
question, and icy stares are what you have to expect, then it's off to the dungeons, mate, for a bit 
of retraining. Mathematics does not require 'Axioms'. The job of a pure mathematician is not to 
build some elaborate castle in the sky, and to proclaim that it stands up on the strength of some 
arbitrarily chosen assumptions. The job is to investigate the mathematical reality of the world in 
which we live. [...] Cohen's proof of the independence of the Continuum hypothesis from the 
'Axioms' should have been the long overdue wake-up call. In ordinary mathematics, statements 
are either true, false, or they don't make sense. If you have an elaborate theory of 'hierarchies 
upon hierarchies of infinite sets', in which you cannot even in principle decide whether there is 
anything between the first and second 'infinity' on your list, then it's time to admit that you are no 
longer doing mathematics. [...] Sequences generated by algorithms can be specified by those 
algorithms, but what possibly could it mean to discuss a 'sequence' which is not generated by 
such a finite rule? Such an object would contain an 'infinite amount' of information, and there are 
no concrete examples of such things in the known universe. This is metaphysics masquerading as 
mathematics. [N.J. Wildberger: "Set theory: Should you believe?" (2005)] 
 
This is a valuable initiative! Thanks for putting up these interesting quotes. Many I have not seen 
before. Let's hope that we can start to generate some critical mass so that people start to have the 
courage to face the music: modern pure mathematics is in serious logical strife, and the faster we 
acknowledge it and move forward, the better. [N.J. Wildberger: "Comment on 'Kritik der 
transfiniten Mengenlehre'", Facebook (7 Jan 2015)] 
 
Ludwig Wittgenstein   The expression "and so on" is nothing but the expression "and so on". [p. 
282] There is no such thing as "the cardinal numbers", but only "cardinal numbers" and the 
concept, the form "cardinal number". Now we say "the number of the cardinal numbers is smaller 
than the number of the real numbers" and we imagine that we could perhaps write the two series 
side by side (if only we weren't weak humans) and then the one series would end in endlessness, 
whereas the other would go on beyond it into the actual infinite. But this is all nonsense. [p. 287] 
In mathematics description and object are equivalent. "The fifth number of the number series has 
these properties" says the same as "5 has these properties". The properties of a house do not 
follow from its position in a row of houses; but the properties of a number are the properties of a 
position. [p. 457] [L. Wittgenstein: "Philosophical grammar", Basil Blackwell, Oxford (1969)] 
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If it were said: "Consideration of the diagonal procedure shews you that the concept 'real number' 
has much less analogy with the concept 'cardinal number' than we, being misled by certain 
analogies, inclined to believe", that would have a good and honest sense. But just the opposite 
happens: one pretends to compare the "set" of real numbers in magnitude with that of cardinal 
numbers. The difference in kind between the two conceptions is represented, by a skew form of 
expression, as difference of extension. I believe, and I hope, that a future generation will laugh at 
this hocus pocus. [II.22] Imagine set theory's having been invented by a satirist as a kind of 
parody on mathematics. – Later a reasonable meaning was seen in it and it was incorporated into 
mathematics. (For if one person can see it as a paradise of mathematicians, why should not 
another see it as a joke?) [V.7] The curse of the invasion of mathematics by mathematical logic is 
that now any proposition can be represented in a mathematical symbolism, and this makes us feel 
obliged to understand it. Although of course this method of writing is nothing but the translation 
of vague ordinary prose. [V.46] "Mathematical logic" has completely deformed the thinking of 
mathematicians and of philosophers, by setting up a superficial interpretation of the forms of our 
everyday language as an analysis of the structures of facts. Of course in this it has only continued 
to build on the Aristotelian logic. [V.48] [L. Wittgenstein: "Remarks on the foundations of 
mathematics", Wiley-Blackwell (1991)] 
 
[…] there is no path to infinity, not even an endless one. [...] All right, the path must be endless. 
But if it is endless, then that means precisely that you can't walk to the end of it. [§ 123] It isn't 
just impossible "for us men" to run through the natural numbers one by one; it's impossible, it 
means nothing. [...] you can't talk about all numbers, because there's no such thing as all 
numbers. [§ 124] There's no such thing as "all numbers" simply because there are infinitely 
many. [§ 126] The infinite number series is only the infinite possibility of finite series of 
numbers. It is senseless to speak of the whole infinite number series, as if it, too, were an 
extension. [...] If I were to say "If we were acquainted with an infinite extension, then it would be 
all right to talk of an actual infinite", that would really be like saying, "If there were a sense of 
abracadabra then it would be all right to talk about abracadabraic sense perception". [§ 144] Set 
theory is wrong because it apparently presupposes a symbolism which doesn't exist instead of one 
that does exist (is alone possible). It builds on a fictitious symbolism, therefore on nonsense. [§ 
174] [L. Wittgenstein: "Philosophical remarks", Wiley-Blackwell (1978)] 
 
Klaus D. Witzel   Prof. Dr. Wolfgang Mückenheim has advanced the received mathematics of 
infinity from the greatest of their time like no one before him, and we all shall be deeply grateful 
that peer reviewed science has made this long awaited progress against superstition during our 
lifetime. [K.D. Witzel: "Review of W. Mückenheim: 'Mathematik für die ersten Semester'", 
Amazon (12 May 2015)] 
 
Dan Wood   I have a method of mapping a subset of the integers, with a many to one 
relationship, to the reals thereby demonstrating that there are more integers than reals in that, with 
my mapping, there are an infinite number of integers which map to each real. [D. Wood: "Cantor 
and the mad man", sci.math (14 Jan 2002)] 
 
Andy Wright   What's stopping anybody then from proving, using Cantor's diagonalisation 
argument, that the infinity of the naturals is as large as the infinity of the reals? [A. Wright in 
"Proof – There are more real numbers than natural numbers", YouTube (29 May 2009)] 
 

http://www.logicmuseum.com/cantor/wittgensteinquotes.htm#pg
http://www.logicmuseum.com/cantor/wittgensteinquotes.htm#pg
http://www.logicmuseum.com/cantor/wittgensteinquotes.htm#pg
http://www.amazon.de/review/RJ2NAT9OU3O08/ref=cm_cr_dp_cmt?ie=UTF8&ASIN=3110377330&channel=detail-glance&nodeID=299956&store=books#wasThisHelpful
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$20and$20the$20Mad$20Man%22/sci.math/2c09saP4Z6Y/sNwqu_bF4eMJ
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$20and$20the$20Mad$20Man%22/sci.math/2c09saP4Z6Y/sNwqu_bF4eMJ
https://www.youtube.com/watch?v=mEEM_dLWY0g


 192

Feng Ye   This book [...] also shows that the applications of those classical theories to the finite 
physical world can be translated into the applications of strict finitism, which demonstrates the 
applicability of those classical theories without assuming the literal truth of those theories or the 
reality of infinity. [F. Ye: "Strict finitism and the logic of mathematical applications", Springer 
(2011)] 
 
Alexander S. Yessenin-Volpin   I [...] developed to a considerable extent the Anti-traditional, 
program of Foundations [...] which can be considered as "finitistic" [A.S. Yessenin-Volpin: 
"About infinity, finiteness and finitization (in connection with the foundations of mathematics)", 
Springer, Lecture notes in mathematics, Vol. 873 (2006) p. 274f] 
 
I have seen some ultrafinitists go so far as to challenge the existence of 2100 as a natural number, 
in the sense of there being a series of "points" of that length. There is the obvious "draw the line" 
objection, asking where in 21, 22, 23, ..., 2100 do we stop having "Platonistic reality"? Here this ... 
is totally innocent, in that it can easily be replaced by 100 items (names) separated by commas. I 
raised just this objection with the (extreme) ultrafinitist Yessenin-Volpin during a lecture of his. 
He asked me to be more specific. I then proceeded to start with 21 and asked him whether this is 
"real" or something to that effect. He virtually immediately said yes. Then I asked about 22, and 
he again said yes, but with a perceptible delay. Then 23, and yes, but with more delay. This 
continued for a couple of more times, till it was obvious how he was handling this objection. 
Sure, he was prepared to always answer yes, but he was going to take 2100 times as long to 
answer yes to 2100 then he would to answering 21. There is no way that I could get very far with 
this. [H.M. Friedman: "Philosophical Problems in Logic", Seminar Notes (2002)] 
 
Eliezer S. Yudkowsky   The Banach-Tarski Gyroscope is an intricate mechanism believed to 
have been constructed using the Axiom of Choice. On each complete rotation counterclockwise, 
the Banach-Tarski Gyroscope doubles in volume while maintaining its shape and density; on 
rotating clockwise, the volume is halved. When first discovered, fortunately in the midst of 
interstellar space, the Banach-Tarski Gyroscope was tragically mistaken for an ordinary desk 
ornament. Subsequently it required a significant portion of the available energy of the 
contemporary galactic civilization to reverse the rotation before nearby star systems were 
endangered; fortunately, the Banach-Tarski Gyroscope still obeys lightspeed limitations on 
rotation rates, and cannot grow rapidly once expanding past planetary size. After the subsequent 
investigation, the Banach-Tarski Gyroscope was spun clockwise and left spinning. [E. 
Yudkowsky in "The Banach–Tarski paradox", Hacker News (28 Dec 2008)] 
 
Doron Zeilberger   By hindsight, it is not surprising that there exist undecidable propositions, as 
meta-proved by Kurt Gödel. Why should they be decidable, being meaningless to begin with! [...] 
A priori, every statement that starts "for every integer n" is completely meaningless. [D. 
Zeilberger: "'Real' analysis is a degenerate case of discrete analysis", International Conference on 
Difference Equations and Applications, Augsburg, Germany (1 Aug 2001) p. 8] 
 
We have to kick the misleading word "undecidable" from the mathematical lingo, since it tacitly 
assumes that infinity is real. We should rather replace it by the phrase "not even wrong" [...] 
Likewise, Cohen's celebrated meta-theorem that the continuum hypothesis is "independent" of 
ZFC is a great proof that none of Cantor's ¡s make any (ontological) sense. [D. Zeilberger: 
"Opinion 108" (2010)] 
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Read Wolfgang Mückenheim's fascinating book! {{"Die Geschichte des Unendlichen", 7th ed., 
Maro, Ausgsburg (2011)}} I especially like the bottom of page 112 and the top of page 113 {{cp. 
section "Scrooge McDuck" in this source book}}, that prove, once and for all, that (at least) the 
actual infinity is pure nonsense. [D. Zeilberger: "Addendum to Opinion 68" (2011)] 
 
Alexander A. Zenkin   First hidden necessary condition of Cantor's proof. – In the middle of the 
XX c., meta-mathematics announced Cantor's set theory "naive" and soon the very mention of the 
term "actual infinity" was banished from all meta-mathematical and set theoretical tractates. The 
ancient logical, philosophical, and mathematical problem, which during millenniums troubled 
outstanding minds of humankind, was "solved" according to the principle: "there is no term – 
there is no problem". So, today we have a situation when Cantor's theorem and its famous 
diagonal proof are described in every manual of axiomatic set theory, but with no word as to the 
"actual infinity". However, it is obvious that if the infinite sequence of Cantor's proof is potential 
then no diagonal method will allow to construct an individual mathematical object, i.e., to 
complete the infinite binary sequence. Thus, just the actuality of the infinite sequence is a 
necessary condition (a Trojan Horse) of Cantor's proof, [...] If ◊ is actual, then ◊ is uncountable. 
[A.A. Zenkin: "Scientific intuition of genii against mytho-'logic' of Cantor's transfinite 
'paradise'", Proceedings of the International Symposium "Philosophical insights into logic and 
mathematics", Nancy, France (2002) p. 3] 
 
Cantor's diagonal proof engages us in an endless, potentially infinite and quite senseless 
paradoxical "game of two honest tricksters". [A.A. Zenkin: "Logic of actual infinity and G. 
Cantor's diagonal proof of the uncountability of the continuum", Review of Modern Logic 9 
(2004) p. 28] 
 
[...] within the framework of Cantor's proof the cardinality of the set ◊ (continuum) essentially 
depends upon an indexing of its elements in the list. It's obvious that the dependence of the 
cardinality of the infinite set ◊ upon an indexing of its elements is an absurdity [...] Cantor's 
'paradise' as well as all modern axiomatic set theory {{AST}} is based on the (self-contradictory) 
concept of actual infinity. Cantor emphasized plainly and constantly that all transfinite objects of 
his set theory are based on the actual infinity. Modern AST-people try to persuade us to believe 
that the AST does not use actual infinity. It is an intentional and blatant lie, since if infinite sets, 
◊ and Ù, are potential, then the uncountability of the continuum becomes unprovable, but 
without the notorious uncountability of continuum the modern AST as a whole transforms into a 
long twaddle about nothing and really is a pathological incident in history of mathematics from 
which future generations will be horrified. [A. Zenkin, letter to D. Zeilberger (20 Dec 2005)] 
 
Ernst Zermelo   The requirement that every element of a set shall be a set itself seems 
questionable. Formally that may work and simplifies the formalism. But what about the 
application of set theory on geometry and physics? [E. Zermelo, letter to A. Fraenkel (20 Jan 
1924)] 
 
Could not just this seemingly so fruitful hypothesis of the infinite have introduced straight 
contradictions into mathematics, thereby destroying the basic nature of this science that is so 
proud upon its consistency? ["On the hypothesis of the infinite", Ernst Zermelo's Warsaw notes 
W4 (p. 171), reported in H.-D. Ebbinghaus, V. Peckhaus: "Ernst Zermelo: An approach to his life 
and work", Springer (2007) p. 292] 

https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
http://www.math.rutgers.edu/~zeilberg/Opinion68.html
http://www.ccas.ru/alexzen/papers/CANTOR-2003/Zenkin PILM2002.doc
http://www.ccas.ru/alexzen/papers/CANTOR-2003/Zenkin PILM2002.doc
http://projecteuclid.org/euclid.rml/1203431978
http://projecteuclid.org/euclid.rml/1203431978
http://www.math.rutgers.edu/~zeilberg/fb68.html
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By its nature, traditional "Aristotelian" logic is finitary and, hence, not suited for a foundation of 
the mathematical sciences. Therefore, there is a necessity for an extended "infinitary" or 
"Platonic" logic which rests on some kind of infinitary "intuition" [E. Zermelo: "Thesen über das 
Unendliche in der Mathematik", unpublished (17 Jul 1921)] 
 
By "relativising" the notion of set, I believe to be able to contradict Skolem's "relativism" that 
would like to represent the whole of set theory in a countable model. It is simply impossible to 
give all sets in a constructive way [...] and any theory, founded on this assumption, would be no 
set theory at all. [E. Zermelo, letter to E. Artin (?) (25 May 1930)] 
 
Chaohui Zhuang   In Cantor's diagonal argument, the contradiction originates from the hidden 
presumption that the definition of Cantor's number is complete. The contradiction shows that the 
definition of Cantor's number is incomplete. Thus Cantor's diagonal argument is invalid. [C. 
Zhuang: "Wittgenstein's analysis on Cantor's diagonal argument", philpapers (2010)] 

https://philpapers.org/rec/ZHUWAO
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VI   Contradictions of transfinite set theory 
 
In this chapter we will disprove the three basic features of transfinite set theory by means of a 
diversity of arguments: 
 
(1) There is no actual infinity. For instance there is no complete infinite set Ù with ¡0 identifiable 
natural numbers. 
 
(2) Assuming that ¡0 exists and is consistent, countability turns out to be a self-contradictory 
notion. For instance, there is no bijection between Ù and –. 
 
(3) Even if ¡0 and countability are assumed to exist free of self-contradictions and to make sense, 
there are no uncountable sets. 
 
It is not an easy task to disprove transfinite set theory. Always when in history a contradiction has 
raised its ugly head its derivation has been denounced as invalid. The set of all sets, the most 
natural "universe" of set theory, has been excluded by hastily added axioms. The Löwenheim-
Skolem paradox has been explained away by different notions of countability in "inner" and 
"outer" models. The antinomies raised by Vitali, Hausdorff, and Banach and Tarski have been 
"resolved" by declaring the sets used for the contradictions as not measurable. Of course every 
such result must be rejected in a theory of Zero Findable Contradictions. Only then the boasting 
can be maintained that hitherto no-one has found a contradiction, where the "hitherto" is always 
proudly emphasized, to the end of showing incorruptible objectivity, connected with unshakeable 
trust in the immaculate continuance of this state though. 
 
In this chapter we argue and extrapolate by applying simple finite logic. The usual counter 
argument that infinite sets behave differently from or even contrary to finite sets would destroy 
the basis of set theory too, namely the conclusion from finite to infinite bijections. 
 
Besides of irrefutable arguments and stringent proofs there are other aspects presented in the 
following which are not refutations in the proper sense of the word but only show that set theory 
requires the belief in useless, discontinuous, and unmathematical properties of "the infinite". We 
will see many infinite sequences1 where with every step the target moves further and further 
away: the counting of all positive even numbers, the enumeration of all positive fractions, the 
bankruptcy of Scrooge McDuck, and many similar sequences will show this. But by simple, 
naive, and completely irrational belief, it is asserted that "a limit" exists which can be "realized", 
and that "in this limit" all elements of the set of positive even numbers are smaller than its 
cardinal number, all positive fractions will have been enumerated, and Scrooge McDuck will 
have gone bankrupt, because the set-limit is considered somehow superior to the mathematical 
(improper) limit of the sequence of cardinalities. 
 
In cases where for a sequence of sets the limit of the sequence of cardinal numbers differs from 
the cardinal number of the limit set, a mathematician has to trust in mathematics only, which 
yields the former, but not in set theory, which yields the latter. 
                                                 
1 In the following the terms of a sequence are sometimes written below each other for greater clarity and 
to spare separators between them. – There is enough inexpensive space. 
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 Ù does not exist – the self-contradictoriness of the notion ¡0 
 
 The pigeonhole principle 
 
If each of the first n positive integers has a unary representation in form of a string, like ooooo, 
that is shorter than n then, by the pigeonhole principle, there must be two different positive 
integers defined by the same unary representation. Clearly this is absurd. 
 
Same holds in case of ¡0 finite strings. ¡0 is a fixed quantity such that "n œ Ù: n < ¡0. If each 
one of all ¡0 positive integers has a unary representation in form of a string that is shorter than 
¡0 then, by the pigeonhole principle, there must be two different positive integers defined by the 
same unary representation. Clearly this is absurd too. 
 
Since the order in (1, 2, 3, ..., n) is fixed or irrelevant in {1, 2, 3, ..., n} Finite Initial Segments Of 
Natural numbers (FISONs) have same information content as plain strings of same length. [WM: 
"Matheology § 272", sci.math (28 May 2013)] 
 
 
 
 Three reservoirs 
 
Consider a reservoir A containing all natural 
numbers and another reservoir Z being empty. 
According to set theory it is possible, by 
addition and subtraction of sets, to transfer all 
natural numbers from A to Z.  
 
Now add an intermediate reservoir M. By 
addition and subtraction of sets transfer the 
natural numbers, one after the other, from A to 
M and from M to Z but obeying the condition1 
that number n is not transferred from M to Z 
before number n + 1 has arrived in M from A. 
 
According to this procedure always one number remains in M so that M is never empty and Ù is 
never complete in Z. Set theory however replaces "never" by "in the infinite" – and then "in the 
infinite" Ù is in Z. In that case we get a result for the sets Sn residing in M that is typical for limits 
of sequences of sets: 
 
 1 = LimnØ¶ |Sn| ≠ |LimnØ¶ Sn| = |{ }| = 0 . 
 
[W. Mückenheim: "History of the infinite", current lecture, chapter XII. Illegal border: "Minimal 
super task", MathOverflow (10 Jul 2014)] 

                                                 
1 This condition is in no way artificial because for every natural number taken, there is another natural 
number not yet taken. 

https://groups.google.com/g/sci.logic/c/lsNn06ZshZM/m/xc4ggQFk5OMJ
https://www.hs-augsburg.de/~mueckenh/HI/HI12.PPT
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Minimal super task.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Minimal super task.pdf


 197

 Discontinuity of transfinity (I) 
 
Every finite set of positive even integers 2k contains at least one number that is larger than the 
cardinal number of the set. For instance every term Fn = {2, 4, 6, ..., 2n} of the sequence of Finite 
Initial Segments (FIS) of positive even integers 
 
 {2}, {2, 4), {2, 4, 6}, {2, 4, 6, 8}, {2, 4, 6, 8, 10}, {2, 4, 6, 8, 10, 12}, ...  (*) 
 
contains greater numbers than its cardinal number |Fn| = |{2, 4, 6, ..., 2n}| = n. Replacing one or 
more of the positive even integers of a FIS by larger positive even integers (smaller are not 
available) cannot remedy this result. So we can even state the 
 
Theorem   Every finite set S of positive even integers 2k contains at least one integer 2k > |S|. 
 
The surplus of greater integers, marked red in (*), grows without bound. The quotient of cardinal 
numbers of "upper set" (containing the integers > n) and "lower set" (containing the integers § n), 
namely |{2k | 2k > n}| / |{2k | 2k § n}| is never less than 1. The first FISs yield 
 

         
{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

1, 1, , 1, , ,
2 4 4,6 6,8 6,8,10 8,10,12 8,10,12,143 4 2 1

2 3  2  2  2, 4  2, 4  2, 4,6  2, 4,6
> = = = = = =  . 

 
The minimum is reached for FISs of the form {2, 4, 6, ..., 4n} 
 

          
( ) ( ){ }

{ }
2 1 ,  2 2 ,  ...,  4

 1
 2,  4,  6,  ...,  2

n n n

n

+ +
=  . 

 
For all other finite sets of positive even integers the quotient is larger. 
 
Let (Gn) be the sequence of cardinal numbers of the "upper sets", then the sequence of reciprocals 
 
 (1/Gn) = 1, 1, 1/2, 1/2, 1/3, 1/3, 1/4, 1/4, 1/5, 1/5, ... Ø 0 
 
converges to zero. Therefore the sequence (Gn) has the improper limit ¶. This is in contradiction 
with the set theoretic postulate that in the limit there are more even numbers than any even 
number indicates, i.e, the upper set is empty. 
 
Indexing the green and the red numbers of the above sequence (*) separately, we get 
 
 { } » {21}, {21} » {41}, {21} » {41, 62}, {21, 42} » {61, 82}, {21, 42} » {61, 82, 103}, ... 
 
In the limit the index sets {1, 2, 3, ...} and {1, 2, 3, ...} would be expected. But the discontinuity 
of set theory results in the index sets Ù and «. It is amazing that the limits would be {1, 2, 3, ...} 
and {1, 2, 3, ...}, i.e., Ù and Ù, if the indices were accumulated as before but logically 
disconnected from the red surplus numbers. [W. Mückenheim: "Die Geschichte des 
Unendlichen", 7th ed., Maro, Augsburg (2011) p. 111f] 

https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
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 Discontinuity of transfinity (II) 
 
Discontinuity is obvious from some bijections with Ù having gaps. Simple bijections like 
 

n 2n n2 1/n 
1 2 1 1 
2 4 4 1/2 
3 6 9 1/3 
... ... ... ... 
¡0 ¡0 ¡0 0 

 

do not reveal the effect but it becomes clearly visible in more involved examples. n ¨ 2n and 
similar bijections given in the table below are discontinuous since 
 

 2n < ¡0   for   n < ¡0   and   2n = 2¡0 > ¡0   for   n = ¡0 . 
 

This bijection is undefined between ¡0 and 2¡0. There is a gap where 2n is neither finite nor 
infinite. But if ¡0 is considered a number which can be in trichotomy with natural numbers, then 
this discontinuity is highly suspect. n ¨ 22n! exhibits indefiniteness over even a larger gap. All 
the rows with question marks in the following table show gaps of indefiniteness. They are 
unanswered by set theory, which, on the other hand, is ready to calculate hyper-inaccessible 
cardinals minutely. Common calculus simply would replace the question marks by 0 or ¶. 
 

1/2n! 1/n! log2n n 2n n! 2n! 22n! 
1/2 1 0 1 2 1 2 4 
1/4 1/2 1 2 4 2 4 16 
1/64 1/6 log23 3 8 6 64 264 

... ... ... ... ... ... ... ... 
? ? ? ? ? ? ? ¥ ¡0 
... ... ... ... ... ... ... ... 
0 ? ? ? ? ? ¥ ¡0 ¥ 2¡0 
... ... ... ... ... ... ... ... 
0 0 ? ? ? ¥ ¡0 ¥ 2¡0 ¥ 22¡0 
... ... ... ... ... ... ... ... 
0 0 ? ? ¥ ¡0 ¥ ¡0 ¥ 2¡0 ¥ 22¡0 
... ... ... ...  ... ... ... 
0 0 ? ¥ ¡0 ¥ 2¡0  ¥ ¡0! ¥ 2¡0! ¥ 22¡0!

 
... ... ... ... ... ... ... ... 
0 0 ¥ ¡0 ¥ 2¡0 ¥ 22¡0 ¥ 2¡0! ¥ 2(2¡0)! ¥ 22(2¡0)!

 
 

Of course this table could easily be extended by loglog...logn as well as by higher powers of 2 or 
other numbers. [W. Mückenheim: "The meaning of infinity", arXiv (2004)] 

http://arxiv.org/vc/math/papers/0403/0403238v1.pdf
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 Failure of universal quantification 
 
By means of universal quantification, "n œ Ù: P(n), allegedly all ¡0 natural numbers can be 
addressed individually and provided with a property P. But every natural number n that we can 
address individually belongs to a Finite Initial Segment Of Naturals (FISON) Fn = (1, 2, 3, ..., n) 
that is followed by an actual infinity of ¡0 natural numbers – if set theory is right. 
 
So what means quantifying over all natural numbers n? Does it mean to take only those natural 
numbers which have the characteristic property to be followed by infinitely many natural 
numbers? Then we don't get all of them because always infinitely many are missing. Or do we 
take all n with no exception? Then we include some which are not followed by infinitely many 
others and hence are not natural numbers because they are lacking this characteristic property. 
 
As the infinite set following every Fn is much larger than this Fn, almost all (i.e., all except 
finitely many) natural numbers cannot be addressed individually. In fact every putative user of 
the universal quantifier fails infinitely often to select a number of the final sequence of ¡0 natural 
numbers and never succeeds. The claim that all natural numbers can be identified and referred to 
individually, for instance in a bijection of Ù with a countable set, is false. Who would have ever 
identified or referred to a natural number that has more predecessors than successors?  
 
To illustrate this, we can divide the complete sequence of natural numbers into say 100 
consecutive finite intervals of equal size and an infinite rest. If we refer to any natural number n, 
then 100ÿn is a natural number too and belongs to a FISON. (Of course we can subjugate 100ÿn to 
the same multiplication.) So every natural number belongs to the first of 100 similar finite 
intervals, i.e., to less than 1 % of Ù. A counter argument stating that this 1% of Ù is all of Ù does 
not impair the argument: We cannot refer to more than the first percent of Ù. 
 
Instead of 100 every factor K could be used. Thus all natural numbers belong to a tiny, nearly 
vanishing initial segment of the complete set Ù – if such a set exists somewhere. But whether or 
not it exists, it would not have any effect since almost all of its elements are inaccessible. 
 
Same holds for the rational numbers. Every decimal period can be extended to a period of K-fold 
length – it remains a rational number with a small period. Also for every fraction the numerator 
or the denominator can be multiplied by any K without leaving the domain of small fractions. 
 
Modern set theorists try to save Ù by storing all natural numbers, with the omission of their 
natural order, in a big bag {1, 2, 3, ...} instead of the ordered set (1, 2, 3, ...). The natural order of 
the natural numbers however is their most important feature. It is already embossed to the 
sequence S0, SS0, SSS0, ... by the Peano axioms. So set theorists have to forget this order. But 
then Ù is unsuitable for enumerating purposes or mathematical induction. 
 
To make a long story short: A complete set Ù of identifiable numbers does not exist in potential 
infinity and is not accessible in actual infinity. [WM: "Matheology § 295", sci.math (22 Jun 
2013). WM: "What means quantifying over all natural numbers?", sci. math (5 Oct 2016)] 

https://groups.google.com/forum/#!msg/sci.math/MICz32adCCc/E4bYTIBGw60J
https://groups.google.com/forum/#!topic/sci.math/7R5AyzMc9Vs
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 ¡0 destroys the translation invariance of finite strings 
 
A unary representation of a natural number n is a finite string or word of n similar symbols. If the 
sequence (n) in unary representation is written into rows, one number beneath the other, 
 
 o  
 oo  
 ooo  
 ...  
 
then no row covers ¡0 symbols because "n œ Ù: n < ¡0 is a theorem of set theory. 
 
If the same sequence (n) is written into a single row or if all symbols, maintaining their column, 
are shifted or projected into the first row (or a new row number zero), then this row covers ¡0 
symbols (because there is an infinitely increasing sequence of words). This destroys translation 
invariance of words, namely the fact (among others necessary for mathematical discourse) that 
changing the place of writing must not change the meaning of the written. 
 
Every set with N different natural numbers (here and in the following always positive integers are 
meant) in unary representation contains at least one representation with at least N symbols. In 
unary representation, there is no "other digit" but always only "one more symbol". Since there is 
no natural number with more than every finite set of symbols, there cannot be a set with more 
than all finite numbers of symbols either. The "actually infinite" set of ¡0 > n symbols is a 
contradictio in adiecto. This can also be seen by the symmetry between rows and columns: The 
figure covers only those columns which are covered by at least one row – and no row covers ¡0 
columns, i.e., more than all rows cover. 
 
Like the sequence (sn) of lines of length sn = 1 - 1/n covers all points of the unit interval except its 
supremum 1, the sequence (n) contains all numbers less than its supremum ¡0. But if ¡0 is not 
the number of elements of an uncountable set but merely the supremum which is never reached, 
this not only stands in opposition to Cantor's idea of the reality of sets and their elements, but it is 
devastating for the definition of real numbers by infinite sequences: A potentially infinite digit 
sequence with less than ¡0 digits does not define, till each digit, anything but a rational interval. 
 
Same holds for the ordinal number ω. If it exists, then it is only the supremum and not the 
maximum of Ù. Its column in the figure 
 
 1  
 1, 2  
 1, 2, 3  
 ...  
 
is far beyond all columns occupied by natural numbers because "n œ Ù, "X < ω: n + X < ω. 
[WM: "Das Zauberdreieck", de.sci.mathematik (22 Oct 2011)] 
 
 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Zauberdreieck/de.sci.mathematik/VdObCEy6O5k/HKivg5AMsDoJ
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Discussion: When all finite rows o, oo, ooo, ... are projected into a single row number zero, L0, 
then no state emerges where L0 is longer than all. "No, exactly that is the case." [Franz Fritsche 
alias "Me" in "Grundpfeiler der Matheologie", de.sci.mathematik (1 Aug 2016)] My reply (1): If 
the projection was longer than all finite rows, then it would contain elements which are not in any 
finite row – but it doesn't. My reply (2): Let us project, in a supertask, every row into L0 but so 
that L0 is always cleared between two steps (that is obviously without any effect, if the rows are 
processed in their natural order). Never ¡0 symbols o will show up in L0. But when we project all 
rows into L0 simultaneously, then ¡0 symbols o will show up there? 
 
Discussion: L0 is longer than all finite rows. "Replace all by every, then the statement obviously 
gets correct." [A. Leitgeb in "Grundpfeiler der Matheologie", de.sci.mathematik (16 Aug 2016)] 
My reply: When shifting every row into the first one, we do not get a row L0 longer than all? 
 
 
 Duality in set theory 
 
Theorem   Every arbitrarily small ε-neighbourhood of 0 with 0 < ε < 1/n contains ω terms of the 
sequence (1/n)nœÙ. 
 
Proof is trivial. The dual statement is constructed by replacing 0 by ω, 1/n by n, and "<" by ">".  
 
Dual Theorem   Every arbitrarily large X-neighbourhood of ω with ω > X > n contains 0 terms of 
the sequence (n)nœÙ.  
 
Proof: Ÿ$ n with n + X = ω for X < ω , Ÿ$ n with n = ω , Ÿ$ n with n > ω . É 
 
If ω exists, then we can talk about "all natural numbers which are followed by something". It 
would be wrong however to say that all natural numbers Ù are followed by infinitely many 
natural numbers. Since all natural numbers are less than ω, we can say that all natural numbers 
are followed by the ordinal numbers ω, ω + 1, ω + 2, ... . Then, according to the above dual 
theorem, all natural numbers must be followed first by ¡0 ordinals X which are smaller than ω. 
[WM: "Duality in set theory", sci.math (8 Apr 2016)] 
 
Then, however, it is wrong to consider ω the limit of all natural numbers1 let alone to identify ω 
with Ù. Between a set and its limit there must not exist anything foreign to that set. Therefore we 
cannot accept Russell's statement: "Thus, for instance, the smallest of the infinite integers is the 
limit of the finite integers, though all finite integers are at an infinite distance from it." [Bertrand 
Russell: "Mathematics and the metaphysicians" from "Mysticism and logic and other essays", 
George Allen & Unwin, London (1917) p. 92] 
 
 

                                                 
1 "Es ist sogar erlaubt, sich die neugeschaffene Zahl ω als Grenze zu denken, welcher die Zahlen ν 
zustreben, wenn darunter nichts anderes verstanden wird, als daß ω die erste ganze Zahl sein soll, welche 
auf alle Zahlen ν folgt, d. h. größer zu nennen ist als jede der Zahlen ν" [Cantor, p. 195]. 

https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/sci.math/c/cty8mS45048/m/bHnxmjqUAwAJ
https://en.wikisource.org/wiki/Mysticism_and_Logic_and_Other_Essays/Chapter_05
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 Inclusion monotony 
 
The sequence of all FISONs is strictly inclusion-monotonic {1} Õ {1, 2} Õ {1, 2, 3} Õ ... .  
 
The limit Ù is not contained, since every FISON has a last number. On the other hand no natural 
number can be missing in their union. But for an inclusion monotonic sequence, the union is a 
term of the sequence. Every union of FISONs is contained in at least one of the combined 
FISONs. This holds without any bound for arbitrarily large sets of FISONs including the infinite 
set too, because all its FISONs are finite and placed at finite positions. 
 
Every natural number n is in some FISON Fi  
 
 "n $i: n œ Fi 
 "n "i: (n § i ñ n œ Fi) ⁄ (n > i ñ n – Fi) . 
 
If the union of FISONs nevertheless is larger than all FISONs, then there must exist at least two 
FISONs, Fj and Fk, such that  
 

 $j, k, m, n: m œ Fj ⁄ m – Fk ⁄ n – Fj ⁄ n œ Fk . 
 

Such FISONs cannot be found because FISONs obey inclusion monotony. 
 
In words: If ¡0 is a number in trichotomy with all cardinal numbers including all natural 
numbers, and if there are ¡0 natural numbers, i.e., more than are in any FISON {1, 2, 3, ..., n}, 
then, as a consequence, no FISON contains all natural numbers. So the natural numbers must be 
dispersed over two or more FISONs, each of which is containing less than ¡0 elements. That is 
mathematically contradicted by the inclusion monotony of the FISONs. 
 
By inclusion monotony every FISON contains all numbers of its predecessors. A 
counterargument claims that inclusion monotony does no longer hold "in the infinite". But every 
FISON has only a finite number of predecessors. Since there is no FISON with infinitely many 
predecessors, all FISONs come before "the infinite". Inclusion monotony holds for all FISONs. 
[WM in "Diagonal wanderings (incongruent by construction)", sci.math (17 May 2009)] 
 
Discussion: "For inclusion-monotonic sequences like the initial segments of Ù the union of all 
terms is the limit of the sequence." [Andreas Leitgeb in "Grundpfeiler der Matheologie", 
de.sci.mathematik (31 Jul 2016)] My reply: This statement is wrong because every union of 
FISONs is finite. Every set of FISONs contains only finite FISONs (by definition) which come at 
finite positions. See section "All gapless unions of FISONs are not enough to produce Ù". 
 
Discussion: This argument forces set theorists to confess that part of mathematics cannot be 
accepted in set theory: "Inclusion monotony is false, so I don't care what or what does not play a 
role for it." [Martin Shobe in "It is easy to understand that transfinite set theory is wrong", 
sci.math (15 Jan 2016)]. 

https://groups.google.com/g/sci.math/c/7H6VgT1ohvI/m/4mI_wduWwU8J
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/sci.math/c/4YRYeoyXnLE/m/RKE5olMUBwAJ
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 ω + 1 unions 
 
Every FISON Fn = {1, 2, 3, ..., n} is the union of its predecessor Fn-1 = {1, 2, 3, ..., n-1} and {n}. 
In this way we accumulate ω or ¡0 finite unions of the form 
 
 (... (({1} » {2}) » {3}) » ... » {n}) = {1, 2, 3, ..., n} 
 
none of which yields the set Ù of all natural numbers although all natural numbers are present as 
elements in the set of all FISONs created in this way. But if we merge all these FISONs for 
another time, i.e., all the unsuccessful attempts to establish Ù (which is also the set of all last 
elements of the FISONs), then we get 
  
 {1} » {1, 2} » {1, 2, 3} » ... » {1, 2, 3, ..., n} » ... = {1, 2, 3, ...} = Ù .  (A) 
 
We execute union number ω + 1 over what already had been merged before (each FISON is in 
infinitely many unions), and without adding anything further we get a larger set than has been 
existing before, namely the set of all last elements of the FISONs. The infinite union (A) contains 
all natural numbers as the set Ù. But Ù is not contained in (B) or (C): 
 
 {1}, {1, 2}, {1, 2, 3}, ...         (B) 
 
 {1}, {1} » {1, 2}, {1} » {1, 2} » {1, 2, 3}, ... .     (C) 
 
[WM: "§ 417 An implication of actual infinity", sci.math (9 Jan 2014)] 
 
 
 A matter of notation 
 
 {1, 2, 3, ...} = Ù 
 
is the set of all natural numbers. The order does not matter. It can be chosen arbitrarily but has to 
remain the same in the following. If every number is prepended by all its predecessors 
 
 {1, 1, 2, 1, 2, 3, ...} = Ù 
 
nothing is changed (since multiple appearance of an element in curly brackets does not matter). 
But if some curly brackets (or parentheses) are inserted,  
 
 {{1}, {1, 2}, {1, 2, 3}, ...} = ≈   or   {(1), (1, 2), (1, 2, 3), ...} = ≈ 
  
then, while no natural number is removed, Ù is lost. Now there is the set ≈ of all FISONs without 
the set Ù which is no longer present, neither as a subset nor as an element. So the mere insertion 
of braces destroys Ù – although never two numbers, which are neighbours in the original 
sequence, have been separated by braces. [WM: "Let |N disappear by performing magic (second 
version)", sci.logic (21 May 2015)] 

https://groups.google.com/g/sci.math/c/QR3dMvQtGWc/m/HmUhsKCKaCEJ
https://groups.google.com/g/sci.logic/c/R520eb6EzXI/m/YyFJzkOo2OsJ
https://groups.google.com/g/sci.logic/c/R520eb6EzXI/m/YyFJzkOo2OsJ
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 All gapless unions of FISONs are not enough to produce Ù 
 
The following sequence contains all initial gapless unions of FISONs. 
 
 {1} = {1} 
 {1} » {1, 2} = {1, 2} 
 {1} » {1, 2} » {1, 2, 3} = {1, 2, 3} 
 {1} » {1, 2} » {1, 2, 3} » {1, 2, 3, 4} = {1, 2, 3, 4} 
 {1} » {1, 2} » {1, 2, 3} » {1, 2, 3, 4} » {1, 2, 3, 4, 5} = {1, 2, 3, 4, 5} 
 ... . 
 
All are finite, none is Ù, i.e., larger than all FISONs. But the terms of the sequence contain, as 
elements of FISONs, all natural numbers and all FISONs (on the right-hand side), and also all 
initial gapless unions of FISONs (on the left-hand side). An infinite union Ù that is larger than all 
FISONs is impossible because there are no further FISONs that could be merged in order to 
surpass themselves.1 
 
The usual claim is that Ù is not in the sequence of all FISONs but is their union. This is 
obviously impossible since all FISONs are already merged in the above sequence. [WM: 
"Fortunately nobody does so in mathematics.", sci.math (30 May 2019)] 
 
The idea can be generalized: The elements Sn of every well-ordered countable set S, may it 
consist of FISONs or of endsegments or of rational numbers or of algebraic numbers or of finite 
expressions (words), can be listed as a sequence of finite initial segments 
 
 {S1} 
 {S1, S2} 
 {S1, S2, S3} 
 ... 
 
All sets of this list are finite. The burning question, how an actually infinite set nevertheless can 
be created, has many different answers by set theorists. Here is a small collection: 
 
If the infinite intersection applies more endsegments than all finite intersections, then show one 
of them. "There is no one. It's all in the teamwork." [Fred Jeffries in "Mathematics abstraction vs 
make-believe", sci.math (12 Aug 2019)] 
 
"You are in fact extrapolating the infinite from the finite! Do not use the finite!" [Zelos Malum in 
"Mathematics abstraction vs make-believe", sci.math (13 Aug 2019)] 
 
"Well the axiom of infinity says there is something larger." [Jan Burse alias Transfinite Numbers 
in "Mathematics abstraction vs make-believe", sci.math (19 Aug 2019)] 

                                                 
1 However if it should be possible to index decimal representations of irrational numbers by the index set 
Ù then something must remain after all FISONs have been subtracted from Ù (see section "Dark natural 
numbers in set theory"). FISONs index only finite periods or terminating decimal representations.  

https://groups.google.com/g/sci.math/c/yzgcKQ_ndxc/m/5qkrHrK8BAAJ
https://groups.google.com/forum/#!topic/sci.math/ELogItr__uI
https://groups.google.com/forum/#!topic/sci.math/ELogItr__uI
https://groups.google.com/forum/#!topic/sci.math/ELogItr__uI
https://groups.google.com/forum/#!topic/sci.math/ELogItr__uI
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 The intersection of infinite endsegments is not empty1 
 
Definition: En = {n, n+1, n+2, n+3, ...} = {k œ Ù | k ¥ n} is called the endsegment of n œ Ù. 
 
Every definable endsegment has ¡0 natural numbers as elements, as shown by induction: E1 = Ù 
has cardinality ¡0. If |En| = ¡0 then |En+1| = ¡0 - 1 = ¡0. Every such endsegment is the finite 
intersection of itself and of all its predecessors, and every finite intersection has cardinality ¡0: 
 
 |E1| = ¡0, |E1 ∩ E2| = ¡0, |E1 ∩ E2 ∩ E3| = ¡0, ... . 
 
For every natural number n there is a first endsegment En+1 not containing it. Therefore, 
according to set theory, the intersection of all endsegments is empty (like the union of all FISONs 
is Ù) although there is no empty endsegment.  
 
This result is not acceptable. No natural number can be found2 that is in any En but not in E1 = Ù. 
Inclusion monotony then shows that all natural numbers of En are contained in all preceding 
endsegments, and almost all are contained in all succeeding infinite endsegments too.  
 
Theorem   Every infinite endsegment En has ¡0 natural numbers in common with all other 
infinite endsegments. 
 
Proof: For every endsegment Em with m < n this follows from the definition. For every 
endsegment En+k it follows by commutativity of the intersection: Assume that En has less than ¡0 
numbers in common with En+k, then there is an endsegment, namely En+k, having less than ¡0 
numbers in common with its predecessor En. Contradiction. É [WM: "Dark matter in der 
Zahlentheorie", de.sci.mathematik (24 Oct 2018)] 
 
All endsegments En which in finite intersections E1 … E2 … E3 … ... … En ∫ « provably leave 
non-empty, even infinite, results should, when joined together with no further participant, change 
their behaviour and decrease the intersection below all former benchmarks? 
 
Remark: "n œ Ù: |En| = ¡0 but limnØ¶ |En| = 0 would be tantamount to ¡0, ¡0, ¡0, ... Ø 0. 
Accepting this kind of limit would invalidate all bijections between infinite sets which are so 
imperative for set theory. 
 
Remark: We do not use limnØ¶ |E1 ∩ E2 ∩ ... ∩ En| = |limnØ¶ E1 ∩ E2 ∩ ... ∩ En| here.  
 
Remark: The set of all actually infinite endsegments cannot be actually infinite because there 
cannot exist two consecutive ¡0-sets in Ù. It is only potentially infinite: {En | |En| = ¡0} < ¡0. 

                                                 
1 For an alternative approach see section "Dark natural numbers proved by intersections of endsegments". 
2 An empty intersection would require an empty endsegment, which has been excluded, or at least two 
numbers j and k and two endsegments Em and En such that j œ Em ⁄ j – En ⁄ k – Em ⁄ k œ En, which can 
be excluded by inclusion monotony, En û En+1, of the sequence (En). 

https://groups.google.com/g/de.sci.mathematik/c/fQwTora9Bz8/m/5ocoweofBQAJ
https://groups.google.com/g/de.sci.mathematik/c/fQwTora9Bz8/m/5ocoweofBQAJ
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Discussion: "The intersection of any finite set of endsegments contains ¡0 numbers. The 
intersection of any infinite set of endsegments is empty." [Jim Burns in "Why is it relevant to 
know potential infinity?", sci.logic (17 Jul 2019)] My reply: Every infinite endsegment is a finite 
intersection of itself and its predecessors. We agree that every finite intersection has ¡0 elements 
in common with E1 = Ù and all its other predecessors and successors at finite places. There are 
no definable endsegments by which the intersection could be extended in order to diminish this 
result. Therefore the intersection of all infinite endsegments is not empty. 
 
Discussion: "The intersection of sets is defined by reference to elements not cardinalities, and 
this exercise shows that they are not interchangeable – even if any finite subcollection of sets has 
a non-empty (even infinite) intersection, it does not follow that the intersection of all the sets is 
non-empty." [Mark Bennet in "Can the intersection over all sets of a particular infinite sequence 
be empty?", Math.StackExchange (7 Oct 2018)] My reply: If all natural numbers are accessible, 
then there is no cardinality C of a set without C elements in that set that can be referred to. 
 
Discussion: "To show that no number is element of every endsegment it is sufficient to show that 
every number is not element of at least one endsegment. The latter however is trivial: n – En+1." 
[Diedrich Ehlerding in "Dark matter in der Zahlentheorie", de.sci.mathematik (23 Oct 2018)] My 
reply: Vice versa it is as easy to show that no endsegment is sufficient because every endsegment 
contains, together with all its predecessors, at least one number, n + 1 œ En, of the infinite never 
ending set. 
 
Discussion: "The mistake in WM's fallacy is that the intersection only then would be not empty 
if every 'endsegment' had numbers in common with all its predecessors and simultaneously with 
all its successors. The first condition is trivial [...] the second one is simply false." [Detlef Müller 
in "Dark matter in der Zahlentheorie", de.sci.mathematik (24 Oct 2018)] My reply: The second 
condition follows from the first condition. If there is an endsegment having less than ¡0 numbers 
in common with all its successors, then there will be a first successor violating the first condition. 
 
Discussion: At every finite number of steps there are almost all elements not at the first position. 
"And almost all steps left to execute." [Martin Shobe in "Can universal quantification circumvent 
this fact? If so, how? If not, why is it called universal?", sci.math (24 Oct 2018)] My reply: 
Correct, but this situation never changes. They are left to execute forever. If however the set Ù of 
all natural numbers is given by the axioms 1 œ M, and n œ M fl (n +1) œ M, and Ù = »{M}, then 
all endsegments with natural indices will be proved removable by 
 
 »{E1, E2, E3, ..., En} ∫ « ⁄ »{En+1, En+2, En+3, ...} = « 
       fl »{E1, E2, E3, ..., En+1} ∫ « ⁄ »{En+2, En+3, En+4, ...} = « . 
 
Discussion: "The infinite product 1/1ÿ1/2ÿ1/3ÿ... = 0 according to analysis. But there is no first 
term 1/n making 1/1ÿ1/2ÿ1/3ÿ...ÿ1/n ∫ 0 wrong." [Franz Fritsche in "Natural logic vs Foundations 
of Mathematics", sci.math (31 Jul 2019)] My reply: There is no infinite product in analysis. 
Every product is finite and positive. Only the limit is 0. Set theory however needs also the infinite 
product and the infinite bijection as well. 
 

https://groups.google.com/g/sci.logic/c/D8tQlwjqCx0/m/EVSRJJR8DgAJ
https://groups.google.com/g/sci.logic/c/D8tQlwjqCx0/m/EVSRJJR8DgAJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181006 MSE Ehrwald.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181006 MSE Ehrwald.html
https://groups.google.com/g/de.sci.mathematik/c/fQwTora9Bz8/m/5ocoweofBQAJ
https://groups.google.com/g/de.sci.mathematik/c/fQwTora9Bz8/m/5ocoweofBQAJ
https://groups.google.com/g/sci.math/c/2nMZnQYwJM8/m/JkdJH5DfAwAJ
https://groups.google.com/g/sci.math/c/2nMZnQYwJM8/m/JkdJH5DfAwAJ
https://groups.google.com/g/sci.math/c/-Dbqsuc8DmI/m/g3S4hY02AgAJ
https://groups.google.com/g/sci.math/c/-Dbqsuc8DmI/m/g3S4hY02AgAJ
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 Sequence of exponents 
 
The sequence (ak) of terms ak = 10-1 + 10-2 + ... + 10-k has, as absolute values of its exponents, 
the set of all FISONs (1), (1, 2), (1, 2, 3), ... . Ù does not belong to this set because the sequence 
does not contain its limit 0.111... . But all natural numbers are present. That means we have all 
natural numbers in the set but we don't have Ù. This proves that by "all natural numbers" we have 
to understand a potentially infinite collection, but not an actually infinite, completed set. 
 
(1) There is no natural number that is missing in all exponents of the sequence. 
(2) There is no infinite set of natural numbers in any term of the sequence (because there is no 
infinite set of powers in any term). 
(3) There is no natural number that, once it has appeared in the exponent of a term ak, will be 
missing in the exponent of a later term ak+j, with j > 0.  
 
From (1) we see that every n œ Ù is in the sequence (ak) as the absolute value of an exponent. If 
the complete infinite set Ù is actually existing, then it is in the union of all those FISONs.  
From (3) we see that all n that are in the union of all exponents also are in a single exponent. 
From (2) we see that no actually infinite set of natural numbers is in any exponent of a term ak.  
 
 
 Arbitrariness in set theory: "Every" is not "all" 
 
Ë Every initial sequence of digits Dn = d1d2...dn of the antidiagonal D differs from the first n 
entries Ln of the Cantor-list L. From this it is concluded that D differs from all entries of the 
Cantor-list and therefore D is not in the list. "n œ Ù: Dn – Ln fl D – L. 
Ë Every initial sequence of digits Dn = d1d2...dn of the antidiagonal D differs from every element 
of the set ◊ of all irrational numbers because it is rational. This is not used to argue that D is not 
in the set ◊ of irrational numbers. "n œ Ù: Dn – ◊ fl D – ◊. 
 
Ë Every rational number can be indexed by a natural number. From this it is concluded that all 
rational numbers can be indexed by natural numbers.  
Ë Every natural number leaves the overwhelming majority of rationals without index. From this it 
is not concluded that all natural numbers leave the overwhelming majority of rationals without 
index. 
 
Ë It is possible, for every n œ Ù, to enumerate the first n rational numbers q1, q2, q3, ..., qn – for 
instance like Cantor did it. Set theorists claim that this proves the possibility of enumerating all 
rational numbers, i.e., listing them as a sequence. 
Ë It is possible, for every n œ Ù, to well-order these first n rational numbers q1, q2, q3, ..., qn by 
size. Set theorists do not claim that this proves the possibility of well-ordering all rational 
numbers by size. [WM: "Every is not all.", sci.logic (22 Jul 2011). WM: "Arbitrariness in set 
theory: 'Every' is not 'all'.", sci.logic (26 Jul 2020)] 

https://groups.google.com/g/sci.logic/c/xV4qnv6S3NE/m/xygi5OEVrgQJ
https://groups.google.com/g/sci.logic/c/mO63Sm62sOw/m/vdJZNjbqBgAJ
https://groups.google.com/g/sci.logic/c/mO63Sm62sOw/m/vdJZNjbqBgAJ
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 Cantor's Theorem B 
 
Here are some excerpts from Cantor's papers concerning the fact that every set of ordinal 
numbers has a smallest element: 
Ë "Among the numbers of the set (α') there is always a smallest one."1 A simple proof has been 
shown by Zermelo, the editor of Cantor's collected works.2 
Ë "Theorem B: Every embodiment of different numbers of the first and the second number class 
has a smallest number, a minimum."3 
Ë "Would the index α' not run through all numbers of the second number class then there had to 
be a smallest number α that it does not reach."4 
Ë "But from the proven theorems about well-ordered sets in § 13 it also follows easily that every 
multitude of numbers, i.e., every part of Ω contains a smallest number."5 
 
These theses however have to be rejected by present day set theorists (to protect Cantor's works 
from destruction). Among the FISONs of Ù there is not, in any enumeration, a first one that is 
required to yield the union Ù. (See section: "What FISONs are necessary to house all natural 
numbers?") Usually this is apologized by the fact, that even in 
 
 {1, 2} » {2, 3} » {3, 1} = {1, 2, 3}       (*) 
 
it is impossible to find a first set which cannot be omitted from the union to yield {1, 2, 3}. But 
this argument fails. It is not a set of sets which is subject to Cantor's theorem B but only every set 
of ordinal numbers. Therefore we always have to enumerate the sets. In case of FISONs this is 
simple. We apply the natural order: {1, 2, 3, ..., n} Ø n. Of course every other enumeration would 
also do. In case of the sets (*) we can use the written order from left to right. Then the first set not 
to be omitted is {2, 3} because after having omitted {1, 2} already, 2 would then be missing in 
the union. When choosing the order 
 
 {3, 1} » {1, 2} » {2, 3} = {1, 2, 3}  

                                                 
1 "Unter den Zahlen der Menge (α') gibt es immer eine kleinste." [Cantor, p. 200] 
2 "Daß es in jeder Menge (α') transfiniter Zahlen immer eine kleinste gibt, läßt sich folgendermaßen 
einsehen. Es sei (β) die Gesamtheit aller (endlichen und unendlichen) Zahlen β, welche kleiner sind als 
alle Zahlen α'; solche Zahlen muß es geben, z. B. die Zahl 1, sofern diese nicht selbst zu α' gehört und 
dann natürlich die kleinste der Menge ist. Unter den Zahlen β gibt es nun entweder eine größte β1, so daß 
die unmittelbar folgende β'1 nicht zu (β) gehört, aber § α' ist für jedes α', dann gehört β'1 selbst zu (α') 
und ist ihre kleinste. Oder aber die Zahlen β enthalten keine größte, dann besitzen sie (nach dem zweiten 
Erzeugungsprinzip) eine 'Grenze' β', welche auf alle β zunächst folgt, also wieder § jedem α' ist, und diese 
Zahl β' muß dann wieder notwendig zu (α') gehören und die kleinste aller α' darstellen." [E. Zermelo in 
Cantor, p. 208f] 
3 Satz B. "Jeder Inbegriff von verschiedenen Zahlen der ersten und zweiten Zahlenklasse hat eine kleinste 
Zahl, ein Minimum." [Cantor, p. 332] 
4 "Würde nun der Index α' nicht alle Zahlen der zweiten Zahlenklasse durchlaufen, so müßte es eine 
kleinste Zahl α geben, die er nicht erreicht." [Cantor, p. 349] 
5 "Aber aus den in § 13 über wohlgeordnete Mengen bewiesenen Sätzen folgt auch leicht, daß jede 
Vielheit von Zahlen, d. h. jeder Teil von Ω eine kleinste Zahl enthält." [Cantor, p. 444] 
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we could drop {3, 1} but then {1, 2} is the first set necessary, because otherwise 1 would be 
missing in the union. Another example1 is this one: 
 
 {1, 2} » {2, 3} » {3, 4} » ... = Ù .       (**) 
 
Here obviously {1, 2} is the first set that cannot be omitted (it is required in every order) because 
1 is not contained in any further set, whereas {3, 4} is the second set which cannot be omitted (in 
the order suggested in (**)) because otherwise 3 would be missing in the union. So it is not only 
inclusion monotony which proves that no FISON is required or necessary to yield the union Ù 
but also the theorem that every well-defined set of ordinal numbers has a smallest element. 
 
Since from every FISON we know by definition that it is neither sufficient nor necessary to make 
the union of FISONs Ù, we can remove it from the union and find 
 
 «{F1, F2, F3, ...} = Ù   fl   «{ } = Ù . 
 
This is a highly counterintuitive result2, at least for those who believe in the union resulting in Ù. 
But it becomes easily understandable and clearly obvious without any induction in the form 
 
  "n œ Ù: «{F1, F2, F3, ..., Fn} = Ù   fl   { } = Ù 
or 
 Butter & Bread & Beef = Ù   fl   { } = Ù . 
 
[WM: "Sometimes the conclusion from 'every' on 'all' is desired but sometimes it is forbidden.", 
sci.math (26 Apr 2016)] 
 
Why not apply Cantor's Theorem B to prove the fact that no natural number is sufficient to make 
the set Ù actually infinite?  
 
Theorem   The sequence of natural numbers is not actually infinite.  
 
Proof: The natural numbers 1, 2, ..., n do not produce an actually infinite set. If there were natural 
numbers capable of producing an actually infinite set, then one of them would be the smallest, 
call it a, such that the theorem would be valid for all x < a but not for x § a. Contradiction. É 
 
Of course the natural numbers are potentially infinite. This cannot be disproved. With respect to 
this fact, proofs like the present one would be hilarious – and frequently they have been called so. 
But when the critics were silenced, then the meaning of infinity would be changed back on the 
quiet and unnoticed from potential to actual. – A really perfidious procedure. 
 
That's why set theorists refuse to understand the difference between potential and actual infinity. 
Their standard procedure would become obvious.  

                                                 
1 I am indebted to Mr. J. Rennenkampff for the instructive, although not inclusion monotonic, examples 
(*) and (**) [J. Rennenkampff in "Von seinen Jüngern verleugnet", de.sci.mathematik (20 Apr 2016)]. 
2 Usually the handwaving claim is: "But infinitely many FISONs have to remain!" 

https://groups.google.com/forum/#!topic/sci.math/D1wpKdnjtuM
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 ¡0 and induction 
 
By induction we can prove for all natural numbers n œ Ù:  
 
 1 + 2 + 3 + ... + n = n(n+1)/2 .       (*) 
 
All positive numbers obeying this rule are natural numbers. If the natural numbers obeying eq. 
(*) are removed from the set Ù of all natural numbers, what will remain? Nothing. Further 
positive numbers satisfying (*) are not existing. Therefore Ù can be defined by this property: 
 

 Ù = {x | 
1

( 1)
2

x

k

x xk
=

+
=∑ } . 

 
Zermelo's infinite set S is defined by induction too: { } œ S ⁄ (X œ S fl {X} œ S) . 
 
By the same induction we can prove { } = Ù as follows: 
 
From the set ≈ of all finite initial segments of natural numbers (FISONs): 
 
 ≈ = {(1), (1, 2), (1, 2, 3), ...} = {F1, F2, F3, ...} 
 
we can remove, without changing the union Ù of the remainder, the set F defined by induction:  
 
 (1) œ F  
 (1, 2, 3, ..., n) œ F   fl   (1, 2, 3, ..., n+1) œ F  .  
 
Obviously 
 
 "n œ Ù: «(≈ \ {F1, F2, F3, ..., Fn}) = «({Fn+1, Fn+2, Fn+3, ...}) = Ù .  
 
By induction we see that none of the sets {F1}, {F1, F2}, {F1, F2, F3} ..., when removed from ≈, 
changes the union of the remainder. 
 
Now remember that complete sets can be defined by induction: 
 
 If "n œ Ù: n is given, then {1, 2, 3, ...} = Ù is given. 
 If "n œ Ù: Fn is given, then {F1, F2, F3, ...} = F = ≈ is given.  
 If "n œ Ù: ≈ \ {F1, F2, ..., Fn} is given, then ≈ \ {F1, F2, F3, ...} = ≈ \ F = { } is given.  
 If "n œ Ù: «(≈ \ {F1, F2, ..., Fn}) = Ù is given, then «(≈ \ F) = «(≈ \ ≈) = Ù is given. 
 
Conclusion: If Ù and ≈ are complete and exhaustible, i.e., if ¡0 exists, then «{ } = Ù. [WM: "A 
question on induction.", sci.math (5 Mar 2015)] 

https://groups.google.com/g/sci.math/c/yYzqPupVPLM/m/g04MN7YFncIJ
https://groups.google.com/g/sci.math/c/yYzqPupVPLM/m/g04MN7YFncIJ
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 What FISONs are necessary to house all natural numbers? 
 
Consider the sequence of finite initial segments of natural numbers (FISONs) Fk = {1, 2, 3, ..., k}. 
 
Definition: Fk is necessary ñ Fk contains a number n that is not in any Fk+j with j > 0. 
Alternatively:  Fk is necessary ñ Fk » Fk+1 » Fk+2 » ... = Ù ⁄ Fk+1 » Fk+2 » Fk+3 » ... ∫ Ù. 
 
Finite example: {1} » {1, 2} » {1, 2, 3} = {1, 2, 3} is true, and {1} » {1, 2} = {1, 2, 3} is false. 
In both cases the FISONs {1} and {1, 2} are not necessary – neither to make the true statement 
true nor to make the false statement false. 
 
Theorem   If it is possible to have all natural numbers in the union of a set of FISONs then we 
need no FISON at all for this sake, i.e., then «{ } = Ù. 
 
Proof: F1 is not necessary. 
 If Fn is not necessary, then also Fn+1 is not necessary. É 
 
The implication does not rely on the existence of an always larger Fison Fn+2   Fn+1, although 
this is existing, but above all on the fact that neither FISON contains more than a finite set of 
natural numbers and therefore is useless – whether or not a successor is existing.  
 
This holds for every n œ Ù. We can remove all FISONs without removing Ù completely. 
 
In case of potential infinity every FISON can be removed too. But there is no "all FISONs". 
"Every" never concerns "all". Therefore never all are removed. WM: "Grundpfeiler der 
Matheologie", de.sci.mathematik (Jul-Aug 2016). WM: "How can this contradiction be 
resolved?", sci.math (Oct 2016)] 
 
Discussion: "By complete induction it can be proved only that finitely many can be removed, 
infinitely many remain, therefore OK." [A. Leitgeb in "Grundpfeiler der Matheologie", 
de.sci.mathematik (28 Jul 2016)] This opinion is contradicted by the fact that complete induction 
proves 1 + 2 + 3 + ... + n = n(n+1)/2 to be true for infinitely many natural numbers. None 
remains. 
 
 
 Three pillars of mathematics 
 
In the present section we have seen that transfinite set theory is incompatible with these three 
pillars of mathematics: 
 
 Ë Complete induction is valid for infinitely many natural numbers. 
 Ë All infinitely many FISONs obey inclusion monotony.  
 Ë Every well-defined set of natural numbers has a minimum. 
 
At least one of them must be violated and overthrown if transfinite set theory is to be accepted. 

https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/sci.math/c/dBvBsR0cKRs/m/4Z2Q_ra4BQAJ
https://groups.google.com/g/sci.math/c/dBvBsR0cKRs/m/4Z2Q_ra4BQAJ
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
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 Dark natural numbers in set theory 
 
If, contrary to what has been outlined above, the actually infinite set Ù should be accepted, then it 
will unavoidably comprise an actually infinite subset Y of undefinable natural numbers, so-called 
dark natural numbers. Best evidence is this: Every potentially infinite sequence of defined natural 
numbers can be analyzed at every index. Mappings of Ù cannot be analyzed step by step. If all 
natural numbers have been processed individually in linear order, then necessarily a last one has 
been processed. A dark number cannot be treated as an individual but only with the whole set Y. 
[W. Mückenheim: "Dark natural numbers in set theory", ResearchGate (Oct 2019). W. 
Mückenheim: "Dark Numbers", Academia.edu (2020)] 
 
Definition: A natural number is "identified" or (individually) "defined" or "instantiated" if it can 
be communicated such that sender and receiver understand the same and can link it by a finite 
initial segment to the origin 0. All other natural numbers are called dark natural numbers. 
 
Communication can occur 
Ë by direct description in the unary system like ||||||| or as many beeps, flashes, or raps, 
Ë by a finite initial segment of natural numbers (1, 2, 3, 4, 5, 6, 7) called a FISON, 
Ë as n-ary representation, for instance binary 111 or decimal 7,  
Ë by indirect description like "the number of colours of the rainbow", 
Ë by other words known to sender and receiver like "seven". 
 
Only when a number n is identified we can use it in mathematical discourse and can determine 
the trichotomy properties of n and of every multiple kn or power nk with respect to every 
identified number k. Ùdef is the set that contains all defined natural numbers as elements – and 
nothing else. Ùdef is a potentially infinite set; therefore henceforth it will be called a collection. 
 
Dark numbers have been introduced also by Sergeyev1 [Yaroslav D. Sergeyev: "Numerical 
infinities and infinitesimals", EMS Surv. Math. Sci. 4 (2017) pp. 219-320] who calls the last 
natural number grossone ①. Of course ①, ① - n, ①/n, etc. cannot be linked to 0 for n œ Ùdef. 
[WM: "Worldwide activities concerning dark numbers", sci.math (21 Nov 2020)] 
 
 
 Dark natural numbers proved by the sequence of FISONs 
 
According to set theory Ù is actually infinite. While potential infinity only requires 
  
 "Fn $Fm: |Fn| < |Fm| ⁄ Fn Õ Fm  
 
actual infinity exchanges quantifiers and states 
 
 $Ù "Fn: |Fn| < |Ù| ⁄ Fn Õ Ù . 
                                                 
1 Sergeyev's theory, based on the inevitable fact that the natural numbers Ù count themselves, |Ù| = ①, 
yields the interesting results that the number of integers Ÿ is |Ÿ| = 2ÿ① + 1, and the number of fractions – 
is |–| = 2ÿ①2 + 1. 

https://www.researchgate.net/publication/336221060_Dark_natural_numbers_in_set_theory
https://www.academia.edu/44503118/Dark_Numbers
https://groups.google.com/g/sci.math/c/URaYsVGoRsQ/m/n6T4KnbKAwAJ
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Ù differs from all Fn because it has a greater cardinal number ¡0, i.e., Ù has more elements than 
all Fn together. This is only possible if it has at least one element that is not in any Fn. But it turns 
out that no such element can be found. Therefore the actually infinite set Ù must embrace 
elements which have not been identified. We call them dark natural numbers. Almost all 
elements of Ù are undefinable dark numbers. Note that every Fn can be summed, but Ù cannot.  
 
Theorem   Almost all natural numbers are dark and are not identifiable. 
 
Proof: Consider the collection ≈ = {Fn | n œ Ù} of FISONs Fn (which by definition are identified 
or if being dark yet can become identified) and assume that its union is Ù. Ù does not change 
when one of the FISONs is omitted: 
 
 F1 » F2 » F3 » ... » Fn-1 » Fn+1 » Fn+2 » Fn+3 » ... = Ù . 
 
There is no FISON whose omission would change the result of the union. So every FISON can be 
omitted; the collection of FISONs which can be omitted is the collection ≈ of all FISONs 
existing. Further we observe that those FISONs which are predecessors, i.e. subsets, of the 
omitted Fn can be omitted too with no effect so that we get for all n  
 
 Fn+1 » Fn+2 » Fn+3 » ... = Ù . 
 
Since there is no first FISON that cannot be omitted without effect, we get «{ } = { } = Ù. Of 
course this result is false because Ù is not empty. But the usual explanation, that every FISON 
can be omitted only as long as there remain larger FISONs, does not hold, firstly because a 
FISON without successor does not exist at all and thus cannot be omitted either, and secondly 
because we can see that as long as Fn is a proper subset of Ù, it is neither necessary nor sufficient 
in the union to give Ù. This holds for all FISONs how large they ever may be. Therefore we must 
accept the implication: if Ù were the union of all FISONs, then Ù would be empty: 
 
 F1 » F2 » F3 » ... = Ù   fl   { } = Ù .      (*) 
 
By contraposition, it follows that Ù is not the union of only all FISONs, i.e., of identifiable 
natural numbers. What remains? Numbers that cannot be identified: Dark numbers. Conclusion: 
Ù is larger than all unions of FISONs. It contains something larger than all FISONs. É 
 
Every identified natural number is followed by infinitely many natural numbers including 
potentially infinitely many dark numbers, which may become identified, and an actually infinite 
set Y, with |Y| = ¡0, of dark numbers which will remain dark forever and in every system. Set 
theorists will dispute the existence of this set Y but they will not be able to refute it. 
 
The implication (*) only holds if Ù is larger than every FISON, because only then every FISON 
is too small to be relevant for the union. In case of a potentially infinite view Ù is not a fixed set 
but the temporary maximum Fmax of an ever increasing sequence of FISONs: 
 
 F1 » F2 » F3 » ... » Fmax = Ùdef .       (**) 
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In this view not all FISONs exist simultaneously, there is always a next one and therefore not all 
FISONs can be omitted by omitting those existing in (**). 
 
The set of FISONs cannot have cardinality ¡0 because (1) every FISON has ¡0 successors, but 
two consecutive ¡0-sets are impossible in the natural order of Ù, (2) the pigeonhole principle (cp. 
section "The pigeonhole principle") excludes more than a finite number of distinguishable 
FISONs, (3) their union does not contain any element missing in all FISONs, and (4) Ù cannot be 
exhausted by individually definable numbers but only collectively by sets, like Ù\Ù = «. 
 
 
 
 Dark natural numbers proved by intersections of endsegments 
 
For every identified number n there is a last endsegment, En = {n, n+1, n+2, ...}, containing it, 
and a first endsegment, En+1, where it has vanished. However the sequence (En) of endsegments 
E1, E2, E3, ... and their finite intersections E1, E1 ∩ E2, E1 ∩ E2 ∩ E3, ... contains only members 
of cardinality ¡0. This effect of every identified endsegment is proved by the system 
 
 "n œ Ù: »{E1, E2, E3, ..., En} = En ∫ «   where    |En| = ¡0 .   (1) 
 
Even the intersection over the potentially infinite collection of identified endsegments 
 
 »nœÙdef

 En = »{En | »{E1, E2, E3, ..., En} ∫ «} ∫ «    (2) 
 
is not empty since it contains not more than the En of (1), each of which acts like a filter that, 
independent of its position and of the presence of other endsegments, removes up to n - 1 natural 
numbers from an incoming set and lets pass the rest. Its effect at last position in (1) cannot 
change when appearing at not-last position in (2). 
 
But every intersection of an actually infinite set of endsegments, like the complete set, is empty: 
 
 »nœÙ En = « .          (3) 
 
An actually infinite set has more elements than all finite sets. So it is a legitimate question to ask 
what endsegments make the set intersected in (3) actually infinite and the result empty? Since all 
identified endsegments fail, there must be a difference between the collections of identified 
endsegments in (2) and not identified endsegments in (3). Otherwise the contradiction « ∫ « 
would follow from (2) and (3)1. However, it is impossible to find an endsegment that is in (3) but 
not in (2). Only undefinable, i.e. dark endsegments, neither subject to universal quantification by 
their index or first natural number n  in (1) nor identifiable in (2), can constitute the endsegments 
necessary for producing the empty intersection in (3). This is a set of dark endsegments.  

                                                 
1 It is easy to see that there must be dark endsegments. It would not be sufficient if {E1, E2, E3, ...} had 
only finitely many more elements Ek+1, Ek+2, Ek+3, ..., Ek+j than every set of endsegments appearing in (1) 
because then its intersection would be non-empty since "j,k œ Ù: E1 … E2 … E3 … ... … Ek … ... … Ek+j ∫ «. 
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Counting down to 0 by intersecting endsegments can only happen one by one in steps of one 
natural number per endsegment because from the definition En \ {n} = En+1 we find the bijection 
n ¨ En+1. But no endsegment can be identified that contributes to produce the empty intersection 
by deleting the infinite set step by step – if (3) holds, i.e., if mathematics is valid for all steps. 
 
Ë Remark: In principle every bijection between infinite sets would have to cover undefinable, 
dark natural numbers or functions of them and requires to identify them, which of course is 
impossible. In most cases however that is not so obvious. 
Ë Remark: Since Ù in natural order cannot contain two consecutive ¡0-sets, the indices of all 
actually infinite endsegments cannot form an ¡0-set but only a potentially infinite collection. 
There are not ¡0 actually infinite endsegments. 
Ë Remark: Dark numbers solve the puzzle why ¡0 = limnØ¶ |En| ∫ |limnØω En| = 0 . limnØω En is 
calculated from (3) whereas limnØ¶ |En| can only be calculated by means of (2). 
 
Discussion: "ZFC has no notion of accessible/non-accessible, it doesn't say that the elements of 
ω are accessible." [Jan Burse in "The nature of truth", sci.logic (9 Mar 2019)] My reply: The 
basis of human intellectual activity, which is much deeper than any artificial theory and is 
prerequisite also to set theory, is endowed with the notion of accessibility and distinguishes it 
from inaccessibility in practice.  
Discussion: "It can jump from infinite to empty without ever going through finite!" [Zelos 
Malum in "Three facts that appear incompatible without dark numbers", sci.math (20 Nov 2019)] 
My reply: It appears so because the endsegments producing the "jump" remain invisible. All 
defined natural numbers belong to FISONs. Therefore all defined endsegments are in (1) and are 
superfluous in (3). No defined x < ω has any effect in Ex … Ex+1 … Ex+2 … ... = «. 
 
 
 Dark natural numbers proved by sequences of ordinals 
 
Every sequence of natural numbers ascending from 0 to ω is actually infinite; it has ¡0 terms. 
Every sequence of natural numbers descending from ω to 0 is finite. This follows from the axiom 
of foundation. But above all it is dictated by the practical impossibility to identify actually 
infinitely many predecessors of ω and to choose them as destinations for the leap from ω 
 
 1, 2, 3, 4, 5, 6, 7, ....... ω . 
 
If all were identifiable, then each one could be selected without deciding in advance whether we 
would continue and in which direction. 
 
Cantor defined "that ω is the first whole number following upon all numbers ν, i.e. which has to 
be called greater than each of the numbers ν" [Cantor, p. 195] that however the distance "ω - ν is 
always equal to ω" [Cantor, p. 395]. 
 
According to the first statement we find that {0, 1, 2, 3, ..., ω} \ Ù = {0, ω}. Since no cloudy 
"empty spaces" but only concrete natural numbers have been subtracted and since, after 
subtraction, ω has the direct predecessor 0, it must have had a direct predecessor before too. 

https://groups.google.com/forum/#!topic/sci.logic/6e5bAfrTcsc
https://groups.google.com/forum/#!topic/sci.math/otnjopDA2eA
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According to the second statement the distance between every identified number n (for dark 
numbers nothing can be said with respect to distances) and ω is ¡0. "n œ Ùdef: ω - n = ω > n. 
This determines an interval of dark ordinals, an actually infinite set Y Õ (Ù \ Ùdef) of natural 
numbers larger than every identified n but less than ω. 
 
 
 Dark natural numbers proved in the interval (0, 1] 
 
The interval (0, 1] is the union of all intervals [1/n, 1]. No point is missing. But every identified 
number n splits the interval into two parts, [1/n, 1] and the remainder (0, 1/n). It is impossible to 
have less than ¡0 individually not identified unit fractions in (0, 1/n) 
 
 "n œ Ùdef: [1/n, 1] ∫ (0, 1/n) » [1/n, 1] = (0, 1] = «nœÙ [1/n, 1] . 
 
It is obvious that all intervals [1/n, 1] leaving ¡0 unit fractions in (0, 1/n) uncovered, cannot cover 
(0, 1]. [WM in "Neue Erkenntnisse aus Augsburg (zu Mengenfolgen)", de.sci.mathematik (26 
Aug 2020). WM: "A 'conversation'?",  sci.math (27 Jan 2021)] 
 
 
 Dark numbers in the Binary Tree 
 
Remove all nodes of finite paths from the complete infinite Binary Tree. What remains? If 
nothing remains, all paths are countable. If tails of uncountably many infinite paths remain, their 
nodes must be indexed by dark numbers. (For definitions see section "The Binary Tree".) 
 
Discussion: "You could delete all and only the finite paths from the tree, and that would delete 
all the nodes, yet you would never have deleted any infinite path, and they would all still exist in 
any case, regardless of what had been deleted!" [George Greene in "The power set of Ù is not 
uncountable", sci.logic (22 Jul 2016)] "George Greene is correct, if you remove the finite paths 
from the collection of all finite and infinite paths of tree, you still get the infinite paths if there are 
any. But the finite paths have already covered all nodes." [Jan Burse in "George Greene defends 
dark numbers!", sci.logic (12 Oct 2019)] My reply: The finite paths have covered all defined 
nodes. Paths without any nodes are delusory. 
 
 
 The basic relation between infinities 
 
Consider a ruler with all unit fractions between 0 and 1 marked (assuming that all are existing 
and could be marked). Two such rulers cannot deviate by any mark: If Ù is a completed set, then 
|Ù| is invariable. But only definable elements n can be treated as individuals. All mappings, 
including Hilbert's hotel, happen in this potential ¶-infinity. Collectively always more, namely 
all the ¡0 remaining elements can be treated. Therefore, using  ¡0 as the "elastic" rest, we obtain 
 
 |Ù|   is described by or belongs to   ¡0 = n + ¡0 = ¶ + ¡0 
but 
 |Ù| ≠ |Ù| + 1 . 

https://groups.google.com/forum/#!topic/de.sci.mathematik/7Ys8sKsKB8w
https://groups.google.com/g/sci.math/c/90f1xwUbZus
https://groups.google.com/forum/#!topic/sci.logic/sB_IjPpTeOM
https://groups.google.com/forum/#!topic/sci.logic/sB_IjPpTeOM
https://groups.google.com/forum/#!topic/sci.logic/sB_IjPpTeOM
https://groups.google.com/forum/#!topic/sci.logic/sB_IjPpTeOM
https://groups.google.com/forum/#!topic/sci.logic/qOczIuhVwtw
https://groups.google.com/forum/#!topic/sci.logic/qOczIuhVwtw
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 Limits of sequences of sets 
 
The meaning of the notion limit in set theory differs strongly from its meaning in analysis. 
 
The analytical limit of a strictly monotonic sequence (an) is not produced at any step n. Every 
term an differs from this constant. Infinitely many terms can be identified without producing the 
limit. But never all natnumbers could be applied. Here we have potential infinity. 
 
As an example consider 
 

  
2 2 2 2

0 0 0

d ( ) 2lim lim lim 2
d h h h

x x h x xh h x h
x h h→ → →

+ − +
= = = + . 

 
Here it is not assumed that h will ever actually reach 0. Putting h = 1/n, we can find, for every n, 
infinitely many larger natural numbers. Nevertheless we can calculate the limit 0. 
 
In set theory, like in analysis, the limit of a strictly monotonic sequence (sn) of sets sn is not 
produced at any step n. Every set sn differs from the limit. Infinitely many sets can be identified 
without producing this constant. But all sets sn exist according to the axiom of infinity such that 
none is missing. The limit of the sequence (sn) exists beyond all terms sn of the sequence. It 
cannot be anything else but sω. 
 
According to set theory this limit can be reached. All natural numbers are available, with no 
exception, to enumerate all sets of the sequence with no exception. Since set theory claims that 
all natural numbers exist and can be applied, there must exists a state where all natural numbers 
have been applied. Otherwise the claim would be void. But when all natural numbers have been 
applied, then the task has been finished and there are no natural numbers and no terms of the 
sequence remaining. 
 
Any bijection implies and proves strict equinumerosity. Strict equinumerosity can however be 
refuted between sets and their proper subsets. For the sets ƒ and Ù of even natural numbers and 
natural numbers we clearly obtain the result 
 
 LimnØ¶  |ƒ ∩ [0, n]| / |Ù ∩ [0, n]| = 1/2 . 
 
The sets of prime numbers or rational numbers show even larger discrepancies: 
 
 LimnØ¶  |œ ∩ [0, n]| / |Ù ∩ [0, n]| = 0 
 
 LimnØ¶  |– ∩ [0, n]| / |Ù ∩ [0, n]| = ¶ . 
 
[WM: "A 'conversation'?", sci.math (17 Jan 2021). WM: "Why?", sci.math (18 Jan 2021)] 
 
 

https://groups.google.com/g/sci.math/c/90f1xwUbZus/m/pzr07dNLCwAJ
https://groups.google.com/g/sci.math/c/_daKAfgeLOw/m/GXvs-XipDgAJ
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 Limits of sequences of cardinal numbers 
 
The real sequence (1/n)nœÙ, although being a set too, has limit 0 because the numerical values of 
the elements are concerned. If however numbers of elements are measured, necessarily with 
quantized result, then a proper limit can and does only exist when the number gets constant. 
 
Sometimes one hears the argument that the limit of the cardinal numbers of the sets of a sequence 
need not be equal to the cardinal number of the limit of the sequence of sets: 
 
 lim | | | lim |n nn n

S S
→∞ →∞

≠ . 

 
This view neglects that cardinality |Sn| > 0 is inseparably connected with elements populating Sn. 
They cannot wander around in the limit "in the infinite" after all finite steps. Therefore we obtain 
from a sequence with "n œ Ù: Sn ∫ « a non-empty limit. 
 
Moreover that possibility would destroy analysis, since, if the limit cardinal number could not be 
calculated, using analysis, from the cardinal numbers of the sets of the sequence, i.e., if an 
arbitrary jump of the limit was possible, then a sequence like (1/n) could acquire the limit 1. 
Further it would destroy set theory because then the first infinite cardinality ¡0, by definition the 
cardinality of the limit Ù of the sequence of all its finite initial segments Fn = (1, 2, 3, ..., n), 
could, in principle, jump to any other value like, for instance, |—|. 
 
Every set of n positive integers contains at least one integer m ¥ n. The sequence of least 
maximum numbers mmin(n) is dominating the sequence n. According to analysis we have then 
 
 lim ( ) lim

n n
m n n

→∞ →∞
≥  . 

 
As long as there are no unnatural integers m, there cannot be an unnatural number n of elements. 
[WM: "§ 521 A remarkable sequence of sets and its different limits", sci.math (Jun-Jul 2014). 
WM: "Why is lim s_n considered more reliebale than lim |s_n|?", sci.math (8 Jul 2014)] 
 
 
 Undefined limit 
 
According to set theory the following sequence of sets of pairs, where the first number is 
consecutively increasing and the second number marks the position of the pair, can be understood 
as a supertask: 
 
 S1 = ((1, 1))  
 S2 = ((2, 1), (3, 2))  
 S3 = ((4, 1), (5, 2), (6, 3)) 
 S4 = ((7, 1), (8, 2), (9, 3), (10, 4)) 
  ... . 

https://groups.google.com/g/sci.math/c/QjnRAwl18Ck/m/_twxL8awG1gJ
https://groups.google.com/g/sci.math/c/_hePcyZQNLY/m/zELERa0e2AoJ
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It has the limit { } in the first numbers (because Ù becomes exhausted) and Ù in the second 
numbers (because finally all indices are issued). What would be the result if both numbers 
simultaneously were written on physical objects? 
 
The limit « of the sequence of ordered sets 
 
 (1, 1), (1, 2), (1, 3), ... 
 
is not existing in the classical domain because  
 
 (1, 0), (1, 0), (1, 0), ... Ø (1, 0) 
and 
 (1, 1), (2, 2), (3, 3), ... Ø (¶, ¶) . 
 
For autonomously existing variables, separated by a comma, we have in the classical domain 
  
 lim (an, bn) = (lim an, lim bn) . 
 
Set theory appears to show quantum entanglement, such that  
 
 lim (an, bn) ∫ (lim an, lim bn) . 
 
Only then the sequence ((1, n))nœÙ

 could "converge" toward «. But if parentheses make an effect 
 
 {1}  , {1}  ( {1} , {1} ) 
 {1}  , {2}  ( {1} , {2} ) 
 {1}  , {3}  ( {1} , {3} ) 
   ª     ,    ª   ª   ª    ,    ª   ª 
  ∞     ,   ∞           ∞ 
 {1}  ,     «           « 
 
then not even constants a and b will remain the same when being included in parentheses (a, b). 
[WM: "Entangled states in set theory?", sci.logic (Feb-Mar 2016)] 
 
Discussion: "No, the sequence of ordered pairs is not just 'considering the two sequences 
separately'. It's a third sequence." [Martin Shobe in "Entangled states in set theory?", sci.logic (27 
Feb 2016)] "The parentheses change the meaning. Once again, you are surprised that when you 
change something, something changes." [Martin Shobe in "Entangled states in set theory?", 
sci.logic (28 Feb 2016)] My reply: Note that in the finite domain nothing changes at all. 
 
Discussion: "If lim (an, bn) = (lim an, lim bn) does it follow that lim (bn, an) = (lim bn, lim an) 
regardless of the meaning of (..., ...) ?" [Jürgen Rennenkampff in "Entangled states in set 
theory?", sci.logic (29 Feb 2016)] My reply: It is not independent of the meaning of the 
parentheses. For an/bn for instance it would be relevant. But obviously an ordering does not play 
a role for two sequences simply existing side by side. This is always true when the parentheses 
include two sequences of sets which according to set theory "converge" to limits.  

https://groups.google.com/g/sci.logic/c/LLvhf6YN7u8/m/1I33kE3YBgAJ
https://groups.google.com/g/sci.logic/c/LLvhf6YN7u8/m/1I33kE3YBgAJ
https://groups.google.com/g/sci.logic/c/LLvhf6YN7u8/m/1I33kE3YBgAJ
https://groups.google.com/g/sci.logic/c/LLvhf6YN7u8/m/1I33kE3YBgAJ
https://groups.google.com/g/sci.logic/c/LLvhf6YN7u8/m/1I33kE3YBgAJ
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 Set theory depends on notation 
 
The sequence 
 
 {1/1}, {1/2}, {2/1}, {1/3}, {2/2}, {3/1}, {1/4}, {2/3}, {3/2}, {4/1}, {1/5}, ... Ø { } 
 
is an enumeration of the (not cancelled) positive fractions. Therefore this sequence including all 
fractions of the form n/n must have an empty limit if no fraction remains uncounted (all 
uncancelled fractions appear as finite terms of the sequence), cp. section 2.1 "Countable sets". So, 
the sequence of only all fractions of the form n/n  
 
 {1/1}, {2/2}, {3/3}, ... Ø { } 
 
a fortiori has an empty limit. This subsequence, when evaluated however, 
 
 {1}, {1}, {1}, ... Ø {1} 
 
is mathematically the same and has the limit {1}, i.e., it is not empty. This proves that set theory 
makes its results depending on whether or not fractions have been cancelled. That is incompatible 
with mathematics. 
 
If in the sequence (Sn) with Sn = {n | n} the separator symbol is interpreted as division mark, then 
limnØ¶ {n | n} = limnØ¶ {1} = {1}. If the separator symbol is interpreted as a comma, then 
limnØ¶ {n | n} = { }. Can the fractions n/n representing 1 be exhausted like the natural numbers?  
 
The sequence of ordered sets 
 
 (1, 1), (1, 2), (1, 3), ... 
 
is a template for sequences like 
 
 {1/1}, {1/2}, {1/3}, ... Ø { } 
or 
 {11}, {12}, {13}, ... Ø {1} . 
 
Limits of some sequences depending on notation: 
  
 {11}, {12}, {13}, ... Ø {1}   whether or not the symbols are evaluated. 
 {11}, {21}, {31}, ... Ø { }    when the symbols are evaluated. 
 {11}, {21}, {31}, ... Ø { 1}   when the symbols are not evaluated. 
 {01}, {02}, {03}, ... Ø {0}   whether or not the symbols are evaluated. 
 {10}, {20}, {30}, ... Ø {1}   when the symbols are evaluated. 
 {10}, {20}, {30}, ... Ø { 0}   when the symbols are not evaluated. 
 
[WM: "Who know's?", sci.math (15 & 20 Feb 2016). WM: "Limits", sci.math (9 Aug 2017)] 

https://groups.google.com/g/sci.math/c/fU_yjv2memI/m/qWn2tHXSEQAJ
https://groups.google.com/g/sci.math/c/Vr2p7_OHJhU/m/C4rtcsWzCQAJ
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 Problems of defining a bijection 
 
The proof of equinumerosity by bijection between infinite sets is facilitated by mathematical 
induction, cp. for instance section 2.1 "Countable sets" where rules for enumerating the sets of 
rational numbers and algebraic numbers are given. It is clear that these sets have to be well-
ordered in order to apply the given rules and that always only subsets1, in particular finite initial 
segments, are considered. 
 
The question is how to pass from the rule for every finite initial segment of the ordered set to the 
complete, actually infinite set. Modern set-theorists do not like this question and usually refuse to 
answer it (because there is no answer). They argue that all elements are mapped simultaneously. 
But of course every sequence can be analyzed in mathematics step by step. That is the core of 
"counting" and "being countable". 
 
Cantor has coined and applied various terms for the process of mapping in his collected works 
like mapping- or assignment law, mapping- or assignment modus, mapping- or assignment 
procedure, mapping- or assignment process, and mapping- or assignment relation.2 
 
The problem is that a rule applied by mathematical induction (or any other means involving finite 
initial segments) will never yield the set theoretic limit "empty set" for a sequence (Sn) with 
 
 Sn = (n, n+1, n+2, ..., 2n) 
 
(cp. section 2.16 "Set-theoretical limits of sequences of sets"). Further it is impossible to argue 
that and how the limit set, if existing as a real set, can combine the two features, namely being 
empty and having cardinal number ¡0, i.e., resulting from a sequence of sets with infinitely 
increasing cardinal numbers. According to mathematical analysis the limit ¶ is following from 
the sequence of cardinal numbers 
 
 |(1, 2)| = 2 
 |(2, 3, 4)| = 3 
 |(3, 4, 5, 6)| = 4 
 |(4, 5, 6, 7, 8)| = 5 
 ... . 
 
Cantor called it ω or later, when he recognized the problems of transfinity and tried to overcome 
them by splitting the infinite in ordinal numbers and cardinal numbers, ¡0. 

                                                 
1 Zwei geordnete Mengen M und N nennen wir "ähnlich", wenn sie sich gegenseitig eindeutig einander so 
zuordnen lassen, daß wenn m1 und m2 irgend zwei Elemente von M, n1 und n2 die entsprechenden 
Elemente von N sind, alsdann immer die Rangbeziehung von m1 zu m2 innerhalb M dieselbe ist wie die 
von n1 zu n2 innerhalb N. Eine solche Zuordnung ähnlicher Mengen nennen wir eine "Abbildung" 
derselben aufeinander. Dabei entspricht jeder Teilmenge M1 von M (die offenbar auch als geordnete 
Menge erscheint) eine ihr ähnliche Teilmenge N1 von N. [Cantor, p. 297] 
2 We find the terms Zuordnungsgesetz, Zuordnungsmodus, Zuordnungsprozeß, Zuordnungsverfahren, 
Zuordnungsverhältnis. [Cantor, pp. 239, 283f, 286f, 291, 293, 305f, 413] 
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 Improper limits 
 
A proper limit is a state that is approached better and better by the terms of a sequence. The 
meaning of an improper limit is only that the sequence like (n) or (2n) increases beyond any given 
bound. It does not exist as or represent a quantity. Is 
 
 2limnØ¶ n = limnØ¶ 2

n ? 
 
In calculus we cannot decide what ¶/¶ is. But often the unbounded increase on both sides is 
accepted as the improper limit ¶. Many write 2ÿ¶ = ¶, for instance. In this sense the above 
equality is obvious. And when we refrain from using exponential notation, then both sides simply 
read 2ÿ2ÿ2ÿ... = 2ÿ2ÿ2ÿ... so that there cannot be any difference. [WM: "§ 527 A limit question", 
sci.math (15 Jul 2014)] 
 
Now let Sn = {n, n+1, n+2, ...}. Why is 0 = |limnØ¶ Sn| ∫ limnØ¶ |Sn| = ¶ ? 
Also in this case we have improper limits only, showing a never ending process: 
Ë limnØ¶ Sn = { } expresses the fact that n will not be in sets following upon Sn. 
Ë limnØ¶ |Sn| = ¶ expresses the fact that infinitely many naturals will follow upon every n. 
  
It is very simple. No contradiction. No exhaustion. And therefore no proof of complete bijection 
or countability of infinite sets. But many will refuse to understand this because it is so tempting 
and easy to confuse infinite sets with finite sets and to think that infinite sets could be finished 
and enumerated too. Usually the strict application of analysis is disparaged as "intuition", 
sometimes even denounced as "moral". [WM: "§ 527 A limit question", sci.math (Jul 2014)] 
 
 
 
 Remarkable sequences of sets and their different limits 
 
The following sequences are constructed by always removing the terms with n and inserting the 
terms with n+1. Since no term stays forever the set limit is empty and the cardinality of the set 
limit is 0. Applying actual infinity we "get ready". Then all natural numbers have been exhausted. 
 
 (An) with An = {n} has limnØ¶ An = { }, |limnØ¶ An| = 0, limnØ¶ |An| = 1 . 
 (Bn) with Bn = {nn} has limnØ¶ Bn = { }, |limnØ¶ Bn| = 0, limnØ¶ |Bn| = 1 . 
 (Cn) with Cn = {a + bÿn} has limnØ¶ Cn = {a}, |limnØ¶ Cn| = 1, limnØ¶ |Cn| = 1 . 
 (Dn) with Dn = {-1/n, 1/n} has limnØ¶ Dn = { }, |limnØ¶ Dn| = 0, limnØ¶ |Dn| = 2 . 
 
If the set limits, i.e., the sets "at ω", are empty, the limits of the sequences of cardinalities differ 
from the cardinalities of the sets "at ω". [WM: "§ 521 A remarkable sequence of sets and its 
different limits", sci.math (Jun-Jul 2014)] 
 

https://groups.google.com/g/sci.math/c/9bf6Wj3Wvh8/m/xgcHbd4bWm0J
https://groups.google.com/g/sci.math/c/9bf6Wj3Wvh8/m/xgcHbd4bWm0J
https://groups.google.com/g/sci.math/c/QjnRAwl18Ck/m/CCjdC23TBWcJ
https://groups.google.com/g/sci.math/c/QjnRAwl18Ck/m/CCjdC23TBWcJ
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 Difference between union and limit of an infinite sequence  
 
Mark with a pencil, without lifting it in between, all points 1, 1/2, 1/4, 1/8, ... of the sequence 
(1/2n)nœÙ0

. Get every point of the interval (0, 1] marked. The limit point 0 remains unmarked.  
 
Mark with a pencil, without lifting it in between, all points 1, 2, 4, 8, ... of the sequence (2n)nœÙ0

. 
Get every point of the interval [1, ω) marked. The limit point ω = ¡0 remains unmarked. [WM: 
"Colouring the interval [0, 1)", sci.math (16 Nov 2016). WM: "The difference between union and 
limit of an infinite sequence", sci.math (27 Dec 2016)] 
 
 
 
 Two complementary results 
 
The union of all closed real intervals 
 
 A(n) = [1/n, 1] = {x œ — | 1/n § x § 1} 
 
is the half-open interval (0, 1] = {x œ — | 0 < x § 1} because for every n œ Ù the interval A(n) is 
contained therein. The smallest closed interval containing this union is [0, 1]. It contains an 
additional element, not present in any of the merged intervals A(n), namely 0. This is also the 
analytical limit because the analytical limit of the sequence (1/n) is 0, and no change can be 
caused by connecting, on paper or only in mind, the points 1/n to 1. 
 
Natural numbers do not form open intervals. There are only closed intervals. Therefore the union 
of all FISONs F(n) = {1, 2, 3, ..., n} cannot be embraced by an open interval but only by the 
closed interval {1, 2, 3, ..., ω} embracing all FISONs and, analogously to the additional 0 above, 
the additional element ω which is not contributed by any F(n) to the union. 
  
Conclusion: The union of all FISONs, not containing the limit ω of (n), is less than its limit Ù. 
 
 
 A yawning chasm 
 

The sequence 1n
n
−⎛ ⎞

⎜ ⎟
⎝ ⎠ nœÙ

 of points 1n
n
−  is a strictly monotonically increasing sequence, i.e., 

according to analysis it does not attain its limit 1 as a term. The points with coordinates 1n
n
−  lie 

on the real axis in the interval [0, 1). When connecting every point geometrically by a line to the 

origin 0 we get the sequence of intervals 10, n
n
−⎛ ⎞⎡ ⎤

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ nœÙ
. Obviously these connections have no 

influence on the limit, such that [ ]1 1lim 0, 0, lim 0,1
n n

n n
n n→∞ →∞

− −⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

 

https://groups.google.com/g/sci.math/c/fbhTzDh7DLY/m/J5aWyoB8BAAJ
https://groups.google.com/g/sci.math/c/xMDlm57SKGI/m/kl6oj5FvEQAJ
https://groups.google.com/g/sci.math/c/xMDlm57SKGI/m/kl6oj5FvEQAJ
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The "set-theoretical limit" is the union of all intervals. Since 1 is not included, it is only the half-
open interval [0, 1). This however differs from analysis because every x < 1 is contained in 

infinitely many closed intervals 10, n
n
−⎡ ⎤

⎢ ⎥⎣ ⎦
 of the sequence together with infinitely many y such 

that x < y < 1. The least upper bound of analysis is 1 and therefore the analytical limit of the 
sequence of intervals is [0, 1]. 
 
We see here a tiny but insurmountable difference between the analytical limit and the set-
theoretical union, usually denoted as limit. This is usually acknowledged. "In the infinite" 
however, where this gap grows to a yawning chasm, it is neglected. If the sequence of finite 
initial segments of natural numbers (FISONs) 
 
 {1}, {1, 2}, {1, 2, 3}, ..., {1, 2, 3, ..., m}, ... Ø Ù 
 
is considered, then their limit Ù = {1, 2, 3, ...} is identified with the union of FISONs which, 
according to the above, is not correct. The limit Ù with |Ù| = ¡0 is not reached by the union as the 
limit ω is not reached by the sequence of natural numbers 
 
 1, 2, 3, ... Ø ω . 
 
Usually it is understood that not all ¡0 natural numbers are in any FISON 
 
 Ÿ$m œ Ù "n œ Ù: n œ {1, 2, 3, ..., m} 
 
but it is claimed that the union of all FISONs contains all ¡0 natural numbers 
 
 "n œ Ù $m œ Ù: n œ {1, 2, 3, ..., m} . 
 
These statements however are simply expressing the properties of the potentially infinite set of 
FISONs. In fact they do not concern ¡0 naturals. This can be seen when the latter statement is 
given more precisely, replacing "n" by "n and all its predecessors", i.e., by "{1, 2, 3, ..., n}": 
 
 "n œ Ù $m œ Ù: {1, 2, 3, ..., n} Õ {1, 2, 3, ..., m} 
 
making clear that by ""n" never ¡0 natural numbers are addressed, because always only FISONs 
are accepted, limiting the quantification ""n œ Ù" to a never actually infinite set, the elements of 
which can always be accommodated in other FISONs. 
 
From the limits considered above we have to draw the conclusion that the union of all FISONs is 
not the analytical limit ω and does not contain |Ù| = ¡0 natural numbers. [WM: "Fundamental 
theorem", sci.math (Nov 2016). WM: "A yawning chasm", sci. math (Nov 2016). WM: "A case 
of valid quantifier exchange", sci.math (16 Aug 2018)] 
 
 

https://groups.google.com/g/sci.math/c/K5NFXXLOUSc/m/Z4DIlJY_AAAJ
https://groups.google.com/g/sci.math/c/K5NFXXLOUSc/m/Z4DIlJY_AAAJ
https://groups.google.com/g/sci.math/c/4hQnywwCOGU/m/JYtDJLPYAwAJ
https://groups.google.com/g/sci.math/c/4hQnywwCOGU/m/JYtDJLPYAwAJ
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 The limit depends on direction 
 
In the sequence 
 
 01  
 0011  
 000111 
 00001111  
 ... 
 
little by little every index is covered by zero. The limit is an infinite sequence of zeros 000..., if 
we start to enumerate from the left-hand side as is usual in European literature and in the notation 
of digits behind the decimal point. Starting from the right-hand side, as is usual in Arabic 
literature and in denoting the digits of integers, the limit is an infinite sequence of ones 111... . 
When indexing the digits alternatingly like 
 
 ..., -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, ... 
 
then the limit of the sequence has infinitely many zeros at the left-hand side and infinitely many 
ones at the right-hand side. What may happen when writing from top to bottom? 
 
 
 The limit depends on indexing 
 
Always add two digits 1 to the right-hand side and shift that one with the smallest index 
remaining behind the decimal point to the left-hand side immediately in front of the decimal 
point: 
 
 11.12 
 1112.1314 
 111213.141516 
 11121314.15161718 
 ... . 
 
According to set theory this sequence has limit ω because all natural indices are accumulated on 
the left-hand side. 
 
Always add two digits 1 to the left-hand side and shift that one with the smallest index remaining 
in front of the decimal point to the right-hand side immediately behind the decimal point: 
 
 12.11 
 1413.1211 
 161514.131211 
 18171615.14131211 
 ... . 
 



 226

According to set theory this sequence has limit 1/9 (at most) because all natural indices are 
accumulated on the right-hand side. 
 
Always add two digits 1, one to the left-hand side and one to the right-hand side: 
 
 11.12 
 1311.1214 
 151311.121416 
 17151311.12141618 
 ... . 
 
According to set theory this sequence has limit ω because all odd natural indices are accumulated 
on the left-hand side. 
 
When not indexing, it is impossible to distinguish these three cases. The limit is always ω 
because infinitely many digits are gathered in front of the decimal point. [W. Mückenheim: "Das 
Paradoxon des Tristram Shandy", Forschungsbericht 2012, HS Augsburg, wmm 
wirtschaftsverlag, Augsburg (2012) pp. 242-244] 
 
 
 
 The limit depends on representation 
 
When numbers are understood as sets (since in ZFC everything is a set) we can write 
 
 1, 2, 3, ... Ø { } .         (*) 
 
For the sequence of the finite initial segments of Ù we obtain 
 
 {1}, {1, 2}, {1, 2, 3}, ... Ø Ù . 
 
But when representing the natural numbers according to von Neumann (cp. section 2.12.6), then 
we get the sequence of natural numbers with a limit different from that of (*): 
 
 {0}, {0, 1}, {0, 1, 2}, ... Ø Ù0 . 
 
[WM: "Limits depend on representation?", sci.math (29 Sep 2016)] 
 
Discussion: "The only convergent sequences in the discrete topology are eventually constant 
sequences, and so the limit formulas in your question are simply false if you use the discrete 
topology on the power set." [Lee Mosher in "Is there a reference for this paradox?", 
Math.StackExchange (30 Sep 2016)] That is correct in principle but: "The discrete topology is 
the only one accessible here since sets consist of discrete elements. They are quantized. The limit 
formulas have been developed for sets with discrete elements. That they are useless is just shown 
again by my observation." [Hans, loc cit] 
 

https://groups.google.com/g/sci.math/c/aY0vyFqb6dI/m/fmMdGrhHAgAJ
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Discussion: "Well, you are arguing that the two limits should be the same because the individual 
terms represent the same natural numbers. But this is nonsense! The limit is defined via the terms 
themselves – that is, what specific sets they are. Conflating two different definitions of 'natural 
number' is of course going to lead to contradictions." [Noah Schweber, loc cit] My reply: Here 
we use two different expressions for one and the same notion of natural number. If both sets 
express the same natural numbers, like II = 2 = {0, 1}, then the limits must be identical, unlike « 
and Ù. 
 
Discussion: "These are simply different sets, and it's no paradox that you use different codewords 
in different codes. This is no more a paradox than observing that the word for 2 starts with 't' in 
English, but it starts with 'd' in French. How can that be? It's the same number after all! But the 
codes are different." [Mitchell Spector, loc cit] "The codes may be different: 2 or II or two, but if 
Ù is coded as { } then there went something wrong." [Hans, loc cit]  
 
 
 
 A disappearing sequence 
 
Consider a sequence of sets where we, starting from {20}, replace {2n} by {2n+1}. We get the 
sequence of singletons with empty limit: 
 
 {1}, {2}, {4}, {8}, ... Ø { } . 
 
In unary representation this sequence 
 
 {I}, {II}, {IIII}, {IIIIIIII}, ... Ø { } 
 
has an empty limit too, although the continuously doubling strokes, like slipper animalcule 
(paramecium), cannot know that they are interpreted as natural numbers and eventually will have 
to disappear and, if indexed, finally yield the unearthly picture { 1, 2, 3, 4, 5, ...}. 
 
Note that the different representations of natural numbers by Zermelo and von Neumann (cp. 
section 2.12.6) cause the same problem. [WM: "Das Kalenderblatt 120413", de.sci.mathematik 
(12 Apr 2012). WM: "Slipper animalcule or natural numbers", sci.math (1 Jul 2016)] 
 
Many mathematicians don't know at all about this problem (see 2.16 "Set-theoretical limits of 
sequences of sets"): "Where are you getting this 'empty limit' bullshit?" [Dan Christensen in 
"Slipper animalcule or natural numbers", sci.math (1 Jul 2016)] "By what mythical rule does WM 
claim that the limit of a sequence of non-empty sets must be empty?" [Virgil, loc cit (1 Jul 2016)] 
 
Others have a very healthy intuition: "It seems to me that this set is just getting fuller, not empty." 
[Konyberg, loc cit (1 Jul 2016)] 
 
Only very few can recognize the far-reaching consequences: "Ingenious. An empty set with ¡0 
strokes! How much more screwed up can set theory get ..." [John Gabriel, loc cit (7 Jul 2016)] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/%22Das$20Kalenderblatt$20120413%22/de.sci.mathematik/pmtx_q2bmO4/0Qo-sdjCjJ0J
https://groups.google.com/forum/#!topic/sci.math/xfRaaBeC6Y0
https://groups.google.com/forum/#!topic/sci.math/xfRaaBeC6Y0
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 Disappearing sequences 
 
In (1), (2), (3), ... double each number x to get 2x and add the predecessor of each 2x to get 
  
 (1, 2), (3, 4), (5, 6), ... . 
 
Again double each last number 2x to get 4x and add the three predecessors of 4x 
 
 (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), ... . 
 
Continue in this manner, constructing a sequence of growing finite sequences 
  
 (1, ..., 2n), (2n + 1, ..., 2ÿ2n), (2ÿ2n + 1, ..., 3ÿ2n), ... .  
 
In the limit (n Ø ω) only the set of all natural numbers (1, 2, 3, ...) from the first sequence (within 
the first parentheses) remains. All other parentheses have disappeared (or are empty). [WM: "Das 
Kalenderblatt 100729", de.sci.mathematik (Jul-Aug 2010)]  
 
 
 A not disappearing set 
 
 M = ... (( ... (((({0} » {1}) \ {1}) » {2}) \ {2}) ... » {n}) \ {n}) ... = {0} . 
 N = ... (( ... (((({0} » {1}) \ {0}) » {2}) \ {1}) ... » {n}) \ {n - 1}) ... = { } . 
 
All singletons will have been removed "in the limit". But according to Cantor the cardinal 
number of a set remains constant, if instead of its elements m, m', m'', ... other things are 
substituted [Cantor, p. 413], i.e., if only elements are exchanged. Hence |{0}| = |{ }|? [WM: "Das 
Kalenderblatt 090829", de.sci.mathematik (28 Aug 2009)] 
 
 
 The bent graph 
 
 "n œ Ù: n < ¡0 
 
This strict inequality causes a remarkable feature of 
set theory. While for every finite initial segment of 
natural numbers (1, 2, 3, ..., n) the last ordinal number 
and the cardinal number |(1, 2, 3, ..., n)| are identical, 
this rule is violated "in the limit", i.e., for the whole 
set Ù. There are ¡0 numbers each of which is less 
than ¡0. The straight graph of the function 
 
 f(n) = |(1, 2, 3, ..., n)| 
 
(here shown with reversed axes) somehow has to change its slope "in the infinite". [WM: "Das 
Unendliche", de.sci.mathematik (5 Jan 2005)] 

https://groups.google.com/g/de.sci.mathematik/c/sEnAk5f0EYw/m/FxBxs_9ET94J
https://groups.google.com/g/de.sci.mathematik/c/sEnAk5f0EYw/m/FxBxs_9ET94J
https://groups.google.com/g/de.sci.mathematik/c/XZKhCVpLLWQ/m/PPqUqqY9WWcJ
https://groups.google.com/g/de.sci.mathematik/c/XZKhCVpLLWQ/m/PPqUqqY9WWcJ
https://groups.google.com/g/de.sci.mathematik/c/t91R_GN1UHk
https://groups.google.com/g/de.sci.mathematik/c/t91R_GN1UHk
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 Separating sequences 
 
The sequence S of sets 
 
 S(n) = (n, n-1, ..., 3, 2, 1) 
 
has a limit because both LimSup and LimInf exist and are equal, namely 
 
 ω* = (..., 3, 2, 1) . 
 
If S(n) is divided into two sets S1(n) containing all elements larger than |S(n)|/2 and S2(n) 
containing all elements not larger than |S(n)|/2, then the sequence S2 has limit ω*, and the limit of 
the sequence S1 is empty. Here are the first terms of the sequences S1 and S2: 
 
 n    S1        S2 
 1    (1)        ( )      
 2    (2)        (1) 
 3    (3, 2)    (1) 
 4    (4, 3)    (2, 1) 
 ...    ...         ... . 
 
Now take all elements of the set S2(n) which are not larger than |S2(n)|/2 and put them into a new 
set S3(n). Here are the first terms of the three sequences S1, S2, S3: 
 
 n    S1        S2        S3 
 1    (1)        ( )        ( )  
 2    (2)        (1)       ( )  
 3    (3, 2)    (1)       ( )  
 4    (4, 3)    (2)       (1)  
 ...    ...         ...         ... . 
 
This procedure can be continued. If there are m sets, then form a new set Sm+1(n) containing all 
elements which are not larger than |Sm(n)|/2. 
 
For m Ø ¶ we have infinitely many sequences Sk, 1 § k § m, the limit of each sequence being 
empty. Nevertheless the union of the terms Sk(n) of these sequences (i.e., the series), taken for 
fixed n, contains n natural numbers. And the limit of this union is ω* with cardinal number ¡0. 
[W. Mückenheim: "Die Geschichte des Unendlichen", 7th ed., Maro, Augsburg (2011) p. 115] 
 

https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
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 Fibonacci-sequences with fatalities 
 
The Fibonacci-sequence 
  
  f(n) = f(n-1) + f(n-2)   for n > 2  with f(1) = f(2) = 1 , 
  
the first recursively defined sequence in human history (Leonardo of Pisa, 1170-1240), should be 
well known. A pair of rabbits that reproduces itself monthly as from the completed second month 
on will yield a stock of 144 pairs after the first 12 months: 
  
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 .  
 
If we assume that each pair reproduces itself after two months for the first and last time and dies 
afterwards, we get a much more trivial sequence: 
 
 1, 1, 1, ... . 
 
However the rabbits behind these numbers change. If we name them in the somewhat 
unimaginative but effective manner of the Old Romans, we get Prima, Secunda, Tertia, Quarta, 
Quinta, Sexta, Septima, Octavia, Nona, Decima, and so on.  
 
A more interesting question is brought up, if the parent pair dies immediately after the birth of its 
second child pair. Then the births g(n) in month n can be traced back to pairs who have been born 
in months n-2 and n-3: 
 
 g(n) = g(n-2) + g(n-3) . 
 
The number f(n) of pairs in month n is given by those born in month n, i.e., g(n) and those 
already present in month n-1, i.e., f(n-1), minus those who died in month n, namely g(n-3), those 
who were born in month n-3: 
 
 f(n) = g(n) + f(n-1) - g(n-3) = g(n-2) + f(n-1)  
 g(n-2) = f(n) - f(n-1)  
 g(n-2)  = g(n-4) + g(n-5)  
  = f(n-2) - f(n-3) + f(n-3) - f(n-4)  
               = f(n-2) - f(n-4) . 
 
For n > 4 we have with f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 2:  
 
 f(n) = f(n-1) + f(n-2) - f(n-4) . 
 
The number of pairs during the first 12 months is: 
 
 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21 .  
 
The sequence grows slower than the original one, but without enemies or other restrictions it will 
grow beyond every threshold. If we wait ¡0 days (or use the trick that, facilitated by genetic 
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evolution, the duration of pregnancy is halved in each step) we will get infinitely many pairs 
(although the set-theoretic limit of living pairs is empty because for every pair the date of death 
can be determined) – a nameless number, alas of nameless rabbits, because they cannot be 
distinguished. The set of all Old-Roman names has been exhausted already, and even all of 
Peano's New-Roman names S0, SS0, SSS0, ... have been passed over to pairs which already have 
passed away. (Since infinitely many have passed away during ¡0 days, the set of names has been 
exhausted.) That is amazing, since none of the pairs of the original and much more abundant 
Fibonacci sequence has to miss a name.  
 
So we obtain from set theory: The cultural assets of distinguishability of distinct objects by 
symbols, names, or thoughts do not belong to the properties of Cantor's paradise. Like in the 
book of genesis, before Adam began to name the animals, we have a nameless paradise – not 
mathematics though. 
 
But this sequence with fatalities can also be obtained without fatalities (killings), namely if each 
pair has to pause for two months after each birth in order to breed again in the following month. 
Mathematically, there is no difference. (Pair P, that originally dies away after breeding its second 
child pair S, takes the position of S and pauses for two months like the fresh pair S would have 
done.) Set theory, however, yields a completely different limit in this case. The limit set of living 
rabbits is no longer empty, but it is infinite – and every rabbit has a name. [WM: "Das 
Kalenderblatt 120412", de.sci.mathematik (11 Apr 2012)] 
 
 
 
 The six sisters 
 
Once upon a time there were six sisters who got lost in the dark forest. There an evil sorcerer 
found them and decided, first to fatten them and then to eat them. 
 
When the sisters recognized their fate they craved mercy. The evil sorcerer, after short reflection, 
put them a task. Every sister should name a sequence of sets. The evil sorcerer promised to 
release those girls who, at the end, could show him a set with ¡0 elements. (Of course he knew 
that none of them had ever heard of ¡0 – as I said he was an evil sorcerer.) 
 
The two eldest, Anna and Bertha, began. They knew the even numbers already. So they simply 
used the sequence of finite initial segments of even numbers {2, 4, 6, ..., 2n}. Since each one 
should have her own sequence, Bertha took all numbers that were larger than n and Anna took 
the rest. So the sisters believed to share just and fair. 
 
 n   A(n)      B(n)     
 1 { }          {2}  
 2 {2}     {4}  
 3 {2}      {4, 6}  
 4 {2, 4}   {6, 8}  
 5 {2, 4}   {6, 8, 10}  
 6   {2, 4, 6} {8, 10, 12}  
 ... ...           ... . 

https://groups.google.com/g/de.sci.mathematik/c/AglTX6G8908/m/49jPtwJTqDoJ
https://groups.google.com/g/de.sci.mathematik/c/AglTX6G8908/m/49jPtwJTqDoJ
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Alas, this was fateful for Bertha. The evil sorcerer decided that Bertha's sequence had the empty 
set as its limit set, because for every even number there is a natural number, a step n, where it 
enters Anna's set. 
 
Christa and Dora, who had observed Bertha's misfortune, were cleverer. They chose the 
sequences 
 
 n  C(n)      D(n)     
 1  { }    {1}  
 2 {2}     {1}  
 3  {2}     {1, 3}  
 4  {2, 4}   {1, 3}  
 5 {2, 4}    {1, 3, 5}  
 6  {2, 4, 6} {1, 3, 5}  
 ...  ...           ... . 
 
And the evil sorcerer had to confess that both had solved their task. 
 
Now Edda and Frida remained. Frida had already recognized the whole lot, but she looked for a 
way to break the spell of poor Bertha. And when Edda started, Frida took a really sophisticated 
choice: 
 
 n E(n)      F(n)     
 1 { }       {Ñ1}  
 2 {2}      {Ñ1}  
 3 {2}     {Ñ1, Ñ2}  
 4 {2, 4}   {Ñ1, Ñ2}  
 5 {2, 4}   {Ñ1, Ñ2, Ñ3}  
 6 {2, 4, 6} {Ñ1, Ñ2, Ñ3}  
 ...  ...            ... . 
 
Here identical indices should not imply equal elements but only distinguish free places. And 
although the evil sorcerer threatened her harshly, she did not reveal whether her squares should 
be filled with Bertha's or Dora's elements. This was too much for the evil sorcerer. His brain 
overheated and finally burst. And all six sisters were free and could run home. 
 
Frida shows that the results of set theory depend on arbitrarily selected notation. That must never 
be accepted in science and not even in fairy tales. [W. Mückenheim: "Die Geschichte des 
Unendlichen", 7th ed., Maro, Augsburg (2011) p. 113f] 

https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
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 There is no countable set 
 
 Diagonalization applied to the set of natural numbers 
 
The set of natural numbers can be written in binary notation as a sequence 
 

...00000 

...00001 

...00010 

...00011 

...00100 
    ... . 

 
This sequence can be diagonalized 
 

...00001 

...00011 

...00110 

...01011 

...10100 
   ... . 

 
The antidiagonal number d1d2d3... = 111... consists only of bits 1. For its initial segment of n bits 
we find 
 
 D(n) = d1d2d3...dn < 2n+1 . 
 
As there is no infinite index n, we have 
 
 "n œ Ù: D(n) œ Ù . 
 
Further for every finite initial segment of the sequence, there is a D(n) that is not an element of 
that finite initial segment. 
 
The set of natural numbers is uncountable. 
 
For comparison: Cantor's original diagonal argument also holds only for every finite initial 
segment of any given sequence of real numbers. (Infinite sequences of digits without a structural 
plan do not define real numbers. See section "Sequences and limits".) [W. Mückenheim: "Infinite 
sets are non-denumerable", arXiv (2003)] 
 
 
 
 

http://arxiv.org/ftp/math/papers/0305/0305310.pdf
http://arxiv.org/ftp/math/papers/0305/0305310.pdf
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 Can the manner of marking influence the result? 
 
Let (Sn) be the sequence of sets Sn = {n} with n œ Ù. This sequence has an empty limit set.  
 
Let (Tn) be the sequence of sets Tn = {I1, I2, I3, ..., In} where we have indexed notches I in order 
to distinguish them. Tn+1 emerges from Tn by adding notch number n+1. (A unary system is the 
historically first kind of representing natural numbers.) This sequence has not an empty limit set. 
The sequence of notches diverges towards ω, the seqence of sets of indices diverges towards Ù. 
[WM: "§ 523 Can the manner of marking influence the result?", sci.math (7 Jul 2014)] 
 
 
 
 A minimum 
 
The sequence (an) defined by an = min(10100, |Ù\{1, 2, 3, ..., n}|) has only terms an = 10100 in 
analysis and in set theory. In analysis its limit is 10100 but since limnØ¶ {1, 2, 3, ..., n} = Ù its 
limit in set theory is 0. [WM: "Matheology § 295", sci.math (26 Jun 2013)] 
 
 
 
 Counting like an old-fashioned station clock 
 
Hilbert proudly boasted that it is possible to simply count beyond the infinite: "These are Cantor's 
first transfinite numbers, the numbers of the second number class as Cantor calls them. We get to 
them simply by counting beyond the normal countable infinite, i.e., in a very natural and 
uniquely defined consistent continuation of the normal counting in the finite." [D. Hilbert: "Über 
das Unendliche", Math. Annalen 95 (1925) p. 169] 
 
But sometimes this counting comes to a hold like an old-fashioned station clock that pauses at 
every full minute. Let us use commercial calculation for doing the counting. The results have 
been double underlined. 
 

{1}   {1}   {1} 
{1, 2}   {1, 2}   {1, 2} 
{1, 2, 3}  {1, 2, 3}  {1, 2, 3} 
{1, 2, 3}  ...          ...    
   {1, 2, 3, ...}  {1, 2, 3, ...} 
      {1, 2, 3, ...} 
      

The last step has not increased the sum set although more than before has been added, namely the 
infinite set Ù which is larger than all FISONs. The reason is that the preceding step yields a sum 
set that is larger than all summed sets. For inclusion-monotonic sequences of sets this should be 
impossible. But let us simply continue the counting beyond the normal countable infinite, i.e., in 
the very natural and uniquely defined consistent continuation of the normal counting in the finite, 
as declared by Hilbert. 

 

https://groups.google.com/g/sci.math/c/ah_p58iacBY/m/65ZJdy9VQYwJ
https://groups.google.com/forum/#!msg/sci.math/MICz32adCCc/E4bYTIBGw60J
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{1} {1}  {1} {1} 
{1, 2}  {1, 2}  {1, 2} {1, 2} 
{1, 2, 3} {1, 2, 3}  {1, 2, 3}  {1, 2, 3}  
...   ... ... ... 
{1, 2, 3, ...}  {1, 2, 3, ...} {1, 2, 3, ...} {1, 2, 3, ...} 
{1, 2, 3, ..., a}  {1, 2, 3, ..., a} {1, 2, 3, ..., a} {1, 2, 3, ..., a} 
{1, 2, 3, ..., a}  {1, 2, 3, ..., a, aa} {1, 2, 3, ..., a, aa} {1, 2, 3, ..., a, aa} 
  {1, 2, 3, ..., a, aa} ...                               ... 
  {1, 2, 3, ..., a, aa, ...} {1, 2, 3, ..., a, aa, ...} 
   {1, 2, 3, ..., a, aa, ...} 

 
The last step has not increased the sum set although more than in the preceding step has been 
added. The reason is again that the preceding step yields a sum set that is larger than all summed 
sets. The sums resulting from these summations are 
 

{1}  
{1, 2}  
{1, 2, 3}  
...  
{1, 2, 3, ...} 
{1, 2, 3, ...} 
{1, 2, 3, ..., a}  
{1, 2, 3, ..., a, aa}  
{1, 2, 3, ..., a, aa, aaa}  
...  
{1, 2, 3, ..., a, aa, aaa, ...}  
{1, 2, 3, ..., a, aa, aaa, ...} 
{1, 2, 3, ..., a, aa, aaa, ..., b}  
{1, 2, 3, ..., a, aa, aaa, ..., b, bb} 
{1, 2, 3, ..., a, aa, aaa, ..., b, bb, bbb}  
...  
{1, 2, 3, ..., a, aa, aaa, ..., b, bb, bbb, ...}  
{1, 2, 3, ..., a, aa, aaa, ..., b, bb, bbb, ...}  
...  
{1, 2, 3, ..., a, aa, aaa, ..., b, bb, bbb, ..., c} 
... . 
 

and so on. Hilbert's counting is stuck on. From time to time it comes to a hold. The reason is that 
the union of all natural numbers shall be a transfinite number. That is impossible because the 
natural numbers count themselves, and there is nothing in the natural numbers larger than all 
natural numbers. This is disputed by set theorists, because they count in the following way: 
 
 1, 2, 3, ..., ω, ω+1, ω+2, ω+3, ..., ω+ω, ω+ω+1, ... . 
 
[WM: "Das Kalenderblatt 091206", de.sci.mathematik (11 Dec 2009)] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Kalenderblatt$20091206/de.sci.mathematik/l0l07_rEUao/15HhyFKKRM8J
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 Two similar properties with different results 
 
Every element q of the set – of all rational numbers can be enumerated. In every step n we get 
another number qn which has the properties (1) to have an index n and (2) to have ¡0 successors 
which are not enumerated in or before step n. 
 
Now we can conclude that the property (1) is inherited by all elements of the complete set – 
which therefore may be called a countable set, but although property (2) is also inherited by all 
elements of the complete set – it must not be called a discountable set, that is a set all elements 
of which can be subtracted without changing the cardinality of the remainder. [WM in "Two 
properties", sci.math (25 Jan 2016)] 
 
 
 
 The ketchup effect 
 
If you have ever used a new bottle of tomato ketchup, you will have experienced the ketchup 
effect: First barely some drops leave the bottle, but when you shake harder the whole contents 
splashes on your plate.  
 
Same happens in transfinite set theory. When indexing the rational numbers, there will remain 
infinitely many real intervals, each one populated by infinitely many not indexed rational 
numbers. This remains so for all finite indices. But as soon as you have used infinitely many 
indices (i.e., never) all intervals are populated exclusively by indexed rationals. [WM: "The 
ketchup-effect", sci.math (10 Jun 2015)] 
 
 
 
 Failure of Cantor's first diagonal method 
 
The diagram in section "2.1 Countable sets" allegedly shows a way to enumerate all positive 
fractions. It is called Cantor's first diagonal method because the enumeration proceeds parallel to 
the diagonal ddd... from the lower left to the upper right. 
 

1/1, 1/2, 1/3, 1/4, ...    a, a, a, d, ... 
2/1, 2/2, 2/3, 2/4, ...    a, a, d, o, ... 
3/1, 3/2, 3/3, 3/4, ...    a, d, o, o, ... 
4/1, 4/2, 4/3, 4/4, ...   d, o, o, o, ... 

 ...     ... . 
 
In fact the diagram shows quite the contrary. Every square of fractions that you are going to 
enumerate has a diagonal that cannot be traversed without enlarging the square and getting a new 
diagonal which cannot be traversed without enlarging the square and getting a new diagonal ... . 
Further you will never reach the diagonal of the "whole square". Therefore it is clear that at least 
half of all positive fractions will not become enumerated. 
 

https://groups.google.com/forum/#!topic/sci.math/CyTm1PMS7x8
https://groups.google.com/forum/#!topic/sci.math/CyTm1PMS7x8
https://groups.google.com/forum/#!searchin/sci.math/The$20ketchup$20effect/sci.math/8BrU1tz7i68/IoYrQLnhjCsJ
https://groups.google.com/forum/#!searchin/sci.math/The$20ketchup$20effect/sci.math/8BrU1tz7i68/IoYrQLnhjCsJ


 237

A counter argument says "the diagonal does not exist". This is astounding because the complete 
first row of ¡0 unit fractions "exists" as well as the complete first column of ¡0 integer fractions. 
Further in Cantor's second diagonal argument (cp. section "2.2.3 Cantor's second uncountability 
proof") the complete diagonal of ¡0 digits "exists". [WM in "Ueberdeckung der rationalen 
Zahlen", de.sci.mathematik (8 Jun 2011)] 
 
 
 
 Cantor's deficient enumeration of the fractions 
 
"Translation invariance is fundamental to every scientific theory. About 50 % of all positive 
rational numbers of Cantor's enumeration however lie in the first unit interval between 0 and 1. 
[...] never as many rationals will be enumerated in the interval (100, 101] as in the interval (0, 1].  
[...] every unit interval has as many fractions as the first one, but none will ever have so many 
counted fractions as the first one." [WM: "Translation invariance", sci.math (26 May 2020)] 
"Infinitely many fractions are indexed in (100, 101]. But not all. There are infinitely many prime 
numbers. Nevertheless you cannot claim that a sequence which has indexed all prime numbers 
has indexed all natural numbers." [WM in "Limit of ratio vs ratio of limit", sci.math (12 Jul 
2020)] 
 
This topic has stirred up a lot of further discussion. 
 
"Can anybody calculate the limit of the relative abundance of rational numbers in the unit 
intervals (0, 1) and (1000, 1001) appearing in Cantor's famous sequence 1/1, 1/2, 2/1, 1/3, ...? 
Can anybody find an interpretation for the fact that it is not 1?" [NN: "Relative abundance of 
rationals in Cantor's bijection?", Math.StackExchange (6 Jun 2020)]. 
 
"In the interval (1000, 1001] the relative abundance of enumerated rational numbers is less than 
1/1000. This rough estimation is in accordance with the first answer and is sufficient for the 
following interpretation: Since it is obvious that for every rational q of the first unit interval there 
is a rational q + 1000 in (1000, 1001], this shows that Cantor's enumeration does not capture all 
rationals. Remark: Of course the cardinal number of rationals enumerated in any unit interval (n, 
n+1] is ¡0 but this does not show completeness." [Hilbert7, loc cit (18 Aug 2020)] This answer 
has been deleted without traces after few hours. 
 
"About half of the fractions lie within 0 < x § 1. What is the limit of the ratio 
 

  1 2

1 2

| { | 1} { , ,..., } |
| { | 0 1} { , , ..., } |lim k

k k

x n x n q q q
x x q q q→∞

∈ < ≤ + ∩
∈ < ≤ ∩

   for   n œ Ù ?" 

 
[Hilbert7: "What fraction of fractions does Cantor's famous sequence enumerate?", 
MathOverflow (11 Jun 2020)] 
 
A sufficient estimation is this: The sequence of enumerated fractions per unit interval is strictly 
decreasing. Therefore in the nth unit interval there are less than 1/n of all enumerated fractions. 
 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/Ueberdeckung$20der$20rationalen$20Zahlen/de.sci.mathematik/WC-ge-XDLMs/AhG-X546_dQJ
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Ueberdeckung$20der$20rationalen$20Zahlen/de.sci.mathematik/WC-ge-XDLMs/AhG-X546_dQJ
https://groups.google.com/forum/#!searchin/sci.math/%22Translation$20invariance%22%7Csort:date/sci.math/PQ6LfHA-WXo/NtQczJHoAQAJ
https://groups.google.com/g/sci.math/c/vsVRZ_2wNik/m/AkqYVbV8CAAJ
https://math.stackexchange.com/questions/3708845/relative-abundance-of-rationals-in-cantors-bijection
https://math.stackexchange.com/questions/3708845/relative-abundance-of-rationals-in-cantors-bijection
https://mathoverflow.net/questions/362791/what-fraction-of-fractions-does-cantors-famous-sequence-enumerate
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"By translation invariance we can be sure that in all intervals (n, n+1] of the real axis there are the 
same number of fractions: #(n, n+1] = #(m, m+1] for all natural numbers n and m. That is a 
matter of symmetry, independent of the method used for counting them. Cantor's famous 
sequence however has half of its hits in the first unit interval and less than 1/n in (n, n+1]. This 
raises two important questions: (1) What are the precise values of his f(n) = #(n, n+1]/#(0, 1] in 
the limit? (2) how can the deviation from f(n) = 1 be interpreted? My question: Can it be that this 
topic has never been treated in the literature or in lessons on set theory, for instance in the first 
years of set theory?" [Franz Kurz: "Has Cantor's irregular enumeration of rationals ever been 
discussed?", History of Science and Mathematics (21 Jun 2020)] No answer yet. 
 
 
 Uncountability of rationals shown without diagonalization (I) 
 
The incompleteness of any enumeration of the reals and even of the rationals of the real interval 
(0, 1) can be shown without diagonalization, i.e., without constructing an antidiagonal number. 
 
Assume an enumeration (rk) as complete as possible of the real numbers rk = 0.rk1rk2rk3... of the 
unit interval (i.e. a Cantor-list). In every row replace every digit behind the diagonal digit rkk by 
zero.1 Get a rational number. Then in every row replace every digit from the first digit behind the 
decimal point to the diagonal digit by 1 to obtain qk = 0.qk1qk2qk3...qkk = 0.111...1. 
 
This procedure shows that there is no complete enumeration of the rational numbers (and hence 
of the real numbers) of the real interval (0, 1). After having created the list 0.1, 0.11, 0.111, ... 
without changing the number of entries, it is obvious that all possible places are occupied by 
different rational numbers. But no irrational numbers and no rational numbers with digits other 
than 0 and 1 are present. So they are missing from the whole list. 
 
For an even easier proof of uncountability list all positive rationals of the interval (0, ¶) and 
replace every entry by its line number. Get the list  
 

1  
2  
3 
...  

 
All proper fractions are missing. In order to re-introduce them, we have to remove naturals.  
 
Note: It is allowed to insert any desired missing number between two rows or to prepend it to the 
list. But don't forget then, what you always recommend in case a layman wants to put the 
"antidiagonal number" into the list: Repeat the whole procedure with the new list! [WM: 
"Uncountability of the set of positive rational numbers", sci.math (2 Nov 2015). WM: 
"Uncountability of the rational numbers shown without diagonalization" sci.logic (27 Aug 2017)] 

                                                 
1 This would not change the resulting antidiagonal number. The digits beyond the diagonal digit are 
irrelevant for the construction of the antidiagonal number in Cantor's original diagonal procedure. 

https://hsm.stackexchange.com/questions/11938/has-cantors-irregular-enumeration-of-rationals-ever-been-discussed
https://hsm.stackexchange.com/questions/11938/has-cantors-irregular-enumeration-of-rationals-ever-been-discussed
https://groups.google.com/g/sci.math/c/dwd9zb7il2s/m/wtj27Gi0AwAJ
https://groups.google.com/g/sci.logic/c/uFeBBxrXPho/m/wPFbo4fvCgAJ
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Uncountability of rationals shown without diagonalization (II) 
 
The equinumerosity between Ù and the set of integer fractions n/1 
 
 {1, 2, 3, 4, 5, ...} ¨ {1/1, 2/1, 3/1, 4/1, 5/1, ...}         (*) 
 
is proved by symmetry. Nevertheless Cantor's sequence of all positive fractions (see section 2.1) 
means a bijection with Ù where not only all fractions n/1 of (*) are appearing 
 
 {1, 2, 3, 4, 5, ...} ¨ {1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 5/1, 1/6, ..., M}   (**) 
 
but in addition many fractions in between - and a huge set M of ¡0 fractions follows beyond all 
fractions n/1. M is fed by two sources: First, up to every n/1 almost all fractions of all intervals 
have not been indexed and second the integer fraction n/1 is always the first fraction indexed in 
the unit interval (n-1, n]. Therefore ¡0 fractions must be indexed beyond all integer fractions. 
 
Even when dropping all intermediate fractions in (**) we get 
 
 {1, 2, 3, 4, 5, ...} ¨ {1/1, 2/1, 3/1, 4/1, 5/1, ..., M} .            (***) 
 
If (*) is a bijection, then Ù is exhausted before M. Then (***) cannot be a bijection. [WM: 
"Solang die Sterne stehn", de.sci.mathematik (2 Oct 2021). WM: "Looking for a concise axiom 
describing a special feature of set theory", sci.math (11 Oct 2021).] 
 
 
 
 Mirroring digits 
 
 "n œ Ù: If 10-n is defined, then 10n is defined. 
 
 If 10-1, 10-2, 10-3, ..., 10-n is defined, then 101, 102, 103, ..., 10n is defined. 
 

 If 
1
10

n
k

k

−

=
∑ is defined, then 

1
10

n
k

k =
∑  is defined. 

 
Obviously these transformations do not depend on the number of terms or the number of 
exponents, but solely on the condition that all exponents are natural numbers.  
 
If, as is usually claimed, the infinite digit sequence 0.111... contains only the complete set of all 
negative integers as exponents, why is there no complete decimal representation with only the 
complete set of all positive integer exponents? The answer is that there is no complete set of 
definable integers. Only the limit of an infinite sequence or sum is a fixed quantity. 
 

 
1

10 k

k

∞
−

=
∑  cannot be mirrored to 

1
10k

k

∞

=
∑ . 

 

https://groups.google.com/g/de.sci.mathematik/c/XlRRIge0x1M/m/fE2GTQaRAAAJ
https://groups.google.com/g/sci.math/c/PERHC2mj8iE/m/Qb0pS7mWAwAJ
https://groups.google.com/g/sci.math/c/PERHC2mj8iE/m/Qb0pS7mWAwAJ
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Every digit after the decimal point of an irrational number carries a finite index. Every mirrored 
digit should be suitable as a part of an integer whereas the mirrored digits of an integer never 
yield an irrational number. Every integer whose digits can be indexed with natural numbers is a 
finite number and is indexed by a finite set of natural numbers. More are not available. 
 
...111.111... is not a real number. Every natural number n of digits 1 is possible before the 
decimal point because for every n there is a larger n + 1. Behind the decimal point however, 
allegedly there can be more than every natural number of digits 1, namely completed infinity. 
Note: Completed infinity is impossible before and behind the decimal point. But behind the 
decimal point the error is too small to be observable for most mathematicians. [WM in 
"Abzählbare Liste aller Irrationalzahlen eines Intervalls – hier bitte!", de.sci.mathematik (24 Feb 
2006)] 
 
 
 
 Well-ordering of the rational numbers by magnitude (I) 
 
If all (positive) rational numbers exist, then all permutations should exist, because each number 
has a finite index, i.e., it is in finite distance from the first number 1 which is enumerated by 1. 
But then also the permutation with all rational numbers enumerated and sorted according to their 
magnitude should be obtainable within ¡0ÿ¡0 = ¡0 steps and, therefore, should exist. Let  
 
 q1, q2, q3, q4, q5, q6, ...  
 
be an enumeration of the positive rational numbers. Separate pairs and order every pair by 
magnitude within ¡0 steps. The result is: 
 
 (q1', q2'), (q3', q4'), (q5', q6'), ... . 
 
Again separate pairs, but now excluding the first element, and order every pair by magnitude: 
 
 q1'', (q2'', q3''), (q4'', q5''), (q6'', ... 
 
Again separate pairs including the first element, and oder every pair by magnitude: 
 
 (q1''', q2'''), (q3''', q4'''), (q5''', q6'''), ... . 
 
Again separate pairs, but now excluding the first element, and order every pair by magnitude: 
 
 q1'''', (q2'''', q3''''), (q4'''', q5''''), (q6'''', ... . 
 
Repeat this alternating process ¡0 times. In the limit all enumerated rational numbers have been 
well-ordered by magnitude – if limits of non-converging sequences have any meaning. 
Otherwise, the enumeration of any non-converging sequence is meaningless too. [WM: 
"Matheology § 284", sci.math (10 Jun 2013)] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/Abz%C3%A4hlbare$20Liste$20aller$20Irrationalzahlen$20eines$20Intervalls$20-$20hier$20bitte!/de.sci.mathematik/hBuYEcCnLD0/ZRH8wXHP4isJ
https://groups.google.com/g/sci.math/c/RngyNxKk2do/m/Bqh1D1VJiCgJ
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 Well-ordering of the rational numbers by magnitude (II) 
 
Cantor gave a method of enumerating all positive rational numbers by natural indices 
 

1 1 2 1 3 1 2 3 4 1 5 1 2 3 4 5 6 1 3 5 7 1 2 4 5 7 8 1 3 7 9; , ; , ; , , , ; , ; , , , , , ; , , , ; , , , , , ; , , , ;...
1 2 1 3 1 4 3 2 1 5 1 6 5 4 3 2 1 7 5 3 1 8 7 5 4 2 1 9 7 3 1

 

 
(see section "2.1 Countable sets"). The finite initial segments of this sequence are repeated here – 
not because they are unknown, but because I wish to apply a new method to them. 
  

1/1  
1/1, 1/2  
1/1, 1/2, 2/1  
1/1, 1/2, 2/1, 1/3 
1/1, 1/2, 2/1, 1/3, 3/1 
1/1, 1/2, 2/1, 1/3, 3/1, 1/4 
... . 
  

Of course, this sequence will never end. For every natural index we will have achieved less than 
10-1000000000000000000000000000000000000 of the complete task. But, since every step is well-defined 
and absolutely fixed, we conclude from the fact that the enumeration holds up to every rational 
number that the enumeration holds for all rational numbers. 
 
Now apply the same method, but, in addition, always put the finite initial segments in proper 
order by size (which is no problem as long as they are finite, i.e., as long as we are enumerating 
with finite natural indices only – and other indices are not known). This new method will change 
the sequence as follows 
  

1/1  
1/2, 1/1  
1/2, 1/1, 2/1  
1/3, 1/2, 1/1, 2/1  
1/3, 1/2, 1/1, 2/1, 3/1 
1/4, 1/3, 1/2, 1/1, 2/1, 3/1 
... . 
  

This sequence will never end, but, since also here every step is well-defined and absolutely fixed, 
we can conclude from the fact that enumeration and ordering hold up to every rational number 
that they hold for all rational numbers too. Why not accept the second method1, or, alternatively, 
why accept the first one? [WM: "Matheology § 090", sci.math (21 Jul 2012)]   

                                                 
1 Cantor has endorsed this method: "The question by what transformations of a well-ordered set its ordinal 
number (Anzahl) is changed, by what it is not, is simply answered: Those and only those transformations 
leave the ordinal number unchanged which can be put down to a finite or infinite set of transpositions, i.e., 
exchanges of two elements." [Cantor, p. 214] Hence the well-order is not damaged by infinitely many 
transpositions. 

https://groups.google.com/g/sci.math/c/0DmGe1wU3D4/m/7j0HX7uhhAYJ
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 Why zero has been included in the set of natural numbers 
 
For every natural number we have 
 
 |{1, 2, 3, ..., n}| = n 
 
and, if a proper limit X exists, 
 
 limnØX|{1, 2, 3, ..., n}| = limnØX n . 
 
Hence we have always 
 
 |{1, 2, 3, ..., X}| = X . 
 
The following equations suggest themselves 
 
 |{1, 2, 3, ..., ℵ0}| = ℵ0  
 (1, 2, 3, ..., ω) = ω  
 
but are unpopular in set theory. Correct is there 
 
 (1, 2, 3, ..., ω) = ω + 1 . 
 
This is much easier to learn (and to teach) if the pupil starts with 
 
 |{0, 1, 2, 3, ..., n-1}| = n . 
 
[WM: "Sometimes the conclusion from 'every' on 'all' is desired but sometimes it is forbidden.", 
sci.math (1 May 2016). WM: "The natural numbers", sci.math (31 Jul 2016). WM: 
"Counterexample", sci.math (19 Aug 2021)] 
 
 
 Tertium non datur 
 
It was Brouwer who vehemently opposed the application of tertium non datur in the infinite. Let 
us take a simple finite example: The function f(x) = 1/x is undefined at x = 0. Therefore it is not 
continuous there. According to tertium non datur it is discontinuous there. But the function is not 
defined in x. Therefore the function, not being there, cannot be discontinuous there either. 
 
Same is possible in the infinite. For every definable natural number n œ Ù there exists a FISON 
Fn = (1, 2, 3, ..., n) Õ Ù with n œ Fn. Therefore all definable natural numbers belong to FISONs. 
But for every FISON Fn there exists a definable natural number m œ Ù with m – Fn. Therefore 
the collection of definable natural numbers is larger than every FISON. It is potentially infinite. 
Tertium non datur fails. [WM: "Where tertium non datur fails", sci.math (10 Jul 2016)] 

https://groups.google.com/g/sci.math/c/D1wpKdnjtuM/m/dqUOwINVBQAJ
https://groups.google.com/g/sci.math/c/nAiIsHVOIJ0/m/z4ALrNmIBgAJ
https://groups.google.com/g/sci.math/c/J2vjfl4uhjA/m/YhbB6SjqAgAJ
https://groups.google.com/g/sci.math/c/FKBCdLV5I84/m/z3GvJ_cJCAAJ
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 Debunkers 
 
Doubts on actual infinity are usually "debunked" by potential infinity or by the "typical element". 
 

Ë All positive numbers are greater than 0. 
Ë All negative numbers are less than 0. 
Ë For any set of positive integers, there exists one integer which is the smallest. 
Ë Infinite parallel lines never intersect. 
[Larry Freeman: "False proofs" (2006)] 

 
Nothing wrong, because here we can always replace "all" by "every". But the properties or 
qualities of the typical element do not distinguish between quantities of sets. 
 
 
 Intercession 
 
The unsatisfactory concept of bijection resembles the concept of intercession, denoted by ê, 
symbolizing a zipper. Two infinite sets, A and B, intercede (each other) if they can be put in an 
intercession, i.e., if they can be ordered such that between two elements of A there is at least one 
element of B and, vice versa, between two elements of B there is at least one element of A. The 
intercession includes Cantor's definition of equivalent (or equipotent) sets. Two equivalent sets 
always intercede each other, i.e., they can always be put in an intercession. 
 
The intercession of sets with nonempty intersection, e.g., the intercession of a set with itself, 
requires the distinction of identical elements. As an example an intercession of the set of positive 
integers and the set of even positive integers is given by 
 
 (1, 2, 3, 4, ...) & (2, 4, 6, 8, ...)' ê (1, 2', 2, 4', 3, 6', 4, 8', ...) . 
 
The intercession is an equivalence relation, alas it is not as exciting as the bijection. All infinite 
sets (like the integers, the rationals, and the reals) belong, under this relation, to one and the same 
equivalence class. The sets of rational numbers and irrational numbers, for instance, intercede 
already in their natural order. There is no playing ground for building hierarchies upon 
hierarchies of infinities, for accessing inaccessible numbers, and for finishing the infinite. Every 
set of definable elements which is not finite, simply is infinite, namely potentially infinite. [WM: 
"Inconsistent sets", sci.math (13 Jul 2005). W. Mückenheim: "Intercession", PlanetMath.Org (3 
May 2007)] 
 
 
 
 A correct mathematical measure for infinite sets 
 
There are less positive even numbers ƒ than natural numbers Ù, less natural numbers Ù than 
fractions –. That is easy to prove: ƒ is a proper subset of Ù, and Ù is a proper subset of –. Or 
this way: In every interval [0, n] there are more natural numbers than even numbers, more 
fractions than natural numbers. Classical mathematics with its powerful tool of limit proves the 
asymptotic linear numerical density 

http://falseproofs.blogspot.de/2006/06/e-e-escultura.html
https://groups.google.com/forum/#!searchin/sci.math/%22Inconsistent$20sets%22/sci.math/5fKS4czJZtw/H-l5GeVIeDMJ
https://planetmath.org/intercession
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 LimnØ¶  |ƒ ∩ [0, n]| / |Ù ∩ [0, n]| = 1/2 . 
 
Linear numerical density times length supplies number. There is no chance for the even numbers 
to catch up to break even. Every theory contradicting this result is contradicting mathematics. 
 
Why have Galilei and Cantor claimed that there are as many square numbers as natural numbers? 
Why has Cantor claimed that a bijection exists between Ù and –, although bijections have to 
include in fact all elements and because of injectivity cannot withstand the proofs shown above? 
 
The answer is simple: Both have not recognized that all usable and identifiable numbers which 
only can be paired in each set have the same multitude, namely they are potentially infinitely 
many, whereas the remaining sets of dark numbers have very different multitudes. They have 
started to write down the first pairs of their mappings, but then they have replaced the pairs by the 
"and so on". Formulas like f(x) = 2x however only feign bijections. 
 
If really a bijection exists between two sets, then every surjective mapping is injective and every 
injective mapping is surjective. How should a bijection be destroyed by reordering? And if 
actually infinite sets exist at all, why then shouldn't all elements of the set of reorderings of Ù  
exist too? Then one set of indices n of all fractions qn would establish a well-order of – by 
numerical size. At least this well-order would exist. 
 
Why do nowadays so many stick to the clearly wrong idea that bijections comprising all elements 
of the sets ƒ, Ù, and – are possible? This question remains without an answer. But it has 
definitely nothing to do with mathematics. [WM: "Why", sci.math & sci logic (8 Jan 2021). 
 
Discussion: "you are then confronted with two clear examples where your approach leads to 
nonsense and contradiction" [Gus Gassmann in "Why?", sci.math (17 Jan 2021)] My reply: 
Nonsense? Let œ denote the set of prime numbers, then |œ ∩ [0, n]| / |Ù ∩ [0, n]| decreases below 
every positive constant ε. That means LimnØ¶  |œ ∩ [0, n]| / |Ù ∩ [0, n]| = 0. 
 
Discussion: "However, you cannot conclude that there are 0 as many primes as there are natural 
numbers." [Gus Gassmann in "Why?", sci.logic (19 Jan 2021)] My reply: It does not mean that 
there are no prime numbers. Note that LimnØ¶ 1/n = 0 although there is no term zero in the 
sequence and that 0ÿ¶ as well as 0ÿ¡0 are undefined expressions.  
 
Discussion: "You are talking about density not quantity." [Ben Bacarisse in "A 'conversation'?", 
sci.math (19 Jan 2021)] My reply: Density times length means quantity. 
 
Discussion: "In the limit?" [Ben Bacarisse, loc cit] My reply: For every finite interval! The 
infinite interval is nothing more than the union of all finite intervals. There is nothing else 
definable remaining beyond all intervals (0, n]. There is no chance for the even numbers to catch 
up. Note also that each of the infinitely many intervals (n, n+2] contains two natural numbers and 
only one even natural number. 

https://groups.google.com/g/sci.math/c/_daKAfgeLOw
https://groups.google.com/g/sci.math/c/_daKAfgeLOw
https://groups.google.com/g/sci.logic/c/HmeTnw-Ffwg/m/CFbhh29zAAAJ
https://groups.google.com/g/sci.math/c/90f1xwUbZus
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 ArithmoGeometry 
 
In ArithmoGeometry (not to be confused with an arithmetico-geometric sequence) digits, letters, 
or other symbols are used to construct geometric figures. ArithmoGeometry serves mainly to 
prove that there does not exist ¡0 as a "constant quantum, fixed in itself, but beyond all finite 
magnitudes" [Cantor, p. 374] but only the improper limit ¶ which merely indicates infinite, i.e., 
never ending growth. [WM: "ArithmoGeometrie", de.sci.mathematik (25 Jun 2015)] 
 
 
 Asymmetry in the limit 
 
The arithmogeometric figure formed by the sequence 
 
 0.1 
 0.11 
 0.111 
 0.1111 
 ... 
 
has ¡0 rows because, according to set theory, the union of rows has ¡0 elements. But the figure 
has definitely not ¡0 columns, since the limit 0.111... with ¡0 digits is not contained in any of the 
¡0 rows (indexed by the number of digits 1). So the set theoretical limit of the sequence of 
triangles with equal height and width (which is explicitly defined as nothing else but the union of 
the finite triangles, i.e., of ordered sets (r1, r2, r3, ..., rn) of finite rows rn) 
 
 0.1 , 0.1 , 0.1 , 0.1 ,    ... = r1 , r1 , r1 , r1 , ... 
   0.11  0.11  0.11                         r2  r2  r2    
     0.111  0.111       r3  r3 
       0.1111         r4 
 
has not this symmetry in number of rows and number of columns. In this limit the height is 
greater than the width. (Analysis would preserve symmetry, namely ¶ rows and ¶ columns.) 
     
According to set theory all infinite arithmogeometric figures like 
 
 1  1    a  Ë 
 12 or 1, 2   or bb or ËË 
 123  1, 2, 3    ccc  ËËË 
 1234  1, 2, 3, 4   dddd  ËËËË 
 ...   ...   ...  ... 
 
contain ¡0 finite rows (like Ù has ¡0 finite elements) since all rows form a completed set without 
a largest element that is bounded by the smallest transfinite cardinal number ¡0. By the same 
argument however these figures should also contain ¡0 columns. This is a contradiction since the 
length of each row is independent of the total number of rows. The rows do not support each 
other in accomplishing ¡0 columns together. And Ù has no infinite number.  

https://groups.google.com/g/de.sci.mathematik/c/afD77cx44Lk/m/FA35RgI9B3wJ
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 Two different limits of one and the same sequence 
 
The following sequence of arithmogeometric triangles has been constructed by appending finite 
rows below the foregoing rows: 
 
 1 , 1 , 1 , 1         ,    ... . 
   2, 1  2, 1  2, 1 
     3, 2, 1  3, 2, 1 
       4, 3, 2, 1 
   
It has, according to set theory, a limit which is defined as the union, namely ¡0 natural numbers 
in every column but, by definition, not ¡0 natural numbers in any row. 
 
The following sequence of arithmogeometric triangles has been constructed by prepending finite 
columns to the left-hand side of the foregoing columns: 
 
 1 , 1 , 1 , 1         ,  ... . 
   2, 1  2, 1  2, 1 
     3, 2, 1  3, 2, 1 
       4, 3, 2, 1 
   
It has, according to set theory, a limit which is defined as the union, namely ¡0 natural numbers 
in every row but, by definition, not ¡0 natural numbers in any column. 
 
Unless we say how the construction has to be performed, both sequences are identical up to every 
finite step. It is impossible to find the limit. This proves that the results of set theory depend on 
what we intend to do but not on what we write. – This is another proof that set theory cannot be 
in accordance with mathematics which is independent of what we intend to do but depends only 
on what is written. [WM: "Set theory depends on what we intend to do and not on what we do.", 
sci.math (28 Mar 2015)] 
 
 
 
 The rotating triangle 
 
This asymmetry does not only disqualify set theory from every scientific application, but offers 
itself to being contradicted by an arithmogeometric method: It would be completely unclear, what 
side of the infinite triangle is the first one to finish infinity ¡0, when adding the terms of the 
sequence a, bb, ccc, dddd, eeeee, ... in a rotating manner: 
 
        d  d  
      c  dc  dc 
 a , a  , ac  , dac , dac ,  ... 
   bb  bbc  dbbc   dbbc 
         eeeee 
for example 

https://groups.google.com/g/sci.math/c/jdGdPXiSr84/m/Xvu0hLj5sh4J
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7  
76  
746  
7436  
74136  
742236  
7555556  
8 ... . 

 
1 is added in step 1, 22 is added in step 2, 333 is added in step 3, ..., nnn...n is added in step n, ... 
There is no edge added with ¡0 symbols. Alas height and width are claimed to have ¡0 symbols. 
[WM: "Das Kalenderblatt 120411", de.sci.mathematik (10 Apr 2012). WM: "Matheology § 170", 
sci.logic (4 Dec 2012)] 
 
 
 
 The alternating triangle 
 
It is not even necessary to add strings on all three sides of the triangle. The sequence of numbers 
(arrays of digits) 1, 22, 333, 4444, 55555, ... is used alternatingly in horizontal and vertical order 
to construct an infinite sequence of arithmogeometric triangles. The first number, 1, remains in 
the origin of the coordinate system:  
 
         5 
     3  3  53 
 1 , 1 , 31  , 31 , 531 , ... . 
   22  322  322  5322 
       4444  54444 
 
Since there are infinitely many rows, there must be infinitely many digits in every column. But 
that is excluded by the always finite arrays of digits added in vertical direction. Since there are 
infinitely many columns, there must be infinitely many digits in every row. But that is excluded 
by the always finite arrays of digits added in horizontal direction. Height and width of the 
triangle remain always finite by definition. 
  
The terms consist of two components, each of which does not raise a contradiction when seen as 
a single triangle. The fifth term, for instance, is decomposed into the two separate triangles 
 

5  
53  
531  and  
53    22 
5   4444 . 
 

[WM: "ArithmoGeometrie", de.sci.mathematik (25 Jun 2015)] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/%22Das$20Kalenderblatt$20120411%22/de.sci.mathematik/T5VI39K6PiE/rEwhjRhyWhYJ
https://groups.google.com/g/sci.logic/c/W0qw_EQBguc/m/P1oapBSh4WsJ
https://groups.google.com/g/de.sci.mathematik/c/afD77cx44Lk/m/FA35RgI9B3wJ
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 The square 
 
The sequence (Dn) of arithmogeometric triangles defined on ÙäÙ with Dn defined by 
 
 Dn(x, y) = y   for   0 < x § n   and   x § y § n   
 
 ...  

4444 
333  
22  
1  

 
contains in its rows the arrays of digits 1, 22, 333, ... that can be interpreted as natural numbers. 
According to set theory, every infinite subset of natural numbers has cardinality ¡0. Therefore the 
limit of this sequence has height ¡0 rows whereas no row has ¡0 digits. 
 
The sequence (En) of arithmogeometric triangles defined on ÙäÙ with En defined by 
 
 En(x, y) = x   for   0 < y § n   and   y § x § n 
 
       4 ... 
     34 ...  
   234 ...  
 1234 ...  
 
contains in its columns the arrays 1, 22, 333, ... that can be interpreted as natural numbers too. In 
set theory the limit of this sequence has width ¡0 columns whereas no column has ¡0 digits.  
 
Both sequences of triangles pasted together give a sequence of squares (the diagonal is covered 
twice which does not matter).  
 

...  
4444 ...  
3334 ...  
2234 ...  
1234 ... . 

 
What about ¡0 in the limit figure? 
 
Remark: After digit 9 always continue with digit 1 or use only the digits 1 and 2:  
 

...  
2222 ...  
1112 ...  
2212 ...  
1212 ... . 
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Another model of the same principle is this 
 
 1  
 12  
 123  
 1234 
 ...  
 
which together with the complementary triangle yields the square 
 

1111 ...  
1222 ...  
1233 ...  
1234 ...  
... . 

 
[WM: "Der kürzeste Beweis", de.sci.mathematik (28 Jul 2015)] 
 
 
 A trijection 
 
Definition: A ternary relation on three sets A, B, and C which is pairwise surjective and injective 
is called a trijection. The trijection is a set of triples (ai, bi, ci) where ai œ A, bi œ B, and ci œ C. 
 
Consider the following infinite matrix M = (mij) 
 

1 1 1 1 1 1 1 1 ...  
1 1 0 0 0 0 0 0 ...  
1 1 1 0 0 0 0 0 ...  
1 1 1 1 0 0 0 0 ...  
... . 

 
For all i œ Ù there is a trijection between the initial segments of the first column, the diagonal, 
and the first row  
 
 (m11, ..., mi1) ¨ (m11, ..., mii) ¨ (m11, ..., m1i) 
 
such that all elements belonging to an initial segment of column, diagonal, and row are 1's. But 
there is no such trijection for all i with 1 < i œ Ù between the first column, the diagonal and the 
ith row 
 
 (m11, ..., mi1) ¨ (m11, ..., mii) ¨ (mn1, ..., mni) 
 
because there is no row (except the first one) with |Ù| 1's. The diagonal gets its |Ù| digits from |Ù| 
rows none of which has |Ù| digits. The question is how this can be understood geometrically? 
[WM: "A problem of set geometry", sci.math.research (25 Jul 2007)] 

https://groups.google.com/g/de.sci.mathematik/c/HlxYYB8qLeA/m/akGT5lx6DwAJ
https://groups.google.com/forum/#!searchin/sci.math.research/A$20problem$20of$20set$20geometry/sci.math.research/htAev12CXhg/MK1w7vZnW4gJ
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 Gravity effects detected in transfinite set theory 
 
The difference between potential and actual infinity can even be photographed: Infinity, to find 
use in set theory, must split off. The following pictures of a movie of an ever-expanding square 
were taken to show this for the first time (alas the camera got defective in the decisive phase):  
 

 o  , oo , ooo , oooo  , ... . 
   oo  ooo   oooo 
     ooo   oooo  
       oooo 

 
For each finite square we find height = width. For the infinite figure however, height > width, 
namely a complete or finished infinite sequence of ¡0 finite strings. [WM: "Das Kalenderblatt 
120406", de.sci.mathematik (5 Apr 2012)] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/%22Das$20Kalenderblatt$20120406%22%7Csort:relevance/de.sci.mathematik/NM5-L78UsBA/DgXuF0s__bsJ
https://groups.google.com/forum/#!searchin/de.sci.mathematik/%22Das$20Kalenderblatt$20120406%22%7Csort:relevance/de.sci.mathematik/NM5-L78UsBA/DgXuF0s__bsJ
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 Supertasks 
 
The noblest property of the sequence of natural numbers is its susceptibility to being interrupted 
and reversed at every desired position. Therefore every enumeration of an infinite set is a 
supertask already (Cantor talks about assignment processes and procedures), yet this notion is 
usually reserved for processes covered by the keyword Tristram Shandy (cp. section 3.3). We 
will stick to this habit. See also section "Different limits in set theory and analysis". 
 
In the present section we will learn about some nonsensical results of supertasks. But with respect 
to relativity theory we can transfer the events from the time axis to the real axis and vice versa. 
This emphasizes that bijections between infinite sets are supertasks too. [WM: "The impossibility 
of a supertask on the time axis shows ...", sci.math (24 Feb 2017)] 
 
 
 
 Scrooge McDuck 
 
Every day Scrooge McDuck earns 10 enumerated dollars and returns 1 enumerated dollar. If he 
happens to return the right numbers, he will get unmeasurably rich. If he happens to return the 
wrong numbers, he will go bankrupt. If he always returns the smallest number, the set theoretic 
limit of the sequence of his possessions Sn at step n is the empty set since CardLimnØ¶ Sn = 0. On 
the other hand his richness grows by $9 per step, such that LimnØ¶ CardSn = ¡0. What is the 
correct result? None – because actual infinity is not available. But the limit is never the empty set. 
If McDuck gives away always the largest number then his wealth would grow constantly. And if 
he gives away randomly chosen numbers, then the answer is unknown. Anyhow, a result 
depending on the labels cannot have any scientific relevance. In mathematics, there is only the 
improper limit: Scrooge McDuck's richness grows without bound but is never infinite. [WM: "§ 
514 Survey among mathematicians", sci.math (29 May 2014)] 
 
 
 
 The solution of McDuck's paradox 
 
This is a step-by-step procedure, a construction, and every received dollar is returned. 
 
Considered in potential infinity there is no "all", neither of dollars nor of steps.  
For every n in Ù: The dollars 1 to n are returned. Every n belongs to a finite initial segment which 
is followed by a potential infinity of others. No contradiction appears. But potential infinity 
disallows to prove equinumerosity of received and returned dollars by bijections. 
 
Considered in actual infinity, there are all dollars but also all steps. 
Ë All dollars are received and returned. 
Ë All steps are not sufficient for that task, because for all n in Ù: after step n there are 9n dollars 
not returned. Therefore the set of not returned dollars is not empty. Transactions are only possible 
at finite steps n. There is no action possible "between all n and ω". So, even if "the cardinality 
function is not continuous", there is a contradiction with an empty set of not returned dollars. 
 

https://groups.google.com/forum/#!topic/sci.math/7ASlsqSP-Xs
https://groups.google.com/forum/#!topic/sci.math/7ASlsqSP-Xs
https://groups.google.com/g/sci.math/c/vZJHTzGhiXA/m/qgU_R-LaqnEJ
https://groups.google.com/g/sci.math/c/vZJHTzGhiXA/m/qgU_R-LaqnEJ
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In most concentrated form: 
Ë McDuck's wealth Wn = |Sn| can only change with n.  
Ë For every n, Wn is positive and increasing.  
Ë In the limit after all n, W = |{ }|. – Contradiction. 
 
An attempt to save transfinite set theory is to claim that the empty limit set does not mean a state 
after all natural numbers but only indicates that all received dollars are returned some time. This 
explanation fails already because, if interpreted in actual infinity, the failure of completing the 
return at any finite step disproves the complete return.  
 
Another attempt, to argue by the limits of analysis, is besides the point: Let qn = 0.0...01...10... be 
the sequence of rational numbers having digit 1 in kth position if Scrooge McDuck possesses 
dollar note number k at day n. So qn has 9n digits 1, but in the limit of that sequence all these 
digits 1 are gone. Is this a contradiction in the notion of limit? 
 
No. The analytical limit 0 of the sequence (qn) is nothing that the terms qn would "evolve to". It is 
simply a real number that is approximated better and better but is never attained by the terms of 
the potentially infinite sequence. The limit of the number of digits 1 of the qn in mathematics is 
simply the improper limit ¶, i.e., for every number there is a larger one, but never ω or ¡0 is 
reached.  
 
For the sequence of sets things are quite different. There one set Sn is transformed into its 
successor by adding and removing dollars. If their infinity is actual such that it is possible to 
complete the set, but if no dollar remains forever, then the complete loss of all dollars leaves the 
empty set. That is not mathematically possible. There is an infinite supply. 
 
A "limit" with quantized numbers, integers or cardinalities, different from all terms of the 
sequence, is impossible per se. Simple to see in the present case: For every step n there are 
elements. In the "limit" there are none. Contradiction. Mathematically reasonable is only the limit 
limnØ¶ 1/Wn = 0. It does neither require nor prove an actually infinite or complete sequence (Wn). 
 
 
 Donald Duck 
 
Donald Duck will never become as rich as his uncle Scrooge McDuck. If he gets some money, he 
soon spends it, except that he always keeps one dollar as an emergency ration.  
 
He starts with two dollars, spends one, gets another one, spends one, gets another one, and so on, 
forever, since he is a cartoon character. He marks his dollars with felt-tip pen in order to spend 
always the oldest one: {1, 2}, {2}, {2, 3}, {3}, {3, 4}, {4}, ... . 
 
The set-theoretical limit shows which numbers Donald will possess forever. It is the empty set. 
The set-theoretical interpretation of this limit says that Donald will spend all natural numbers. 
(This interpretation is required to prove that all rational numbers or all entries of a Cantor-list 
carry indices. The set of not enumerated rational numbers or entries must be empty.) Fact is 
however, that Donald always keeps a dollar. The set of not spent dollars is not empty by 
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definition. Even the limit cannot be less than 1 $. (Never all rational numbers or all entries of a 
Cantor-list are enumerated (where "never" means never and not "at ω") because there is no "all".)  
 
This solves the apparent contradiction: Set theory proves for every natural number n that the set 
of not spent numbers up to n is empty. But it is also true that every number n belongs to a finite 
initial segment upon which infinitely many further numbers follow. Donald returns every number 
and nevertheless always keeps one, because every number is followed by infinitely many. [WM: 
"Matheology § 515 - Das Paradoxon des Tristram Shandy vereinfacht und verständlich erklärt / 
The paradox of Tristram Shandy simplified and made intelligible", Paperzz.com (30 May 2014)] 
 
 
 
 Daisy Duck 
 
Daisy Duck daily receives and spends her dollar pocket money. If she gets banknotes enumerated 
by natural numbers she will be bankrupt in the limit: {1}, {2}, {3}, ... Ø { }. If she gets always 
the same banknote, say number 1, she will own this banknote in the limit {1}, {1}, {1}, ... Ø {1}. 
But what is the limit result when she gets coins {a}, {b}, {c}, ... where it is unknown whether or 
not a = b, b = c, ...? 
 
 
 
 A merry-go-round 
 
A merry-go-round is a very apt picture of the infinite sequence of natural numbers. If you look at 
it from the side you will see always carousel horses appearing and disappearing – and now and 
then a snow-white elephant1. 
 
If set theory is true, then the sequence of natural numbers {n} has as its limit the empty set. That 
means in the limit all carousel horses including the snow-white elephant will have disappeared. 
 
This limit is needed to "explain" why Scrooge McDuck (see section "Scrooge McDuck") has 
gone bankrupt if he had issued the wrong dollar notes, but not if he had issued other dollar notes 
or if he had decided to run his transactions by coins. Further this limit is needed to "prove" that 
all fractions can be counted and that a complete Cantor-list can be prepared. 
 
Of course never all carousel horses will have escaped your horizons – and also the snow-white 
elephant will persist in returning from time to time. McDuck will never go bankrupt, not even in 
the limit – if a limit exists. Do you really like to trust in a theory that teaches the contrary? [WM: 
"Das Karussell", de.sci.mathematik (7 Mar 2016)] 

                                                 
1 Mit einem Dach und seinem Schatten dreht / sich eine kleine Weile der Bestand / von bunten Pferden, 
alle aus dem Land, / das lange zögert, eh es untergeht. / Zwar manche sind an Wagen angespannt, / doch 
alle haben Mut in ihren Mienen; / ein böser roter Löwe geht mit ihnen / und dann und wann ein weißer 
Elefant. [Rainer Maria Rilke: "Das Karussell", Neue Gedichte (1907)] 

https://paperzz.com/doc/7923233/matheology
https://paperzz.com/doc/7923233/matheology
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Karussell%7Csort:relevance/de.sci.mathematik/E3tdd9uYNAU/mCijYMmSBAAJ


 254

 Not enumerating all positive fractions 
 
All positive fractions 
 
 1/1, 1/2, 1/3, 1/4, ... 
 2/1, 2/2, 2/3, 2/4, ... 
 3/1, 3/2, 3/3, 3/4, ... 
 4/1, 4/2, 4/3, 4/4, ... 
 ... 
 
can be indexed by the Cantor function k = (m + n - 1)(m + n - 2)/2 + m (see p. 28) which attaches 
the index k to the fraction m/n in Cantor's sequence 
 
 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, ... . 
 
Its terms can be represented by matrices. When we attach all indeXes k = 1, 2, 3, ..., for clarity 
represented by X, to the integer fractions m/1, as m/1k=m, and indicate missing indexes by hOles 
O, then we get the matrix M(0) as starting position: 
 
 XOOO... XXOO... XXOO... XXXO...  XXXX... 
 XOOO... OOOO... XOOO... XOOO...  XXXX... 
 XOOO... XOOO... OOOO... OOOO... ... XXXX... 
 XOOO... XOOO... XOOO... OOOO...  XXXX... 
 ...  ...  ...  ...   ... 
   M(0)    M(2)    M(3)    M(4)     M(¶) 
 
M(1) is the same as M(0) because index 1 remains at 1/1. In M(2) index 2 from 2/1 has been 
attached to 1/2. In M(3) index 3 from 3/1 has been attached to 2/1. In M(4) index 4 from 4/1 has 
been attached to 1/3. Successively all fractions of the sequence get indexed. In the limit, denoted 
by M(¶), we see no fraction without index remaining. Note that the only difference to Cantor's 
enumeration is that Cantor does not render account for the source of the indices. 
 
Every X, representing the index k, when taken from its present fraction m/nk, is replaced by the O 
taken from the fraction to be indexed by this k. Its last carrier m/n will be indexed later by another 
index. Important is that, when continuing, no O can leave the matrix as long as any index X 
blocks the only possible drain, i.e., the first column. And if leaving, where should it settle? 
 
As long as indexes are in the drain, no O has left. The presence of all O indicates that almost all 
fractions are not indexed. And after all indexes have been issued and the drain has become free, 
no indexes are available which could index the remaining matrix elements, yet covered by O. 
 
It should go without saying that by rearranging the X of M(0) never a complete covering can be 
realized. Lossless transpositions cannot suffer losses. The limit matrix M(¶) only shows what 
should have happened when all fractions were indexed. Logic proves that this cannot have 
happened by exchanges. The only explanation for finally seeing M(¶) is that there are invisible 
matrix positions, existing already at the start. Obviously by exchanging O and X no O can leave 
the matrix, but the O can disappear by moving without end, from visible to invisible positions. 
[WM: "Cantors erstes Diagonalverfahren", de.sci.mathematik (10 Jan 2022)] 

https://groups.google.com/g/de.sci.mathematik/c/ns9r7Q0OFCg/m/kdzKYNjnAgAJ
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 Enumerating all positive rational numbers as a supertask 
 
Bijections between different infinite sets can lead to paradoxes like that of Tristram Shandy that 
Adolf Fraenkel tells us in order to explain this fundamental feature of set theory (cp. section 3.3). 
This method lies at the basis of the countability-notion. (That's why Fraenkel reports the story.) 
For instance, the enumeration of all positive rational numbers runs as follows: Insert into an urn 
all rationals between 0 and 1 and, if not among them, the rational q1 that we want to count as the 
first one. Then remove q1. Next insert all remaining rationals between 1 and 2 and, if not yet 
inserted, the rational q2 that we want to count as the second one. Then remove q2. Next insert all 
remaining rationals between 2 and 3 and, if not yet inserted, the rational q3 that we want to count 
as the third one. Then remove q3. And so on: Insert all remaining rationals between n - 1 and n 
and, if not yet inserted, the rational qn that we want to count as the nth one. (Up to every step n 
only a finite number n of rationals has been counted. But we insert in every step an infinite 
number of rationals.) According to set theory, all rationals have been counted "in the limit". 
According to mathematics this method fails, as has been shown by the 10-to-1 example in the 
section "Scrooge McDuck". Obviously Fraenkel's 365-to-1 example and Cantor's ¶-to-1 example 
cannot do better. 
 
The error of set theory is the assumption that indexing every positive rational number amounts to 
indexing all positive rational numbers. For infinite sets this assumption fails. There are always 
only finitely many rational numbers indexed whereas infinitely many remain without index. 
[WM: "Matheology § 030", sci. logic (21 Aug 2012)] 
 
 
 
 Not enumerating all positive rational numbers (I) 
 
Cantor's enumeration of the positive rationals –+ (mentioned in a letter to R. Lipschitz on 19 Nov 
1883) is ordered by the ascending sum (a+b) of numerator a and denominator b of q = a/b, and in 
case of equal sum, by ascending numerator a. Since all fractions will repeat themselves infinitely 
often, repetitions will be dropped in enumerating the rational numbers. This yields the sequence 
 

1/1, 
1/2, 2/1,  
1/3, 3/1,  
1/4, 2/3, 3/2, 4/1,          (*) 
1/5, 5/1,  
1/6, 2/5, 3/4, 4/3, 5/2, 6/1, 
... . 

 
It is easy to see that at least half of all fractions of this sequence belong to the first unit interval 
(0, 1]. Therefore, while every positive rational number q gets a natural index n in a finite step of 
this sequence, there remains always a set Sn of positive rational numbers less than n which have 
not got an index less than n 
 

Sn = (Sn-1 » {q | n-1 < q § n}) \ {qn}   with   S1 = {q | 0 < q § 1} \ {q1} . 

https://groups.google.com/g/sci.logic/c/hOHmaYXFOzY/m/jGkINiaZCgAJ
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Since all terms of the sequence (Sn) are infinite, |Sn| = ¶ for "n œ Ù and in the limit. But also the 
geometric measure of connected unit intervals without any indexed rational number below n, so-
called undefiled intervals, is increasing beyond every bound. This is shown by the following  
 
Theorem   For every k œ Ù there is n0 œ Ù such that for n ¥ n0: (n-k, n] Õ Sn .  
 
Proof: Let a(n) be the largest fraction indexed up to n. Up to every n at least half of the natural 
numbers are mapped on fractions of the first unit interval. a(n) is increasing in steps without 
missing any natural, i.e., without gaps. Thus n must be about twice a(n), precisely: n ¥ 2a(n) - 1. 
Examples of largest fraction a(n) up to step n (compare the steps of sequence (*) given above): 
  

a(n) = 1/1   for   n = 1, 2 
a(n) = 2/1   for   n = 3, 4  
a(n) = 3/1   for   n = 5, 6, 7, 8  
a(n) = 4/1   for   n = 9, 10  
a(n) = 5/1   for   n = 11, 12, 13, 14, 15, 16  
a(n) = 6/1   for   n = 17, 18, 19, 20 
... . 

 
Therefore for any n0 ¥ 6 we can take k = n0/2. Then the interval (n0/2, n0] Õ Sn0

. This means, 
there are arbitrarily large sequences of undefiled unit intervals (containing no rational number 
with an index n or less) in the sets Sn. É 
 
Ë Remark: It is easy to find an undefiled interval of length 101000100000000000 or any desired multiple 
in some set Sn and all following sets. Everybody may impartially examine himself whether he is 
willing to believe that nevertheless all rational numbers can become enumerated "in the limit".  
Ë Remark: Cantor does neither assume nor prove that the whole set Ù is used for his enumeration 
(in fact it cannot be proved). Cantor's argument is this: Every natural is used, so none is missing. 
He and most set theorists interpret this without further ado as using all elements of Ù. But every 
natural belongs to a finite initial segment which is followed by infinitely many others. 
Ë Remark: Although more than half of all naturals are mapped on fractions of the first unit 
interval, never (for no n) more than 1/101000100000000000 % of all fractions of this interval will become 
enumerated. In fact it can be proved for every natural number n, that not the least positive interval 
(x, y] of rational numbers is ever enumerated completely or at least for the most part. 
Ë Remark: According to Cantor two sets have the same cardinality if they can be uniquely 
mapped onto each other element by element. That can be excluded in case of natural numbers and 
fractions. In the counting sequence 1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, ..., 1/n, ..., n/1 the 
smallest fraction is 1/n. Between it and 0 there remain infinitely many fractions not uniquely 
mapped. Since this is true for every smallest fraction 1/n it holds for all smallest fractions. Could 
an interval (0, 1/n) really be emptied, then this 1/n would be the very smallest fraction which 
never has been uniquely mapped. In fact, if ¡0 is really a property of sets then the set of fractions 
in (0, 1/n) contains ¡0 fractions which are dark because they will never appear in any mapping. 
[WM: "Consider a tree-structure", sci.math (3 Apr 2015). WM: "The very smallest fraction", 
sci.logic (28 Jan 2021)] 

https://groups.google.com/g/sci.math/c/si8_E7JP6hE/m/vopHYw9g_GAJ
https://groups.google.com/g/sci.logic/c/hjuGhJP9Loo
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 Not enumerating all positive rational numbers (II) 
 
Conditionally convergent series can be reordered with completely different results. This shows 
that there are no infinite sums but only limits. But in bijections like the "complete" enumeration 
of the positive fractions by Cantor's famous sequence 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, ... there are no 
limits at all! If really all fractions are in the sequence, then the sequence can be reordered by 
infinitely many transpositions or by an intentionally defined reordering  as 
 
 1/1, 1/10, 1/100, 1/1000, ..., 1/2, 2/1, 1/3, 2/2, 3/1, ...  
 
which, if all pairs (q, n) are in the original sequence, is one infinite sequence. Then also 1/2 will 
remain in the final sequence at a finite although undefinable place x. Or has x no predecessor? 
That's forbidden by the construction. And if so, why then would 1/2 keep that distance from 1/1? 
[WM: "Why?", sci.logic (4 Feb 2021)] 
 
Ë Remark: Every fraction enumerated by zigzag diagonalization belongs to a small finite triangle. 
The remainder of the infinite matrix, i.e., at least half of all fractions, will never be touched. 
[WM: "Contable is uncountable: The contradiction.", sci.logic (8 Sep 2019)] 
Ë Remark: If the possibility of a bijection proves equinumerosity, why then does the possibility of 
a non-surjective injective mapping from Ù to –, like f(n) = n, not prove different sizes? [WM: 
"Der allerkleinste Bruch", de.sci.mathematik (3 Feb 2021)] 
Ë Remark: The bijection requires clever pairing, i.e., it depends on the choice of labels. This is a 
strictly unscientific procedure because scientific results do never depend on the labelling. [WM: 
"Matheology § 030", sci. logic (4 Jul 2012)] 
 
 
 
 Not enumerating all positive rational numbers (formal proof) 
 
Let j, k, n denote natural numbers and let I be the set of positive real unit intervals (k - 1, k]. 
Further let q1, q2, q3, ... be any enumeration of all (cancelled) positive fractions. Consider the 
sequence (Sn) of sets Sn of such unit intervals Ik = (k - 1, k] which contain one and therefore also 
infinitely many rational numbers not enumerated by j § n: 
 
 Sn = {Ik œ I | k ≤ n ⁄ $q (q œ – … (k - 1, k] ⁄ Ÿ$j ≤ n: q = qj)} 
 
This sequence of sets of unit intervals with the specific property of containing not enumerated 
fractions has the limit limnØ¶ Sn = {Ik | k œ Ù} = I, i.e. in the limit, after having used up all 
natural numbers available, there are all unit intervals containing infinitely many not enumerated 
fractions. The set of intervals with almost all their rationals not enumerated is, according to 
analysis, all intervals. [Claus: "Is this limit of a sequence of sets correct?", MathOverflow (2 Oct 
2015)] 
 
Ë Remark: Sometimes it is claimed that, by some unknown power, "in the limit" all rationals are 
enumerated. But this formal approach has been applied specifically only to intervals having at 
least one not enumerated rational number. Therefore the limit concerns only such intervals. 

https://groups.google.com/g/sci.logic/c/HmeTnw-Ffwg/m/YNV-0JdTBQAJ
https://groups.google.com/g/sci.logic/c/rr-CxvksJ68/m/Ml9EqbDIAwAJ
https://groups.google.com/g/de.sci.mathematik/c/iFtegGkPPew/m/69d-T3nFAQAJ
https://groups.google.com/g/sci.logic/c/hOHmaYXFOzY/m/jGkINiaZCgAJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/MO151002Clausc.html
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 A ZF-compatible conception of infinity 
 
In Cantor's or any other's enumeration of the rational numbers every enumerated rational number 
belongs to a finite initial segment of the sequence. However each finite initial segment is 
followed by infinitely many rational numbers. (Same is true for the natural numbers, but that 
does not prove equinumerosity.) So Cantor's "bijection" is lacking surjectivity in – (and Ù). 
 
Proof: The enumeration occurs, or at least can be analyzed, in steps because the sequence of 
natural numbers is well-ordered and the result of the enumeration can be pursued up to each step. 
For every step n, every unit interval (k-1, k] with k § n is populated by infinitely many rational 
numbers without index and with comparatively few indexed rational numbers only. Since this 
does never change, we can calculate, using analysis, the limit of such unit intervals where nearly 
all rational numbers are missing an index. Assuming we could do all steps n, the result is "all unit 
intervals". This implies the existence of infinitely many rational numbers without index. É 
 
Usually set theorists are not accepting this proof since we cannot determine a rational number 
which never gets an index. This argument is based on an erroneous conception of infinity.  
 
Since every indexed rational number is defined (by its index) each one belongs to a finite initial 
segment of the sequence. The set of defined rational numbers is never infinite. Infinity can only 
be spread out by those rational numbers which are following upon the defined ones. Of course, 
each of these can be defined too. Nevertheless all defined rational numbers belong to a finite set 
which is followed by an infinity of undefined rational numbers. How many of them ever may 
become defined, the situation does never change. It remains so – in infinity.  
 
This conception of infinity satisfies the ZF-axiom of infinity (not the axiom of extensionality 
though) as well as the analytical limit of unit intervals with almost only not enumerated rational 
numbers, avoiding Tristram-Shandy-like paradoxes.  
 
The only possibility to get rid of undefined and not enumerated rational numbers is to switch to 
potential infinity. There the undefined numbers simply do not (yet) exist. [WM: "Perception of 
infinity avoiding paradoxes", sci.math (18 Jan 2017)] 
 
 
 
 Different limits in set theory and analysis 
  
Consider an urn and infinitely many actions performed within one hour (the first one needs 1/2 
hour, the second one 1/4 hour, the third one 1/8 hour, and so on). We fill successively pairs of 
consecutively enumerated marbles into the urn. Between every two steps of filling we remove the 
marble with the lowest number from the urn.  
 

Fill in 1, 2, remove 1.  
Fill in 3, 4, remove 2.  
Fill in 5, 6, remove 3. 
Fill in 7, 8, remove 4. 
Continue over the full hour. 

https://groups.google.com/g/sci.math/c/8y8F9AdboSI/m/GR2u9rA0BQAJ
https://groups.google.com/g/sci.math/c/8y8F9AdboSI/m/GR2u9rA0BQAJ
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According to set theory in the limit the urn is empty, because for every number the time of 
removal can be determined (see section "Set-theoretical limits of sequences of sets"). It is simply 
neglected that always another number is added. So for the set S of numbers residing in the urn we 
obtain  
 

¡0 = limtimeØ1h |S| ∫ |limtimeØ1h S| = |{ }| = 0 . 
 
This prevents any application of set theory to reality although it was Cantor's definite aim to 
apply set theory to reality (cp. the section "Cantor on sciences"). And it prevents any application 
to mathematics too, because in mathematics the sequence of real numbers (constructed from the 
natural numbers in the urn and the natural numbers that have left the urn such that the natural 
numbers contained in the urn are separated by a decimal point from those removed already) is, 
when given in vertical order: 
 

     21.  
       2.1  
   432.1 
     43.21  
 6543.21  
   654.321 

   87654.321 
     8765.4321 

       ... . 
 
For infinitely many exchanges we have a contradiction between set theory and mathematics: Set 
theory yields as the limit the empty urn because for every marble the step can be determined, 
when it is removed. The (improper) analytical limit is ¶.  
 
The above sequence however gets confusing when multi-digit natural numbers are involved. In a 
simpler representation, we abbreviate an odd natural number by 1 and an even natural number by 
2 or, for the sake of simplicity of the continued fraction discussed below, an odd natural number 
by 1 and an even natural number by 0: 
 

      21.         01.  
        2.1           0.1 
    212.1        010.1 
      21.21         01.01 
  2121.21     0101.01 
    212.121      010.101 
21212.121  01010.101 
  2121.2121    0101.0101  
        ...            ... . 

 
The analytical limit of these sequences is ¶ but set theory predicts a limit < 1 because there 
remain no digits in front of the decimal point. 
 
The latter sequence can easily be represented as a continued fraction 
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+
+

0
1

2

3

10 10
10 10

10 10
10 ... .

10
 

 
Since the logarithm is a strictly increasing function of its argument and gives the number of digits 
of rn by [lgrn] + 1, we have a contradiction in that, according to mathematics, there will be a set 
of infinitely many digits on the left-hand side of the decimal point in the limit. The (improper) 
limit is infinite, proved by the proper limit 0 of the sequence of the reciprocals (1/rn): 
 
 Cauchy:    Cantor: 
 
 

=
+

+
+

+

0
1

2

3

1 0
10 10
10 10

10 10
10

10
...

  
>

+
+

+
+

0
1

2

3

1 1
10 10
10 10

10 10
10

10
... .

  

 
Indexing the bits yields 
 
 0211.  
 02.11  

 041302.11  
 0413.0211  
 06150413.0211  
 061504.130211 
 0817061504.130211  
 08170615.04130211  
 ... . 

 
What is the limit of the sequence of the sets of indexes on the left-hand side? What is the limit of 
the decimal numbers? 
 
Consider the simple function 
 
  f(n) = |{1, 2, 3, ..., n}|/|{n+1, n+2, n+3, ...}| = 0, 0, 0, ... . 
 
By analysis the limit is 0. Set theory gives a limit > 1 since the denominator gets exhausted. 
[WM: "Das Kalenderblatt 120410", de.sci.mathematik (9 Apr 2010). W. Mückenheim: "Das 
Paradoxon des Tristram Shandy", HS Augsburg, Forschungsbericht 2012, wmm 
wirtschaftsverlag, Augsburg (2012) pp. 242-244. WM: "Matheology § 030", sci. logic (21 Aug 
2012). W. Mückenheim: "History of the infinite, XII", current lecture] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/%22Das$20Kalenderblatt$20120410%22/de.sci.mathematik/SZA6998OCwE/lPx8_leFO4YJ
https://www.hs-augsburg.de/Binaries/Binary8852/forschungsbericht-2012.pdf
https://www.hs-augsburg.de/Binaries/Binary8852/forschungsbericht-2012.pdf
https://groups.google.com/g/sci.logic/c/hOHmaYXFOzY/m/jGkINiaZCgAJ
https://www.hs-augsburg.de/~mueckenh/HI/HI12.PPT
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 The Manhattan paradox 
 
Approximate the diagonal of the unit square by rectangular stairs of 
equal height and width. Double the number of stairs, i.e., halve their 
size. Repeat this procedure again and again. Then the limit of the 
length of the curve approximating the diagonal is the limit of the 
sequence 2, 2, 2, ..., namely 2. 
 
If however a last term could be obtained such that for every stair 
length and height became zero, represented by a single point, then 
the curve would be the diagonal with total length ◊2. In that case 
never two or more points would lie side by side in horizontal or 
vertical direction.  
 
Then the limit 2 would be false. But of course that case cannot be realized because every 
bisection is followed by another one and the single points are never arrived at in a last step.  
 
Same is true for McDuck (see section "Scrooge McDuck"). If all dollars could be spent, then 
McDuck would have become bankrupt. Then the improper mathematical limit ¶ was wrong.  
 
Conclusion: It is not possible, as set theorists try to suggest, that there are two different limits 
peacefully coexisting. There can be only one limit. And since there is no last step but every 
bisection has a successor, this limit is of course the improper mathematical limit. 
 
Ë Remark: If the limit of the staircase curve was the diagonal, then every fractal would have a 
smooth limit. 
Ë Remark: If the limit ◊2 of the length of the diagonal was reached by bisecting the stairs, then 
the diagonal would consist of limnØ¶ 2n = ¡0 points – not an uncountable number. 
Ë Remark: The staircase curve will be similar to the Cantor set (see 3.11) if the removal of thirds 
is replaced by removing and re-inserting halves. If the Manhattan-limit was the diagonal, then the 
Cantor set would be countable. [WM: "What is a limit?", sci.math (3 Mar 2018). WM: "How to 
correct a wrong mental picture of the limit?", MathematicsEducators.StackExchange (6 Mar 
2018)] 
 

https://groups.google.com/g/sci.math/c/MTDeITKEyqQ/m/j6ukA-ozBgAJ
https://matheducators.stackexchange.com/questions/13745/how-to-correct-a-wrong-mental-picture-of-the-limit
https://matheducators.stackexchange.com/questions/13745/how-to-correct-a-wrong-mental-picture-of-the-limit
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 The real numbers 
 
 What is a real number? 
 
Ë A real number is an algorithm that supplies a potentially infinite sequence of digits (or bits 
etc.). This satisfies the axiom of trichotomy with respect to every rational number.  
Ë A general pointer to a real number is a finite expression (like "2", or "my present net income", 
or "length of the diagonal of the unit square", or "◊3", or "π") which has been related to the real 
number in at least one physical system, usually a dictionary, or a text book, or a letter, or a brain. 
Ë A special pointer to a real number contains the space-time coordinates or other identification 
properties of actual construction schemes for potentially infinite sequences of digits (or bits etc.).  
Ë All algorithms and all pointers belong as elements to the not uncountable set of all finite 
expressions. Therefore any uncountability of the set of real numbers can be excluded. 
[WM: "What is a real number?", sci.math (9 May 2014)] 
 
An irrational number ξ is not determined by its digits, but all other numbers which can be 
determined by their digits can clearly be divided into two sets, namely numbers a œ A smaller 
than ξ and numbers b œ B larger than ξ. No single exception on the number line can be found. 
Therefore ξ must be an interval on the number line that is smaller than every difference between 
any b and any a that can be determined. ξ = (a, b), an interval of length b - a, which is potentially 
infinitely small, but not a point, like 1/n it is never 0. [WM in "Solving the crank problem", 
sci.math (6 Mar 2020)] 
 
 
 Existence of a real number 
 
The existence or presence of a real number falls into one of these categories:  
Ë A number exists if it can be individualized in mathematical discourse such that its numerical 
value can be calculated in principle without any uncertainty.  
Ë A number exists if it can be individualized in mathematical discourse such that its numerical 
value can be calculated in principle with an uncertainty less than any given epsilon.  
Ë A number exists if it cannot be individualized but if there is a proof showing its existence. 
[WM: "What is the meaning of 'to exist' in mathematics?", sci.math (26 Dec 2013)] 
 
 
 Grades of definition 
 
Ë Some real numbers are extremely well defined: The small natural numbers like 3 or 5 can be 
grasped at first glance, even in unary representation. 
Ë A real number is very well defined, if its value (compared with the unit) can be determined 
without any error, like all those rational numbers the representations of which have complexity 
that can be handled by humans or computers. 
Ë A real number is well defined, if its value can be determined in principle with an error as small 
as desired, i.e., the number can in principle be put in trichotomy with every very well defined 
rational number. Irrational numbers with definitions that can be handled by humans or computers 
belong to this class. [WM: "§ 453 Grades of definition", sci.math (22 Mar 2014)] 

https://groups.google.com/g/sci.math/c/-GSsWLUKmyo/m/0kvpX5xNAAAJ
https://groups.google.com/g/sci.math/c/rnEIwEQG7AI/m/WN9ENGqCDQAJ
https://groups.google.com/g/sci.math/c/WcE1oof8bPk/m/qrdrUshXBQ4J
https://groups.google.com/g/sci.math/c/958wzaVwKEo/m/6CYl4guDzwIJ
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 Finite formulas versus listings of strings (I) 
 
If you get a string of information but can't wait until the end-signal is given, how sure can you be 
to know the correct meaning? Not at all! Therefore the following equivalence, usually applied in 
set theory, is wrong because it is obtained by reversion of implication. 
 
 A finite formula defines an infinite string. ‹ An infinite string defines a finite formula.  
 
We can never obtain a finite formula like "1/9", or "0.111...". or "◊2" from an infinite string of 
digits unless we know the last term (which is impossible by definition). Every form of 
information transfer (and what else are strings of digits?) requires an end-of-file signal. Infinite 
strings of digits without a defining formula are therefore unsuitable for mathematical purposes. It 
is impossible to define a real number by an infinite string of digits. A real number like any other 
immaterial object, even non-numbers like the greatest prime number, or the smallest positive 
rational number, or the reversal of the digit sequence of π, or the lifetime of the universe 
measured in seconds can exist only by a finite definition. But it is well known that the set of all 
finite definitions is not uncountable. [WM: "A sequence with different behaviour?", sci.math (5 
Nov 2011). WM: "§ 453 Grades of definition", sci.math (22 Mar 2014)] 
 
 
 
 Finite formulas versus listings of strings (II) 
 
A finite definition D can define an infinite sequence or string S. 
 
 D: f(n) = 1/n 
 
defines the infinite sequence of unit fractions, S = 1, 1/2, 1/3, ..., with limit limnØ¶ f(n) = 0. 
Sometimes simply a series is used as an abbreviated definition of its limit. So the string 0.111..., 
abbreviating the infinite series 1/10 + 1/100 + 1/1000 + ..., is also used to denote its limit 1/9. 
 
But it is impossible to obtain a limit from the terms of an infinite sequence or string. For instance 
we could write "0." and let follow 101000 lines filled with solely the digit 0. (It would obviously 
not be possible to write infinitely many such lines.) The reader could not be sure that zero is 
meant because after the last digit that he sees there could follow an unexpected change. 
 
Usually in set theory the sequence or string S and its finite definition D are understood to be 
equivalent. But in fact we have only 
 
 D fl S . 
 
 The reversal 
 
 S fl D 
 
is simply wrong – a popular logical fallacy. [WM in "Why can no one in sci.math understand my 
simple point?", sci.math (18 Jun 2010)] 

https://groups.google.com/g/sci.math/c/zpW1dA1OrZU/m/EL9NQMrdIi4J
https://groups.google.com/g/sci.math/c/958wzaVwKEo/m/6CYl4guDzwIJ
https://groups.google.com/g/sci.math/c/Osk_dOeN6sk/m/9E8RYfIfBAAJ
https://groups.google.com/g/sci.math/c/Osk_dOeN6sk/m/9E8RYfIfBAAJ


 264

 Decimal representation of real numbers 
 
For computing purposes usually non-negative decimal fractions abbreviated by digit sequences are 
applied. The non-integer part is written as 

1 2 3
1 2 31 2 3 …  := 0. ...

10 10 10 10
.n

n
n

z z z z z z z
∈

= + + +∑    (*) 

 

This representation remains an approximation if the sequence of partial sums does not become 
constant, i.e., unless there exists an index n0 such that zn = 0 for all n ¥ n0. A quasi-strictly1 
monotonically increasing sequence of partial sums cannot contain its limit. This fact concerns 
decimal representations of fractions the denominators of which contain prime factors different 
from 2 or 5 as well as all irrational numbers. 
 
By changing the base, fractions can be represented by eventually constant digit sequences. In the 
ternary system 1/3 has the representation 0.1. A representation of an irrational number by a digit 
sequence however is not feasible – not even by an infinite sequence. Every decimal fraction 
simultaneously defines the finial summand and the common denominator of a rational partial 
sum and therefore not the irrational limit of the sequence which differs from every rational partial 
sum. 
 
Since the digits, even if "all" could be noted and compared, do not define the limit but only the 
infinite sequence of all partial sums, there must exist a unique formula supplying the limit. This 
formula simultaneously supplies every sequence of digits as far as required to determine the 
trichotomy relation with other numbers. Such a formula can be very simple. Already the fraction 
"1/9" or the finite expression "0.111..." (here written with eight symbols) are sufficient to 
determine the infinite string of ones. In other cases more complicated formulas are required, like 
Newton's series for e or Wallis' product for π/2. 
 
Expressions like a1 + a2 + a3 + ... or 0.111... in general are not understood as series but tacitly are 
interpreted as their limits. Therefore a correct notation like 0.111... Ø 1/9 is written without 
further ado as 0.111... = 1/9. This simplifying convention does no harm, neither in computing nor 
in the mathematics based on potential infinity because nobody would expect completeness of the 
terms of a series. If however this completeness is demanded by axioms or assumed because of 
other reasons, then we have to distinguish between the series, i.e., the sequence of partial sums, 
and its limit. Otherwise an irrational number would be identified with an infinite series of 
decimal fractions. 
 
If there are ¡0 digits, then ¡0 digits fail to define a real number. If the digit sequence is only 
potentially infinite, then it cannot define more than a converging sequence of rational intervals. 
[W. Mückenheim: "Mathematik für die ersten Semester", 4th ed., De Gruyter, Berlin (2015) p. 
194f] 

                                                 
1  A sequence like the series (*) increases strictly monotonically, if there is no digit 0. In case the sequence 
contains finite subsequences of digits 0 but never becomes constant, I call the sequence quasi-strictly 
monotonically increasing. 

https://www.degruyter.com/document/doi/10.1515/9783110377347/html


 265

 Sequences and limits 
 
Abstract   Irrational numbers cannot be represented by infinite digit sequences. A digit sequence 
is only an abbreviated notation for an infinite sequence of rational partial sums. Irrational 
numbers are limits of sequences, incommensurable with any grid of decimal fractions. 

 
Introduction   Strictly monotonic sequences do not assume their limit. Rarely the terms of the 
sequence and its limit are confused. But this situation changes dramatically when sequences of 
partial sums of series are involved. It is customary in textbooks to identify the infinite sum over 
all terms of a series and the limit of this series, often called its "sum". 
 
In the following we will see that this is imprecise and point out an important consequence. A limit 
is not defined by the infinite sequence of partial sums because the sequence cannot be given in 
the necessary completeness. Only a finite formula can determine both the terms of the sequence 
of partial sums and the limit as well. 
 
Theorem   A non-terminating series of decimal fractions does not determine a real number. 
Corollary   A non-terminating digit sequence does not determine a real number. 
 
Proof:   The limit of a strictly monotonic sequence is not among its terms. Strictly monotonic 

sequences like (10 )n
n

−
∈  or [1 1/ ]( )n

nn ∈+  or 
!

1
( 10 )

n
k

n
k

−
∈

=
∑  sufficiently show this. None of the 

¡0 indexed terms is equal to the limit 0, e, and Liouville's number L, respectively. 
 
The same distinction has to be observed with series. There must not be a difference in the 
mathematical contents whether the partial sums are written separately like 

 3, 3.1, 3.14, 3.141, 3.1415, ...       (1) 
or are written in one line with interruptions 
 
 (((((3.)1)4)1)5)...         (2) 
 
or without interruptions 
 
 3.1415... .          (3) 
 
The infinite sequence of digits dn is completely exhausted by all terms of the Cauchy-sequence 
of rational partial sums of decimal fractions. The intended meaning as a sequence of rational 

partial sums according to (1) can be expressed also by
0,1,2,...

0 10
n
n

n

d
=
∑ . The infinite sum

0
10

n
n

n

d
∈
∑  given 

by (3) is merely an abbreviation: All partial sums are written in one and the same line without 
adding the limit. The same is expressed by (2) because writing or not writing parentheses here 
must not change the result. In all cases none of the ¡0 decimal fractions is left out. The "sum" of 
the series, i.e., the limit of the Cauchy-sequence of partial sums, is not established by any term 
with natural index n œ Ù. But only all these ¡0 terms are given in equations (1) to (3) as well as 
on the left-hand sides of the following examples whereas the limits are given on the right-hand 
sides: 
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Digits are simply too coarse-grained to represent irrational limits of Cauchy-sequences. To 
represent 1 / 10lim n

n→∞
 by an infinite digit sequence, we would need infinitely many digits 0 

preceding the digit 1. Whereas it is obvious that this is impossible, the infinitely many digits 1 

required for the expansion of 
1 1

1 / 10 1 / 10 1 / 9lim
n

k k

n k k

∞

→∞ = =

= =∑ ∑  are usually swallowed without 

scruples. But it is as obvious that digits 0 and digits 1 do not allow for a different treatment with 
respect to the fact that never infinitely many can precede one of them. This leads us to the often 
asserted double-representation of periodic rationals. "n œ Ù the sum of the nth terms of the two 
complementary sequences  
 
 (1/10n)      =   0.1, 0.01, 0.001, ...  Ø  0 
 (1 - 1/10n) =   0.9, 0.99, 0.999, ...  Ø  1 
        1       =   1 ,    1 ,     1 ,   ...   Ø  1 
 
is 1. Since all ¡0 digits are not sufficient to realize the limit 0 of the first sequence, all ¡0 digits of 
0.999... are not sufficient to realize the limit 1 of the second sequence. Only when explicitly 
taking the limits of the sequences, we get 0 and 1, respectively. For series, taking the limit is 
usually assumed without saying and does not cause mistakes in numerical calculations, but if we 
look at the matter with advisable mathematical precision, we see 
 

 
1 1

9 9 90.999... 1.
10 10 10

lim
n

n k knn k k

∞

→ ∞∈ = =

= ≠ = =∑ ∑ ∑
 

 
The usual proof for 0.999... = 1, namely 10ÿ0.999... = 9.999... = 9 + 0.999... fl 9ÿ0.999... = 9 
holds in the limit only. The series 0.999... is not a number but a sequence of partial sums. Like a 
vector it can be multiplied such that 10ÿ(0.9, 0.99, 0.999, ...) = (9, 9.9, 9.99, ...) but it is 
impossible to isolate one 9 from infinitely many terms. É 
 
Conclusion:   As a result we can state that an infinite digit sequence 0.d1d2d3..., abbreviating an 
infinite sequence of partial sums of decimal fractions, also called an infinite series 

1
( /10 ) /10

n
k n

k n n
k n

d d∈
= ∈

≡∑ ∑ , is not a number (unless eventually becoming constant). 3.1415... for 

example is an abbreviation of a sequence of rational partial sums converging to π. This sequence 
is purely rational although we cannot find a fraction m/n = 3.1415... with a common denominator 
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covering all terms of the sequence. This disadvantage however is shared by sequences like 
(10 )n

n
−

∈  too. We cannot find a fraction with a common denominator covering all terms of the 
sequence all of which are rational with no doubt. 
 
A periodic decimal fraction has as its limit a rational number. A non-periodic decimal fraction 
has as its limit an irrational number. But it is not this number. In case of periodic decimal 
fractions it is possible, by changing the base, to obtain a terminating digit sequence. Irrational 
numbers have no decimal expansion, no representation by digits or bits, not even by infinitely 
many. They are incommensurable with every rational measure expanded by digits or bits. An 
irrational number requires a generating formula F in order to calculate every digit of the infinite 
digit sequence S and in addition to calculate the limit. This formula F may be interpreted as the 
number as well as the limit. It may be involved or as simple as "0.111..." which is a finite formula 
(consisting of eight symbols) allowing to obtain every digit of the sequence converging to 1/9. 
 
The implication F fl S cannot be reversed because without F the sequence S cannot be obtained 
in the completeness required, i.e., including all its terms such that none is missing and undefined. 
 
Consequence:   The mathematical facts discussed above also apply to all infinite sequences of 
digits or bits appearing in the folklore version of Cantor's diagonal argument or in the Binary 
Tree argument. Sequences of digits or bits are never representing irrational numbers let alone 
transcendental numbers. Therefore Cantor's diagonal argument as well as the Binary Tree 
argument do not concern the cardinality of the set of irrational numbers. [W. Mückenheim: 
"Sequences and limits", Advances in Pure Mathematics 5 (2015) pp. 59-61] 
 
 
 
 Sequences and limits (Discussion) 
 
"Once real numbers are introduced (usual means are Dedekind cuts, equivalence classes of 
Cauchy rational sequences, axiom system), the infinite non-recurring decimal fraction notation 
3.14159... is not precise, what are the dots? What is the nth decimal digit?" [János Kurdics in 
Comments of "Sequences and limits", Advances in Pure Mathematics 5 (Jan 2015)] 
 
"The author is mistaken. A digit sequence such as 3.14159... denotes the limit of a sequence of 
partial sums, e.g. the limit of the sequence 3, 3.1, 3.14, 3.141, ... . It does not denote the sequence 
of partial sums itself." [David Radcliffe in Comments of "Sequences and limits", Advances in 
Pure Mathematics 5 (Jan 2015)] "The author is correct. You are mistaken." [John Gabriel, loc cit] 
"There are infinitely many partial sums. Every digit finishes one partial sum. More digits are not 
available." [W. Mückenheim, loc cit] 
 
"0.111... (as a number in decimal system) is not equal to any of its partial sums but, on the 
contrary, is larger than any partial sum, and 1/9 is the only number which is both larger than 
every partial sum and having in every open interval around it contained nearly all partial sums. 
That means that 0.111... is exactly equal to 1/9." [Andreas Leitgeb in "Grundpfeiler der 
Matheologie", de.sci.mathematik (1 Aug 2016)] My reply: 0.111... is all partial sums! 
 

http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=53512#.VMX6LtLF-gQ
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=53512#.VMX6LtLF-gQ
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=53512#.VMX6LtLF-gQ
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=53512#.VMX6LtLF-gQ
http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=53512#.VMX6LtLF-gQ
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
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"The statement 9 10 1i

i

−

∈

⋅ =∑  is not the same as the statement "n œ Ù: 
1

9 10
n
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⋅∑  ≠ 1." [Andreas 

Leitgeb in "Grundpfeiler der Matheologie", de.sci.mathematik (6 Aug 2016)] My reply: The sum 

is over all those n only, for none of which identity is reached. The statement 9 10 1i

i

−

∈

⋅ =∑  is 

wrong. Sequences have no numerical values.  
 
 
 Résumé 
 
Every digit of 0.111... is defining a partial sum differing from 1/9. To claim that the sequence of 
all digits together produces exactly 1/9 means to have two different meanings for the complete 
sequence of ¡0 digits, namely simultaneously denoting the two different objects of mathematics 
 
 Ë the sequence of all partial sums ≠ 1/9 
 Ë the numerical value 1/9.  
 
Nobody would trust in 3.25 = 1 + 1 + 1 + 1 - 1 + 1 - 1 +- ... Why should we trust in π = 3.1415...? 
To write π as a decimal fraction is as impossible as to write 0 as a positive fraction. 
 
A finite or infinite sequence has no numerical value. Every real number is the limit of an infinite 
sequence of rational numbers. (More technically a real number is an equivalence class of limits of 
converging sequences of rational numbers, so-called Cauchy sequences. But that is irrelevant in 
this context.) Some sequences get eventually constant and contain their limit as a term, even as 
many terms. 1.000... contains its limit 1 whereas 0.999... does not contain its limit 1. 
 
A real number is more or less defined, if it can be communicated such that a receiver with more 
or less mathematical knowledge understands more or less the same as the sender. Results of 
calculations that only in principle can be finished belong to this class. 
 
Even Non-numbers can be defined like the greatest prime number or the smallest positive rational 
or the reversal of the digit sequence of π or the lifetime of the universe measured in seconds. 
 
Mathematical objects without definitions, however, cannot exist since all mathematical objects 
by definition have no other form of existence than existence by definition. 
 
 
 Brouwer's ω-sequences 
 
According to Brouwer [L.E.J. Brouwer: "Over de grondslagen der wiskunde", Maas & van 
Suchtelen, Amsterdam (1907) p. 143] we can create infinite sequences of type ω by laws or 
algorithms, for instance given as finite expressions like 0.101010... in binary, 0.444... in decimal, 
or 0.AAA... in hexadecimal notation. In that way also every other rational number can be written. 
A sequence without a generating formula can only be represented extensionally, that is by a 
catalogue or list of terms. But lawless choice sequences will always remain in the state of being 
finite. Irrational numbers in fact are not available as sequences of digits. 

https://groups.google.com/g/de.sci.mathematik/c/DQeuzVK1NLQ/m/zvekKUusAQAJ
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 Undefinable objects of mathematics? 
 
Modern set theorists often react surprised when the distinguishability of all objects of 
mathematics, in particular of all numbers, is demanded as a basic feature of mathematics. But can 
mathematics tolerate objects that in principle, i.e., even in an infinite and eternal universe, could 
not be defined such that they are distinct from all other objects? 
 
The answer of Wikipedia is yes: "A real number is called computable if there exists an algorithm 
that yields its digits. Because there are only countably many algorithms, but an uncountable 
number of reals, almost all real numbers fail to be computable. Moreover, the equality of two 
computable numbers is an undecidable problem. Some constructivists accept the existence of 
only those reals that are computable. The set of definable numbers is broader, but still only 
countable." ["Real number", Wikipedia] This text has obviously been written by mathematicians 
of a generation that has been trained to be attracted by counter-intuitive opinions. 
 
Cantor originally defined: "By a 'set' we understand every collection M of definite well-
distinguished objects m of our visualization or our thinking (which are called the 'elements' of M) 
into a whole." [Cantor, p. 282] Forced by antinomies his fully extensional definition has become 
obsolete. However even the modern axiom of restricted extensionality persists in stating: "Sets 
are completely defined by their elements." But how could sets be defined and distinguished by 
elements that could not? 
 
Note Hilbert's statement: "Working with the infinite can only be secured by the finite." [D. 
Hilbert: "Über das Unendliche", Math. Annalen 95 (1925) p. 190] Well, in the finite every 
mathematical object is definable. What does that mean? Every object that can be applied in 
mathematics must be applied by its finite name (because an object of mathematics has no other 
form of existence). This name, wherever defined, is one of perhaps many definitions of the 
object. A number or finite string of symbols is definable if mathematicians can talk about it.  
 
Cantor defended his invention of transfinite numbers, with respect to the fact that the distinction 
between numbers is their most notable property, by explaining that cardinal numbers satisfy just 
this requirement "because the completed infinite comes in different modifications which are 
distinguishable with utmost sharpness by the so-called 'finite human mind'." [G. Cantor, letter to 
R. Lipschitz (19 Nov 1883)] 
 
"Beyond the finite there exists [...] an infinite stepladder of certain modis the nature of which is 
not finite but infinite, which however like the finite can be determined by definite, well-defined 
numbers distinguishable from each other." [Cantor, p. 176] 
 
The numerical character of all cardinal numbers is not only implied by the generic term 
"number" but also by their trichotomy properties: "Let a and b be any two cardinal numbers, then 
we have either a = b or a < b or a > b." [Cantor, p. 285] 
 
To apply the notion of "cardinality" or "number" requires different elements, i.e., elements that 
are distinct and can be distinguished and well-ordered. Only definable elements can be uniquely 
related to each other. One-to-one mappings require to distinguish each "one". This is stressed by 
Cantor's frequent use of the phrase "element by element", the basic principle of bijection. 

https://en.wikipedia.org/wiki/Real_number
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"If two well-defined manifolds, M and N, can be related completely, element by element, to each 
other [...], then for the following the expression may be permitted that these manifolds have same 
cardinality or that they are equivalent." [Cantor, p. 119]  
 
"Every well-defined set has a definite cardinality; two sets are ascribed the same cardinality if 
they mutually uniquely, element by element, can be mapped onto each other." [Cantor, p. 167] 
 
"Two sets are called 'equivalent' if they mutually uniquely, element by element, can be mapped 
onto each other." [Cantor, pp. 380 & 441] 
 
Note "well-defined" and "element by element".  
 
"[...] the process of assignment resulting from our rule does not halt. [...] in the σth assignment it's 
the turn of the point ϕρ [...] ρ is a number depending on ν, not decreasing while ν is growing, and 
when ν is growing into the infinite also growing beyond all limits." [Cantor, p. 239f]  
 
Note "process of assignment" which excludes undefined steps. Under axiom of choice this 
extrapolation can even be extended to uncountable sets: All well-ordered sets can be compared. 
They have the same cardinal number if they, by preserving their order, can be uniquely mapped 
or counted onto each other. "Therefore all sets are 'countable' in an extended sense, in particular 
all 'continua'." [G. Cantor, letter to R. Dedekind (3 Aug 1899)]  
 
Of course the elements of the sets have to be distinguishable. Richard and Poincaré insisted in the 
countability of all definitions. But: "It is assumed that the system {B} of notions B, which 
possibly have to be used to define real number-individuals, is finite or at most countably infinite. 
This assumption must be an error because otherwise this would imply the wrong theorem: 'the 
continuum of numbers has cardinality ¡0.'" [G. Cantor, letter to D. Hilbert (8 Aug 1906)] 
 
Meanwhile nobody doubts that this theorem is true. And of course its implication is true too. 
 
 
 
 Defined list of all definable real numbers 
 
Assume that — and all its subsets are actually existing. Then also the set of all definable real 
numbers is existing, although remaining unknown. It is countable and has a well-order as a 
sequence or list. It does not matter whether the order of the list is definable. We define lots of real 
numbers like the first prime number to be found in year 2222 or the diagonal number I produced 
this morning. Only that kind of definitions counts because they are finite and thus countable. In 
this very same way the antidiagonal of our example is defined by the following 
 
Definition: Take all subsets of —. One of them contains all definable real numbers. There exists a 
sequential well-ordering of this set. Produce the antidiagonal with the usual provisions.  
 
It does not matter whether or not the list has a definable well-ordering. Every countable set has a 
sequential well-ordering. The above definition yields another defined real number. This is a 
contradiction. Obviously the initial assumption is false. 
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 There is no uncountable set 
 
 On Cantor's first uncountability proof 
 
Implicitly, there is a serious restriction of the proof (cp. section 2.2.2) with respect to the set of 
numbers that it is to be applied to: the complete set of real numbers is required as the manifold 
investigated. If only one of them is removed, the proof fails because just this one could be the 
common limit α¶ = β¶. 
 
Cantor took his result as evidence in favour of the existence and uncountability of the set ” of all 
transcendental numbers which were shortly before discovered by Liouville. Nevertheless his proof 
fails, if applied to the set ” alone. The reason is again, that "any infinite sequence" like α, α', α'', ... 
or β, β', β'', ... need not converge to a transcendental limit. Already the absence of a single number, 
zero for instance, cannot be tolerated, because it is the limit of several sequences. 
 
This situation, however, is the same if only the set – of all rational numbers is considered. 
Therefore both sets, – and ”, have the same status with respect to this uncountability proof. And 
we are not able, based on this very proof, to distinguish between them. 
 
The proof can feign the uncountability of a countable set. If, for instance, the alternating harmonic 
sequence 
 
 ων = (-1)ν/ν Ø 0 
 
is taken as the sequence yielding the intervals (α, β) = (-1, 1/2), (α', β') = (-1/3, 1/4), ..., we find 
that its limit 0 does not belong to the sequence, although everything here is countable. 
 
The alternating harmonic sequence does not, of course, contain all real numbers, but this simple 
example demonstrates that Cantor's first proof is not conclusive. Based upon this proof alone, the 
uncountability of this and every other alternating convergent sequence must be claimed. Only from 
some other information we know their countability (as well as that of –), but how can we exclude 
that some other information, not yet available, in the future will show the countability of ” or —?  
 
Anyhow, the countability properties of an infinite set will not be altered by adding or removing 
one single element. Cantor's first uncountability proof does not apply to the set — \ {r}, with r 
being any real number. This shows its insufficiency. [W. Mückenheim: "On Cantor's important 
proofs", arXiv (2003)] 
 

http://arxiv.org/pdf/math.GM/0306200
http://arxiv.org/pdf/math.GM/0306200
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 A severe inconsistency of set theory 
 
Following basics of set theory are applied: 
 
Ë Mappings between infinite sets can always be completed, such that at least one of the sets is 
exhausted. 
Ë The real numbers can be well ordered. 
Ë The relative positions (Lagenbeziehungen) of real numbers enumerated by a finite set of natural 
numbers can always be determined, in particular the maximum real number below a given limit. 
Ë Between any two real numbers, there exists always a rational number. 
 
For the sake of simplicity this proof is restricted to positive numbers. The extension to all 
numbers is obvious. 
 
Theorem   The set of all positive irrational numbers ◊+ can be mapped into the set of all positive 
rational numbers –+ leading to |◊+| § |–+|. 
  
Proof: Let the sets –+ and ◊+ be well-ordered. Define two sets, one of them containing only the 
number zero, Q = {0}, and the other one being empty, X = { }. Take the first element ξ1 œ ◊+. 
Select the largest rational number q œ Q with q < ξ1 (in the first step, this is obviously q = 0). 
Between two different real numbers like q and ξ1 there is always a rational number, q1 œ –+, with 
q < q1 < ξ1. Transfer ξ1 to the set X and transfer q1 to the set Q. Then choose the next positive 
irrational number, ξ2 œ ◊+, select the largest number q œ Q = {0, q1} with q < ξ2 . There is a 
rational number, q2 œ –+, with q < q2 < ξ2. Transfer ξ2 to the set X and transfer q2 to the set Q. 
Continue until one of the sets –+ or ◊+ is exhausted which, according to the axiom of choice, 
will unavoidably occur. 
 
If the set –+ were exhausted prematurely and no qn remained available to map ξn on it, this proof 
would fail. We would leave the countable domain and could not make use of Cantor's 
"Lagenbeziehung" to select the largest rational number q œ Q with q < ξn. But that cannot occur 
because there is always a rational number between two real numbers. As long as rational numbers 
qn œ –+ are available, the set of pairs (qn, ξn) remains countable and there are also natural 
numbers n available as indices, because all our positive rational numbers have been enumerated 
by natural numbers. Therefore, we do not leave the countable domain and do not need transfinite 
induction. But our mapping process runs until one of the sets is exhausted. By tertium non datur 
this set, if any, can only be ◊+. 
 
The mapping supplies |Q| = |X| at every stage while finally Xfin = ◊+ and Qfin Œ –+. (Qfin even 
must be a proper subset of –+ because there are further rational numbers between every two 
elements of Qfin.) The result |◊+| § |–+| completes the proof. É 
 
[W. Mückenheim: "On the abundance of the irrational numbers", arXiv (2004). W. Mückenheim: 
"A severe inconsistency of transfinite set theory", arXiv (2006)] 
  

http://arxiv.org/ftp/math/papers/0305/0305326.pdf
http://arxiv.org/pdf/math.GM/0408089
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 A severe inconsistency of set theory (Discussion) 
 
A talk with the above contents and headline has been delivered at the annual meeting of the 
German Mathematical Society (DMV), section logic, at Heidelberg (14 Sep 2004). During the 
discussion the question was raised whether the proof requires transfinite induction.  
My reply: Transfinite induction is not required as long as the process occurs in the countable, i.e., 
in the finite domain. This is true as long as rational numbers are available because their set is 
countable. Cantor's enumeration of the rational numbers does not apply transfinite induction. 
 
Another discussion of my proof appeared on Math.StackExchange where probabilityislogic 
asked: "I read this article which seems to provide a rather simple proof showing that the rationals 
have a cardinality at least as big as the irrationals, which would contradict the above paragraph. 
So at least one of the results should be wrong? However I cannot find the fallacy in the reasoning 
in the article –" [probabilityislogic: "Axiom of choice: Can someone explain the fallacy in this 
reasoning?", Math.StackExchange (26 Apr 2011)] 
 
"There is also an error in the proof on page 5, in that when one does an argument like that by 
transfinite induction one has to show that a choice is possible even at limit stages." [Carl 
Mummert, loc cit] 
My reply: As above. There is no transfinity in the domain of natural indices k of qk. 
 
"By assuming that the rationals are not exhausted before the irrationals, the author is already 
assuming the result that is being proved, that the cardinality of the irrationals is no bigger than the 
cardinality of the rationals." [Carl Mummert, loc cit] 
My reply: I do not assume that the rationals are not exhausted, but I use the fact that they are 
dense even after removing any finite set. Since all rationals are said to be countable, I never reach 
"the infinite". 
 
"The author tries to address this lower on page 5, but that argument is only valid if only finitely 
many rationals have been chosen so far in the construction." [Carl Mummert, loc cit] 
My reply: Correct! And this situation does never change.  
 
"Well-order the positive reals. Consider building a set of rationals. For each real in turn, add a 
rational less than (conventional order) the real that has not been added so far. As the rationals are 
dense, this can always be done. This makes a bijection between the reals and the rationals." [Ross 
Millikan, loc cit] 
My reply: Correct. 
 
"He claims that q′ will always exist 'because there is always a rational between any two real 
numbers'. But this assertion is empty: the existence of such a rational does not imply the 
existence of a rational that has not yet been chosen. The author never actually establishes the 
existence of such a q′." [Arturo Magidin, loc cit] 
My reply: This argument is very unapt because all used rationals have been removed from the set 
–+ and have been transferred to the set Q. Since in every step only a finite set of rationals has 
been used, there is always a further rational as required in the set –+. 
 

http://math.stackexchange.com/questions/35198/axiom-of-choice-can-someone-explain-the-fallacy-in-this-reasoning?rq=1
http://math.stackexchange.com/questions/35198/axiom-of-choice-can-someone-explain-the-fallacy-in-this-reasoning?rq=1
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"The idea of exhausting infinite sets is that the process is not finitary, but we describe 'all' the 
steps needed for it to finish, even if by one-step-at-a-time we can never even reach the first limit 
point." [Asaf Karagila, loc cit] 
My reply: This opinion is sensible but is contrary to set theory. Cantor claims exhausting of an 
infinite set in a similar procedure: "It is clear that in this manner definite points of the sequence 
(5) can be assigned to all intervals of the sequence (3). Because of their being dense [...] there are 
infinitely many points of the required relative position, and the mapping process resulting from 
our rule will never come to a halt." [Cantor, p. 239] 
 
"The bijection described in the article will exhaust exactly after ω steps [...]" [Asaf Karagila, loc 
cit] 
My reply: This is amazing, because in the last paragraph above the same author denied that the 
bijection could be completed by one step at a time, contrary to Cantor's claim. 
 
"[...] while you still have at least 2¡0 many steps to go with the irrationals." [Asaf Karagila, loc 
cit] 
My reply: This is simply a claim taken from elsewhere. But an inconsistency is not removed by 
showing that one of the contradictory results is supported by firm belief. 
 
"This is similar to proving that every ordinal number is finite: Start with 0, finite. Then assume n 
is finite therefore n + 1 is finite. Continue until you exhaust the class of ordinal numbers. 
Therefore all ordinals are finite." [Asaf Karagila, loc cit] 
My reply: True. However that does not contradict my proof, but actual infinity. In potential 
infinity always everything is finite. 
 
"This is wrong because eventually we exhaust natural numbers and we find ourselves at the realm 
of infinite ordinals, as we did not specify what is going to happen at the limit stages, this 
induction can (and will) fail at the first limit point – ω." [Asaf Karagila, loc cit] 
My reply: Again, the author contradicts his own argument that infinite sets cannot be exhausted. 
We will never "find ourselves in the realm of infinite ordinals" – other than by delusions. 
 
"There is no need to look at the article to which you refer. It must be wrong, and it is the author's 
job, not yours or mine, to find out where the mistake is." [Gerry Myerson, loc cit] 
My reply: That's why ZFC is also called the theory of Zero Findable Contradictions! 
 
"[...] there are simple proofs of the correct result all over the place. You can read them, and 
understand them, and then you will know which to believe. [...] I do have a problem with 'is the 
author's argument sound?' when you can know that the author's argument can't possibly be 
sound." [Gerry Myerson, loc cit] 
My reply: Again, that's why ZFC is free of contradictions! 
 
"The problem, as Asaf points out, is the limit points. Think about this: given any natural number 
n, there is always an infinite quantity of natural numbers strictly larger than n; but this does not 
mean that we can 'keep picking' natural numbers, one for every real: once we get 'to the limit' (ω), 
we'll be out of natural numbers." [Arturo Magidin, loc cit] 
My reply: Never anybody got to the limit. Here this would mean to run out of rationals. 
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"We can certainly keep picking them 'one-at-a-time', but this induction only gets us to the 
elements of ω, not even to ω itself." [Arturo Magidin, loc cit] 
My reply: If it gets us to all elements of Ù while ω is not reached, then ω will never be reached. 
 
"In transfinite recursion, you also need to say what to do at a step which is neither the first step, 
nor is the 'immediately next step' to any step. ω (the first ordinal that follows all natural numbers) 
is an example of such a step. They are the 'limit ordinals' others have mentioned." [Arturo 
Magidin, loc cit] 
My reply: Since in my proof a limit is not reached, no transfinite induction is required. 
 
"I think that the main mistake he makes is that he doesn't understand the difference between 
standard induction and transfinite induction ..." [N. S., loc cit] 
My reply: I think that the main mistake N. S. makes is that he does not understand that transfinite 
induction is not required as long as there are enumerated rationals. 
 
"He seems to think that well ordered means the set is like the natural numbers..." [N. S., loc cit] 
My reply: As long as only enumerated rationals are used, the set is like the natural numbers. 
 
Recently this proof has been discussed for another time. "'We can say that there are no different 
infinities. If the axiom of choice is abolished, then well-ordering of the continuum and of larger 
sets is impossible, and there is no chance of attributing a cardinal number to those sets. If the 
axiom of choice is maintained then the continuum can be proved countable, also contradicting 
transfinite set theory.' I was just getting comfortable with ω, ω+1, ω2, ω2, ωω [...] Is there really 
only one ∞?" [Michael Tiemann: "W. Mückenheim claims a severe inconsistency of transfinite 
set theory; true?", Math.StackExchange (9 Jul 2015)] 
 
"What Mückenheim claims is wrong. [...] There may be contradictions in set theory, but what 
Mückenheim writes does not expose any." [Daniel Fischer, loc cit] 
My reply: A remarkably void argument. 
 
"You need injectivity to conclude something like that." [Cameron Williams, loc cit] 
My reply: Injectivity is proved in my case by the fact that every irrational number is mapped on 
its own rational number. 
 
"The glaring flaw I found was this [...] In fact, –+ is exhausted first, and so the proof does fail." 
[Tanner Swett, loc cit] 
My reply: Unfortunately the claimed "fact" about the "glaring flaw" has not been supported by 
any argument other than italicizing the "is". Infinite sets never get exhausted step-by-step. 
 
"Perhaps he doesn't understand that an enumeration of the rationals as q(0), q(1), q(2), ... etc 
cannot preserve the arithmetic order." [DanielWainfleet, loc cit] 
My reply: Since I never gave the least indication to assume a preservation of the arithmetic order, 
this statement shows the lack of the critic's comprehension.  
 
The fact that between two irrational numbers always a rational number is tracked down reminds 
of a trident or three-pronged fork. So I call this proof procedure forking. 

http://math.stackexchange.com/questions/1355110/w-m%C3%BCckenheim-claims-a-severe-inconsistency-of-transfinite-set-theory-true
http://math.stackexchange.com/questions/1355110/w-m%C3%BCckenheim-claims-a-severe-inconsistency-of-transfinite-set-theory-true
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 The list of everything 
 
The set of all finite expressions can be written in every finite alphabet, for instance in binaries: 
 

0   or  a 
1     b 
00     aa 
01     ab 
10     ba 
11     bb 
000    aaa 
...     ... . 

 
This is the list of everything containing ¡0 finite expressions. Of course some of its words may 
have different meanings, according to the language applied. (Definitions of languages can be 
found in some later parts of the list.) The only item that is missing is a diagonal word. Therefore 
it is easy to see that an antidiagonal word cannot be constructed. And even if it could, it would 
not mean anything because all meaningful words have to be finite.  
 
The list of everything contains all finite words. Infinite sequences of symbols without a finite 
formula creating them cannot be transmitted and cannot be used in mathematical monologue, 
dialogue, or discourse. The meaning of each word depends on the used language. But since every 
language has to be devised and stored in at least one memory, there are only finitely many 
languages. Therefore the list of all possible meanings is countable. 
 
The list of everything, by enumerating all finite expressions u, maps Ù to the set O of all objects 
o of discourse such that every object o is in the image of infinitely many natural numbers. (Every 
object o can be addressed by infinitely many words u.) This mapping is a surjection Ù to O 
including a surjection from a subset of Ù to the subset — of O, but it is tacitly assumed that a 
bijection Ù ¨ — can be obtained from it because every infinite subset of Ù can be put in 
bijection with Ù. So this mapping can be called a bijection from Ù to —. [WM in "Why worry 
about the axiom of choice?", MathOverflow (4 Jul 2010)] 
 
Sometimes advocates of set theory claim that subsets of countable sets can be uncountable. They 
call them "subcountable". This is in contradiction with set theory: "Every infinite part of a 
countable set constitutes a set that is countable into the infinite." [Cantor, p. 152] 
 
Same holds for distinguishing "countable" and "listable" as opposed to each other because "all 
'definable' (computable) reals cannot be explicitly listed. [...] This is not the same as being 
uncountable." [Peter Webb in "Why can no one in sci.math understand my simple point?", 
sci.math (16 Jun 2010)] "The constructable reals are countable but an enumeration can not be 
constructed (otherwise the diagonal argument would lead to a real that has been constructed)." 
[Dik T. Winter in "Cantor's diagonalization", sci.math (7 Apr 1997)] 
My reply: Contradiction! "Countable" and "listable" or "ordered as a sequence" is the same: 
"Consider any point set M which [...] has the property of being countable such that the points of 
M can be imagined in the form of a sequence". [Cantor, p. 154] "ordering of all algebraic 
numbers in a sequence, their countability". [G. Cantor, letter to R. Dedekind (10 Jan 1882)] 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Why worry.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Why worry.pdf
https://groups.google.com/g/sci.math/c/Osk_dOeN6sk/m/9E8RYfIfBAAJ
https://groups.google.com/forum/#!searchin/sci.math/%22Cantor$27s$20diagonalization%22$201997/sci.math/ZiUaudKBfTw/SteaJPtFCAAJ
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Other advocates of set theory claim that elements can be distinguished and put into an order 
without a possibility to distinguish them: "Labels aren't relevant to distinguishing anything. [...] 
Anonymous elements (even in countable models, where they could be labeled in principle, but 
just don't happen to be in practice) are absolutely key to all kinds of results in this field," [George 
Greene in "Listing rationals", sci.logic (17 Jan 2016)] 
My reply: One of the "results in this field" is the self-contradictory belief that although most 
elements of an uncountable set cannot be identified in any possible language, the position of 
every element can be defined and therefore identified in a well-ordering – called "extended 
sequence" by Cantor: "All sets are therefore 'countable' in an extended sense, in particular all 
'continua'". [Cantor, p. 447] 
 
"Do you tell your poor students that — is not like –+ in this regard – that no one has found a 
successor function for — like my S for –+? If you do admit that no such function is known, do 
your dare to tell them why?" [Ben Bacarisse in "How to apply uncountable alphabets?", sci.logic 
(18 Jan 2019)] 
My reply: Of course, it is not a deep mystery. There is your successor function S for the sequence 
of pairs of natural numbers, and there is my successor function for the sequence of finite 
expressions of letters. There is no successor function for only real numbers because many real 
numbers cannot be expressed by digits. We need words of letters as they are used in other 
circumstances too. 
 
 
 
 Countability of the real numbers 
 
Consider an inertial system1 in an infinite and eternal universe. All rational spatio-temporal 
coordinate quadruples (x, y, z, t) belong to a countable set. Every real number that is thought, 
written, mentioned, or in any other way used as an individual exists in a domain of its own in this 
inertial system. Every domain consists of infinitely many rational coordinate quadruples. Take 
one of those that are in contact with the physical matter carrying the definition of the real number 
and map it onto that real number. Then a countable subset of rational coordinate quadruples 
surjects all instances of real numbers (some of them even more than once) including all 
antidiagonal numbers. This is a "Cantor-list" where the enumerating set Ù is replaced by a 
countable subset of rational coordinate quadruples. Therefore the cardinality of all real numbers 
cannot surpass ¡0. 
 
Of course this argument does not only concern the real numbers but all material and immaterial 
elements of the universe. [WM in "Who's up for a friendly round of debating Cantor's proof?", 
sci.math (23 Aug 2011)] 

                                                 
1 Even a countably infinite set of inertial systems would satisfy the conditions of the argument. 

https://groups.google.com/g/sci.logic/c/D17LnH-JpsU/m/-g79It8nEgAJ
https://groups.google.com/g/sci.logic/c/fv4SuGIbqu4/m/exMr_BNPFQAJ
https://groups.google.com/g/sci.math/c/YWLirLdS4lw/m/Vrma4Bw02x0J
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 Enumerating all real numbers 
 
The assumption that all natural numbers could be exhausted in connection with the wrong idea 
that a real number could be defined by an infinite digit sequence has lead to the diagonal 
argument. But even under these assumptions it is possible to enumerate all real numbers. To 
enumerate sets like all rational numbers or all algebraic numbers requires an intelligent way. To 
show that the real numbers are countable we need an even more sophisticated method. It does not 
lead to a sequence but to a sequence of sequences and therefore to a countable result like ω2. 
 The virtue of this method is that it avoids to squander the natural numbers: The entries of 
the Cantor-list are not enumerated by all natural numbers but by powers of 2. The antidiagonals 
of this list (never more than a countable set) are enumerated by the powers of 3. If a new list is 
created, including these antidiagonals, then its entries are enumerated by the powers of 5 and its 
antidiagonals (never more than a countable set) are enumerated by the powers of 7. This is going 
on, in every step using a new prime number which, according to Euclid, will never get exhausted. 
[WM: "Enumerating of infinite sets requires intelligence", sci.math (18 Jul 2016)] 
 
 
 Enumerating all real numbers (Discussion) 
 
"Uncountable sets result only from the very clumsy way in that set theorists count and enumerate. 
Every antidiagonal and every real number that results from any 'uncountability-proof' belongs to 
a countable set because all proofs can be enumerated. Therefore uncountable sets, if existing 
anywhere, are inaccessible and not provable.  
 In fact it is the assumption that all natural numbers could be exhausted, which leads 
astray. But even under this assumption it would be necessary to enumerate in an intelligent way 
in order to prove countability. An example are the algebraic numbers. Why do set theorists resist 
to enumerate all antidiagonals in an intelligent way?  
 Example: All Cantor-lists can be enumerated. The diagonal of Cantor-list number n is 
enumerated by the nth prime number and the entries are enumerated by powers of the nth prime 
number. Every antidiagonal and every real number that results from any 'uncountability-proof' 
belong to one and the same countable set." [WM: "Enumerating of infinite sets requires 
intelligence", sci.math (17 Jul 2016) & sci.logic (17 Jul 2016)] 
 
"The definition of such a set is obviously impredicative: You have defined a set that contains an 
element that differs from each of its elements." [J. Rennenkampff in "Enumerating of infinite sets 
requires intelligence", sci.logic (17 Jul 2016)] 
 This is an unjustified counter argument as has been noted by the following author too: 
  "That doesn't make the definition impredicative. Impredicativity is more about 
quantifying over a domain that does contain the thing defined. And impredicativity is in any case 
far too complex and irrelevant a notion to be invoking here." [G. Greene in "Enumerating of 
infinite sets requires intelligence", sci.logic (18 Jul 2016)] 
 
"The fact that some one thing belongs to a countable set does not prevent that one thing from 
proving that some 'particular' set is uncountable!" [G. Greene in "Enumerating of infinite sets 
requires intelligence", sci.logic (18 Jul 2016)] 
 "None-the-less WM has presented a contradiction." [graham in "Enumerating of infinite 
sets requires intelligence", sci.logic (19 Jul 2016)] 

https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
https://groups.google.com/forum/#!search/%22Enumerating$20of$20infinite$20sets$20requires$20intelligence%22/sci.logic/udvZZfemwKs/6SY6xXDtCAAJ
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 On Hessenberg's proof (I) 
 
Hessenberg's proof (see section 2.4) fails in infinite infinity. This statement sounds rather strange, 
but it is required to distinguish infinities since Cantor and his disciples have finished infinity. 
 
Hessenberg derives the uncountability of the power set of Ù from the limit-set M of all natural 
numbers which are not in their image-sets. M cannot be enumerated by a natural number n. If M 
is enumerated by n, and if n is not in M, then n belongs to M and must be in M, but then n does 
not belong to M, and so on. 
 
If "all" is replaced by "every" and if we keep in mind that every natural number is succeeded by 
infinitely many natural numbers (and preceded by only finitely many), we get the following 
sequential explanation of the "paradox":  
 
Every set Mk = {n1, n2, ..., nk} containing all natural numbers up to nk, which are not mapped on 
image-sets containing them, can be mapped by any number m not yet used in the (always 
incomplete) mapping. This number m is not in Mk and therefore has to be included as m = nk+1 into 
the set Mk. Doing so we get the set Mk+1 = Mk » {m}. There remain infinitely many further natural 
numbers available to be mapped on Mk+1. Choose one of them, say m'. Of course, m' is not in Mk+1 
and therefore has to be included as m' = nk+2 into Mk+1, such that we get Mk+2 = Mk+1 » {m'}. This 
goes on and on without an end. The mapping is infinite. As long as there is no limit-set M, there 
cannot be a contradiction obtained from not finding a natural number to be mapped on M. [WM: 
"Cantor's theorem", sci.math (May-Jun 2005)] 
 
 
 
 On Hessenberg's proof (II) 
 
We will show that the impossible set does not exist and that the paradox-generating requirement 
cannot be satisfied, even if the mapping is defined between equivalent sets.  
 
Define a bijective mapping from {1, a} on P({1}) = {{ }, {1}}, where a is a symbol but not a 
number. There are merely two bijections possible. The set M of all numbers which are not mapped 
on a set containing them cannot be mapped by a number m although M is in the image of both the 
possible mappings: 
 
 f: 1 Ø {1} and a Ø { }   with Mf = { } . 
 g: 1 Ø { } and a Ø {1}   with Mg = {1} . 
 
Here we have certainly no problem with lacking elements in the domain. Nevertheless 
Hessenberg's condition cannot be satisfied. Both the sets, {Mf, mf, f} and {Mg, mg, g} with m = 1 
the only available number, are impossible sets: 
 
If m = 1 is mapped on {1}, then the set Mf = { } of all numbers which are not mapped on a set 
containing them is the empty set. It cannot be mapped by a number mf because the only number 
has already been mapped otherwise. 

https://groups.google.com/g/sci.math/c/N3RFOPkxoHw/m/NHJsK1aDiw8J
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If m = 1 is mapped on { }, then the set Mg = {1} of all numbers which are not mapped on a set 
containing them is {1}. It cannot be mapped by a number mg because the only number has 
already been mapped otherwise.  
 
Hessenberg's proof does not concern the question whether or not ¡0 < 2¡0. [W. Mückenheim: 
"On Cantor's Theorem", arXiv (2005). W. Mückenheim: "Die Geschichte des Unendlichen", 7th 
ed., Maro, Augsburg (2011) p. 119] 
 
 
 
 On Hessenberg's proof (III) 
 
If the set of all 2¡0 subsets of the natural numbers exists, i.e., if the precondition of Hessenberg's 
proof is satisfied, then one should expect that also all permutations of the natural numbers exist 
and (by the bijection of Ù and –) one should further expect that also all permutations of the 
rational numbers, each rational number indexed by a natural number, exist. Each permutation is a 
well-ordering, and one of them would be the well-ordering of – that is simultaneously the 
ordering by size. This is a contradiction. – Like Hessenberg's assumption. 
 
 
 The halting problem 
 
The construction given in section 2.3.2 does not yield a constructible number. We should put 3 if 
the kth program never outputs a kth digit. That may happen. But in order to find that out, we 
would have to wait infinitely long. This is not a practicable advice. It can be demonstrated by 
paraphrasing "if the kth program never outputs a kth digit" by "as soon as it happens that the 
output does never happen". 
 
Chaitin himself explains the infeasibility of this procedure: 
 "It must be uncomputable, by construction. Nevertheless, as was the case in the Richard 
paradox, it would seem that we gave a procedure for calculating Turing's diagonal real r digit by 
digit. How can this procedure fail? What could possibly go wrong?  
 The answer is this: The only noncomputable step has got to be determining if the kth 
computer program will ever output a kth digit. If we could do that, then we could certainly 
compute the uncomputable real r of {{Sec. 2.3.2}}. 
 In other words, {{Sec. 2.3.2}} actually proves that there can be no algorithm for deciding 
if the kth computer program will ever output a kth digit. 
 And this is a special case of what's called Turing's halting problem. In this particular case, 
the question is whether or not the wait for a kth digit will ever terminate. In the general case, the 
question is whether or not a computer program will ever halt.  
 The algorithmic unsolvability of Turing's halting problem is an extremely fundamental 
meta-theorem. It's a much stronger result than Gödel's famous 1931 incompleteness theorem. 
Why? Because in Turing's original 1936 paper he immediately points out how to derive 
incompleteness from the halting problem. 
 A formal axiomatic math theory (FAMT) consists of a finite set of axioms and of a finite 
set of rules of inference for deducing the consequences of those axioms. Viewed from a great 

http://arxiv.org/pdf/math.GM/0505648
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
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distance, all that counts is that there is an algorithm for enumerating (or generating) all the 
possible theorems, all the possible consequences of the axioms, one by one, by systematically 
applying the rules of inference in every possible way. This is in fact what's called a breadth-first 
(rather than a depth-first) tree walk, the tree being the tree of all possible deductions.  
 So, argued Turing in 1936, if there were a FAMT that always enabled you to decide 
whether or not a program eventually halts, there would in fact be an algorithm for doing so. 
You'd just run through all possible proofs until you find a proof that the program halts or you find 
a proof that it never halts. 
 So uncomputability is much more fundamental than incompleteness. Incompleteness is an 
immediate corollary of uncomputability. But uncomputability is not a corollary of 
incompleteness. The concept of incompleteness does not contain the concept of 
uncomputability." [Gregory Chaitin: "How real are real numbers?", arXiv (2004)] 
 
The key to the halting problem as well as to Hessenberg's argument is this: There is no complete 
enumeration of all computable sequences and there is no complete set of natural numbers which 
are mapped on subsets not containing them because there is no completeness at all in infinity. 
Neither Turing's complete sequence of computable sequences nor Hessenberg's complete 
mapping from Ù to P(Ù) are admissible notions in mathematics. Therefore the premises of these 
arguments remain undefined. 
 
 
 
 The divergence proof of the harmonic series by Nicole d'Oresme 
 
Nicole d'Oresme (1323-1382) proved the harmonic series to be divergent. Alas his proof needs to 
sum ¡0 sums in (1/2) + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + ... + 1/16) + ... requiring in 
total 2¡0+1 - 1 = 2¡0 unit fractions. If there were less than 2¡0 natural numbers (or if 2¡0 was larger 
than ¡0), then there would be also less than 2¡0 unit fractions and d'Oresme's proof would fail. 
The harmonic series could not diverge and mathematics would supply wrong results. [W. 
Mückenheim: "The meaning of infinity", arXiv (2004). W. Mückenheim: "Die Geschichte des 
Unendlichen", 7th ed., Maro, Augsburg (2011) p. 118] 
 
This is the same procedure with the terminating binary representations of the rational numbers of 
the unit interval. Each terminating binary representation q = 0.abc...z (including 0) is an element 
out of 2¡0+1 - 1 = 2¡0 elements. 
 

An argument of set theory says that the function 2n "is not continuous at infinity" 
 
 limnØ¶ 2n = ¡0 ≠ 2¡0 . 
 
Therefore ¡0 = limnØ¶ 2n ≠ 2limnØ¶ n = 2¡0 .       (*) 
 
But then, why is |limnØ¶ {1, 2, ..., n}| = |Ù| = ¡0 = limnØ¶ |{1, 2, ..., n}| taken for granted? Why 
is continuity assumed in this case? Couldn't as well |limnØ¶ {1, 2, ..., n}| = 0 ? And what remains 
if in (*) exponentiation is replaced by what it originally abbreviates, namely by repeated 
multiplication: 2ÿ2ÿ2ÿ... ≠ 2ÿ2ÿ2ÿ... ??? 

https://arxiv.org/abs/math/0411418
http://arxiv.org/ftp/math/papers/0403/0403238.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
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 The Binary Tree 
 
The complete infinite Binary Tree contains, as its paths, all infinite bit sequences (ak) with a0 = 0. 
The limits of the related binary series Σ2-kak give all real numbers of the unit interval [0, 1]. 
When the following arguments had been devised, it was generally accepted however that not the 
limits but the related series and therefore the paths of the Binary Tree represent the real numbers. 
[WM: "Has this paradox been known in literature?", MathOverflow (29 Jun 2010)] Meanwhile 
this mistake has been clarified (see section "Sequences and limits"). But also the set of paths is 
uncountable according to Cantor's second uncountability proof (cp. section 2.2.3). This will be 
disproved. 
 
The complete infinite Binary Tree consists of nodes representing bits (binary digits 0 and 1) 
which are indexed by non-negative integers and connected by edges such that every node has two 
and only two child nodes. Node number 2n + 1 is called the left child of node number n, node 
number 2n + 2 is called the right child of node number n. 
 
The set {ak | k œ Ù0} of nodes ak is countable as shown by the indices of the nodes: 
 
 Level           Bits          Nodes 
 

    0              0.               a0.  
            /      \             /      \  
    1          0         1           a1      a2 
        /  \        /  \              /  \        /  \  
    2       0    1     0    1     a3  a4   a5   a6  
      / \   / \    / \   / \       / \    / \   / \   / \  
    3   0 ...               a7 ... . 

 
A path p is a subset of nodes having the indices 
 
 0 œ p 
 n œ p  fl  (2n + 1 œ p  or  2n + 2 œ p  but not both) . 
 
The sets of indices are infinite subsets of Ù0 between (0, 1, 3, 7, ...) of the path always going left 
and (0, 2, 6, 14, ...) of the path always going right. Every path is representing an infinite string of 
bits between 0.000... and 0.111... . The paths are usually denoted by these strings. 
 
The Binary Tree containing only all terminating paths is, as far as nodes and edges are concerned, 
identical with the complete infinite Binary Tree. But how can the paths representing periodic and 
irrational strings be inserted into the Binary Tree to get the complete infinite Binary Tree? Not at 
all! 1/3 for instance has no binary representation (see section "Sequences and limits") but is only 
the limit of the sequence of partial sums 0.01, 0.0101, 0.010101, ..., i.e., the series represented by 
the string 0.010101... related to the path (0., 0, 1, 0, 1, 0, 1, ...). Periodic rational numbers and 
irrational numbers cannot be represented by strings or paths in the complete infinite Binary Tree. 
[WM: "Reactions to/against the Binary Tree", sci.math (24 May 2009)] 
 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Has this.jpg
https://groups.google.com/g/sci.math/c/yRAFHsROF8g/m/aW1a330r-mwJ
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The extended Binary Tree is obtained by extending the ordinary Binary Tree to the upper side: 
 

    ...  
 0 1 0 1  
  \/   \/  
   0  1  
    \ /  
     .  
    / \  
   0  1  
  /\   /\  
 0 1 0 1  
    ... . 

 
The upper side can be understood as indicating the integer part, i.e., the bits in front of the radix 
point. [WM: "Matheology § 222 Back to the roots", sci.logic (13 Mar 2013)] 
 
 
 Equal number of distinguishable paths and nodes 
 
The basic structure is the branching at a node o 
 
    | 
   o 
            /   \  
 
where the number 2 of edges leaving a node is equal to the number of 1 incoming edge plus 1, 
represented by the node itself 
 
 1 + 1 = 2 . 
 
All paths that can be distinguished on a certain level are distinguished by nodes (or edges). 
Therefore the number of distinguishable paths grows with the number of nodes. Every node 
increases the number of distinguishable paths by 1. The number of distinguishable paths is 
identical to the number of nodes + 1. It can be made equal to it by an additional pre-rootnode o: 
 
          Level       o 
          | 
    0       0. 

      /  \  
1    0    1  
   / \    / \  
2  0  1 0  1  

               ... . 
 
The number of incoming distinguishable paths at a level plus the number of nodes on this level is 
the number of distinguishable paths leaving this level. 
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Even "in the infinite", should it exist, a path cannot branch into two paths without a node; the 
branching creates it. Because a node is defined as a branching point, no increase in 
distinguishable paths is possible without the same increase in nodes. 
 
Not necessary to mention, at every level the cross-section of the Binary Tree, i.e., the number of 
nodes at that level, is finite. And, as an upper estimate: even lining up all ¡0 nodes on a single 
level would limit the set of paths to 2¡0. [WM: "Reactions to/against the Binary Tree", sci.math 
(24 May 2009)] 
 
 
 
 Construction of the Binary Tree 
 
A countable set can be constructed by using always half of the remaining time for the next step. 
An uncountable set cannot be constructed such that uncountably many elements can be 
distinguished. So it is possible to construct Ù and with it all its subsets. But these subsets cannot 
be distinguished unless it is indicated which elements are to combine. Therefore we find: 
Ë The Binary Tree can be constructed because it consists of countably many nodes and edges.  
Ë The Binary Tree cannot be constructed because it consists of uncountably many distinct paths. 
[WM: "constructible = unconstructible", sci.math (9 Jun 2010)] 
 
 
 
 Construction by finite (initial segments of) paths 
 
The Binary Tree can be constructed by ¡0 finite initial segments of paths, briefly called finite 
paths. The nth finite path ends at node n (in the following figure indicated by its index): 
 
          Level 0           0  

            /      \  
   1      1         2  
        /  \        /  \  
   2  3    4     5    6 
    / \    / \   / \   / \  

   3        7 ... . 
 
There is no node and no edge missing. There is no path missing, that can be defined by its nodes. 
 
However, the path 0.000... is constructed as soon as all its subpaths (or at least infinitely many) 
have been constructed, for instance using the paths 0.111..., 0.0111..., 0.00111..., ..., since then no 
node of 0.000... is missing. 
 
At each level the number of nodes doubles. We start with the (empty) finite path at level 0 and 
get  
 2n+1 - 1   finite paths within the first n levels. 
 

https://groups.google.com/g/sci.math/c/yRAFHsROF8g/m/aW1a330r-mwJ
https://groups.google.com/g/sci.math/c/lMFHmqT39XU/m/_sFLajnewD4J
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The number of all levels of the Binary Tree is called ¡0 although there is no level number ¡0. But 
mathematics uses only the number of terms of the geometric sequence. That results in 
 
 2¡0+1 - 1 = 2¡0   finite paths within the whole infinite Binary Tree. 
 
The bijection of finite paths with their last nodes proves 2¡0 = ¡0 . [W. Mückenheim: "Physical 
constraints of numbers", Proceedings of the First International Symposium of Mathematics and 
its Connections to the Arts and Sciences, A. Beckmann, C. Michelsen, B. Sriraman (eds.), 
Franzbecker, Berlin (2005) pp. 134-141] 
 
This construction is often presented in form of a (binary or decimal) list, cp. Table 3 in [W. 
Mückenheim: "The meaning of infinity", arXiv (2004)]. Compare also some of the works quoted 
in chapter V. Nearly all proposed enumerations of the set of real numbers are based on potential 
infinity, i.e., on the enumeration of an infinite set of finite strings of bits or digits or letters. 
 
 
 
 Construction by finite initial segments 
 
The complete infinite Binary Tree is the limit of the sequence of its initial segments Bk: 
 
 B0 =  a0 ,     B1 =   a0 ,     B2 =  a0      ,       B3 =  a0      ,  ... ,        Bk =  a0         ,  ... . 

          /               /     \                  /      \       /      \  
         a1       a1     a2            a1       a2            a1       a2  

                      /            /    \     /    \  
                 a3         a3   a4  a5   a6   

                 ...  
                            ... ak 
 
The structure of the Binary Tree excludes that there are any two initial segments, Bk and Bk+1, 
such that Bk+1 contains two complete infinite paths both of which are not contained in Bk. 
Nevertheless the limit of all Bk is the complete Binary Tree including all (allegedly uncountably 
many) infinite paths. Contradiction. There cannot exist more than countably many infinite paths. 
 
Alternative consideration: Obviously every Bk is finite. None does contain any infinite path. The 
infinite paths come into the play only after all Bk with k œ Ù (by some unknown mechanism). 
Therefore they cannot be identified by finite initial segments. If that is possible, however, this 
mechanism can also act in Cantor's diagonal proof such that the diagonal number enters the list 
only after all rows at finite positions. [WM in "How many orders of infinity are there?", 
MathOverflow (27 Jun 2010). WM in "Who's up for a friendly round of debating Cantor's 
proof?", sci. math (17 Aug 2011)] 
 
Remark: This is a splendid example of the ketchup effect (see section "The ketchup effect"). 
 

http://arxiv.org/pdf/math.GM/0505649
http://arxiv.org/pdf/math.GM/0505649
http://arxiv.org/vc/math/papers/0403/0403238v1.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/How many orders.pdf
https://groups.google.com/g/sci.math/c/YWLirLdS4lw/m/jFyYAB4U8UkJ
https://groups.google.com/g/sci.math/c/YWLirLdS4lw/m/jFyYAB4U8UkJ
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 Construction by levels 
 
Every finite Binary Tree Tn with n levels contains less paths than nodes. Down to level n there are 
2n+1 - 1 nodes but only 2n path crossing all n levels. The union (defined as the projection onto 
each other) «Tn = T¶ of all finite Binary Trees Tn covers all levels enumerated by natural 
numbers. With respect to nodes and edges it is identical with the complete infinite Binary Tree T. 
T¶ contains only a countable set of finite paths. But does T¶ contain only finite paths? 
 
The union of all indices of nodes of finite paths is the union of all finite initial segments of 
natural numbers (FISONs): {1} » {1, 2} » {1, 2, 3} » ... » {1, 2, 3, ..., n} » ... = {1, 2, 3, ...}. 
 
This is also the set of all last elements of the FISONs, i.e., it is the set of all natural numbers, the 
set of all indices – there is no one left out. We find for instance that the union of all finite paths of 
T¶ which always turn right, 0.1, 0.11, 0.111, ..., is the infinite path 0.111... . From this we can 
conclude that every infinite path belongs to the union T¶ of all finite Binary Trees. 
 
The union of all finite Binary Trees T¶ and the complete infinite Binary Tree T are identical with 
respect to all nodes, all edges, and all infinite paths (which would already have been implied by 
the identity of nodes and edges). But the set of all infinite paths is countable in the Binary Tree 
T¶ and allegedly uncountable in the same Binary Tree T. [W. Mückenheim: "The infinite in 
sciences and arts", Proceedings of MACAS 2, B. Sriraman, C. Michelsen, A. Beckmann, V. 
Freiman (eds.), Centre for Science and Mathematics Education, University of Southern Denmark, 
Odense (2008) pp. 265-272] 
 
 
 
 Construction by infinite paths 
 
The set of all finite paths (from the root-node to any node) in the complete infinite Binary Tree is 
countable. Therefore the complete infinite Binary Tree has countably many paths that can be 
identified by nodes. 
 
Infinite paths can only be identified by finite descriptions like "always turn left", or "0.111...", or 
"the path which converges to 1/3" or "the path which converges to 1/π". Note however that the 
set of all finite descriptions is a subset of the set of all finite expressions which has countable 
cardinality. Therefore the set of all paths in the complete infinite Binary Tree, as far as they can 
be identified, has countable cardinality too.  
 
Construct the Binary Tree by all finite paths and append an arbitrary infinite tail to each path: 
Ë Construct the Binary Tree by all finite paths that have all bits of 000... appended. 
Ë Construct the Binary Tree by all finite paths that have all bits of 111... appended. 
Ë Construct the Binary Tree by all finite paths that have all bits of 010101... appended. 
Ë Construct the Binary Tree by all finite paths that have all bits of 1/◊2 appended. 
Ë Construct the Binary Tree by all finite paths that have all bits of 1/π appended. 
 

https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
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It is impossible to distinguish the constructed Binary Trees by their nodes and to determine what 
tails have been used or what infinite paths are missing. [WM: "A new view on the Binary Tree", 
sci.math (24 Jan 2015)] 
 
Alternatively: Enumerate all nodes ai of a Binary Tree and map them on infinite paths pi such 
that ai œ pi. There is no further restriction. The mapping need not be injective. Assume there 
exists a path p0 that is not the image of a node. Then p0 would consist of nodes ai only which 
have been mapped on other paths. (Otherwise a node remains that can be mapped on p0.) So we 
get a contradiction: 
Ë p0 is distinct from all path on which its nodes are mapped. 
Ë For all nodes ai of p0: p0 is identical from the root node a0 to node ai with the path that ai is 
mapped on. Therefore no node with finite index serves to identify p0. 
 
If p0 consists only of nodes ai with finite index i, this distinctness assumption is a contradiction. 
 
In order to demonstrate the result vividly, remove the (remaining) nodes of every path that has 
been mapped by a node and construct from them another Binary Tree. Mathematical analysis is 
not able to discern which paths were used to construct the new Binary Tree. Further, since the 
original Binary Tree is void of nodes (cp. section "The power set of Ù is not uncountable"), how 
should further paths in it be defined there? [WM: "Betreff: Matheology § 005", sci.math (12 May 
2012)] 
 
 
 
 Continuity of paths 
 
At every finite level n the number of paths distinguishable there, the so-called cross-section of the 
Binary Tree at that height, is less than ¡0. In the whole tree the number of distinct paths is 
uncountable. How can that fact be reconciled with the continuity of paths? [WM: "Warnung vom 
Meister persönlich", de.sci.mathematik (24 May 2016] 
 
 
 
 Conquer the Binary Tree 
 
Here is a variant of the construction by infinite paths, a game that only can be lost if set theory is 
true: You start with one cent. For a cent you can buy an infinite path of your choice in the Binary 
Tree. For every node covered by this path you will get a cent. For every cent you can buy another 
path of your choice. For every node covered by this path (and not yet covered by previously 
chosen paths) you will get a cent. For every cent you can buy another path. And so on. Since 
there are only countably many nodes yielding as many cents but uncountably many paths 
requiring as many cents, the player will get bankrupt before all paths are conquered. If no player 
gets bankrupt, the number of paths cannot surpass the number of nodes. [Hippasos: "What can we 
learn from the new game CTBT that I devised for my students?", MathOverflow (2 Jul 2010). W. 
Mückenheim: "History of the infinite", HI12.PPT, current lecture] 

https://groups.google.com/g/sci.math/c/kWv1QffnWts/m/yQspjaKy8MUJ
https://groups.google.com/g/sci.math/c/9EuaCvNw92w/m/J6JJgam2PikJ
https://groups.google.com/forum/#!topic/de.sci.mathematik/Ns0KkIyP3_E
https://groups.google.com/forum/#!topic/de.sci.mathematik/Ns0KkIyP3_E
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/What can we learn.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/What can we learn.pdf
https://www.hs-augsburg.de/~mueckenh/HI/
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 Colour the Binary Tree 
 
Assume that every path in a complete infinite Binary Tree represents a real number of the unit 
interval between 0 and 1. Assume that you have a can of red paint and that you can colour an 
infinite path of the tree with one can. Assume further that you get another can of red paint for 
every node that you are colouring for the first time. Then you will first accumulate an infinity of 
cans of red paint, but nevertheless you will not be able to colour all paths, since there are 
uncountably many paths in the tree (and you can win only countably many cans of red paint). So 
there remain uncountably many paths uncoloured in the first run. Start with another colour, say 
green. Also with green paint you will not finish. How many different colours will be required? 
[rainbow: "How many colours are required to colour the tree of real numbers of the unit 
interval?", MathOverflow (3 Jul 2013)] 
 
Discussion: "It sounds like you're painting nodes, in that case you can color all of them red on 
the first try." [François G. Dorais, loc cit] My reply: Nothing remains. Sets are defined by their 
elements only. Cantor's diagonal is defined by its digits only. Paths are defined by their nodes 
only. 
 
Discussion: "You seem to be ignoring the fact that, after you have colored a countable family of 
pathes, say P0, P1, ..., Pn, ..., there may be other paths Q that are not on this countable list but 
have, nevertheless, had all their nodes and edges colored. Perhaps the first node and edge of Q 
were also in P1, the second node and edge of Q were in P2, etc. [...] by choosing the sequence of 
Pn's intelligently, you can, in fact, ensure that this sort of thing happens for every path Q." 
[Andreas Blass, loc cit] My reply: If the second node is in P2 then also the first node is in P2, and 
so on for all n œ Ù – for every path Q of the Binary Tree. No way to get rid of already coloured 
paths by choosing "intelligently"! Here not even the antidiagonal is constructed. 
 
Discussion: "After ω steps, all edges have been colored red. But, of course, only countably many 
paths have been painted. Are you finished or not?" [Gerald Edgar, loc cit] My reply: What part of 
the Binary Tree would remain uncoloured? Nothing that contains or could be defined by nodes. 
 
 
 The power set of Ù is not uncountable 
 
Every path in the Binary Tree represents a subset of Ù: When the node at level n is 1, then let the 
number n be contained in that subset. Otherwise, if the node at level n is 0, then let the number n 
be not contained in that subset. Therefore there are precisely as many subsets of Ù as infinite 
paths in the complete infinite Binary Tree. 
 

    0              *                * 
            /      \             /      \  
    1          0         1          a1       a2  
        /  \        /  \             /   \      /   \  
    2       0    1     0    1    a3   a4 a5   a6  
      / \   / \    / \   / \       / \   / \   / \   / \  
    ...   0 ...               a7 ... . 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/How many colours.pdf
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/How many colours.pdf
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Examples: The path ∗111... represents Ù, the path ∗000... represents «, the path ∗010101... 
represents all even numbers, the path ∗11000... represents the finite initial segment {1, 2}.  
 
In order to carry out the proof in full generality, we enumerate the paths according to the scheme 
on the right-hand side above. Take an arbitrary path through node a1, enumerate it by 1, and 
remove all its nodes. Then take another arbitrary path through node a2, enumerate it by 2, and 
remove all its nodes which have not yet been removed. Repeat this action with all remaining 
nodes ak until all nodes have been removed. This happens after at most countably many steps. 
Therefore at most countably many paths can have been enumerated. 
 
If there are uncountably many paths in the Binary Tree, then most of them must stay in a Binary 
Tree which is void of nodes. 
 
As a counter argument it has been asserted that when removing the sequence of all finite initial 
segments from Ù, i.e., the sequence of paths ∗1000... ∗11000... ∗111000... from the path ∗111..., 
the latter path is not removed. This however would imply, that the sequence of all finite initial 
segments, when put together after having removed it, would not represent Ù whereas Ù remains 
represented by the path ∗111... with no nodes in the original Binary Tree. [WM: "The power set 
of Ù is not uncountable", sci.logic (5 Jun 2016)] 
 
Discussion: This proof cannot be met other than by simply ignoring its consequences: "If you 
replace (as he should have done) 'delete' with 'count' then, obviously, if the rules let you count 
only one path for each node, you are doing nothing of any interest at all." [Ben Bacarisse in "The 
power set of Ù is not uncountable", sci.logic (10 Jun 2016)] or by stating counterfactually: "If all 
nodes of a path have been deleted, that does not mean you ever deleted the path!!! You could 
delete all and only the finite paths from the tree, and that would delete all the nodes, yet you 
would never have deleted any infinite path, and they would all still exist in any case, regardless of 
what had been deleted! [George Greene, loc cit (22 Jul 2016)] My reply: And Elvis is alive too. 
But what kind of existence does he enjoy? To be serious: Even when accepting paths without 
nodes, there cannot be more than paths with nodes. At least one of the latter is needed to define 
one of the former. 
 
 
 
 The wondrous increase of paths 
 
Construct a star such that every rational number of the unit interval has its own infinite bit 
sequence, starting from a common point "*" called root node. There are ¡0 such not overlapping 
sequences or individual paths. 
 
Now put some paths together to build the infinite Binary Tree. Although the number of paths is 
not changed (only some paths are now partially overlapping each other) there are uncountably 
many paths in the end.  
 
Here is a finite visualization. Start with the four paths 0.00, 0.01, 0.10, 0.11. When "*" stands in 
for "0.", we get the star 

https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
https://groups.google.com/g/sci.logic/c/sB_IjPpTeOM/m/10Y2FhOUAwAJ
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              1 
               |            
              0             
               |  
 0 – 1  – ∗  – 0 – 0  from which we construct the Binary Tree       ∗ 
               |              /   \ 
              1           0      1 
               |             /  \    /  \ 
              1         0    1 0    1 . 
 
[WM: "The wondrous increase of paths", sci.math (4 Jul 2016)] 
 
 
 
 Distinguishing paths in the Binary Tree 
 
Definition: Two infinite paths A and B can be distinguished at level n. ‹ There are two different 
nodes, a and b, at level n, such that a is in A and not in B, and b is in B and not in A.  
 
Definition: Two infinite paths A and B are different. ‹ There exists a level n such that A and B 
can be distinguished at level n.  
 
Theorem   There is no level n where uncountably many paths can be distinguished.  
 
Corollary   In the complete infinite Binary Tree at most countably many infinite paths can be 
distinguished.  
 
This does not imply that there exists a level n such that all paths A and B differ at that level. But 
for every pair of paths A and B, there is a level such that A and B have different nodes at that 
level. The simple result is that there cannot be more different paths than different nodes in the 
Binary Tree.  
 
In order to distinguish a path A from another path P, you need a node of P that is not in A. The 
level, where this node can be found, does not matter. But of course, the level must have a finite 
index n, because there are no levels with infinite index ω or larger.  
 
In order to distinguish A from n paths P1, P2, ..., Pn we need n nodes. It cannot be excluded that 
one node a of A is sufficient to distinguish A from all paths P1, P2, ..., Pn, but these are not n 
different paths unless there are nodes that distinguish P1 from P2 to Pn, and P2 from P3 to Pn and 
so on. In total n - 1 nodes are required to distinguish n paths P1, P2, ..., Pn. 
 
In order to distinguish a further path from the former, there is at least one other node necessary. 
However, at most a countable set of nodes is available. [WM: "Something is rotten in 
MathStackExchange", sci. math (23 Oct 2017). WM in "Yet another supertask (Daryl 
McCullough please do not read)", sci. math (2 Jul 2011). WM in "Who's up for a friendly round 
of debating Cantor's proof?", sci. math (17 Aug 2011)] 

https://groups.google.com/forum/#!topic/sci.math/xjdRDsxpXLs
https://groups.google.com/g/sci.math/c/D-7uNU2q2ZE/m/IK7z_iRhBgAJ
https://groups.google.com/g/sci.math/c/D-7uNU2q2ZE/m/IK7z_iRhBgAJ
https://groups.google.com/g/sci.math/c/lt7uHUn5RzA/m/6kFOJmV0CH8J
https://groups.google.com/g/sci.math/c/lt7uHUn5RzA/m/6kFOJmV0CH8J
https://groups.google.com/g/sci.math/c/YWLirLdS4lw/m/jFyYAB4U8UkJ
https://groups.google.com/g/sci.math/c/YWLirLdS4lw/m/jFyYAB4U8UkJ
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 Fractional mapping 
 
Map half of the root node 0 on a path 0.a1... that goes left and the other half on a path 0.a2... that 
goes right. It does not play a role how the chosen paths continue. Further map node a1 on 0.a1... 
and map node a2 on 0.a2... . So each of these paths carries 3/2 nodes. 
 
                  0.                      0.  
    /      \                /      \  
  a1      a2        a1      a2 
                       /  \      /  \  
          a3 a4  a5 a6 
 
Choose arbitrarily four paths starting with 0.a1a3..., 0.a1a4..., 0.a2a5..., 0.a2a6..., respectively, 
crossing the second level. Again it is irrelevant how they continue. Map a quarter of the root node 
and half of the node passed at level 1 and the full node crossed at level 2 on every path. So every 
path carries 7/4 nodes. 
 
Continue such that 2n of the paths crossing level n carry 2 - 2-n nodes each. All paths defined by 
nodes will be included in the limit. Every path will carry 2 nodes if there are terminating nodes. 
Every path will carry one node if there are no terminating nodes. [WM: "Cantor and the binary 
tree", sci.math (8 Jun 2005)] 
 
 
 The lametta tree 
 
Define a tree L that has the 
same nodes as the ordinary 
complete infinite Binary Tree 
T but instead of paths running 
through the nodes let three 
paths or strings begin at 
every node of L without 
crossing any further nodes, 
like lametta, here marked in 
red. 
 
For every n œ Ù the set of lametta strings in L crossing level n is larger than the set of 
distinguishable paths crossing level n in T. The set of lametta strings of L has cardinal number 
3ÿ¡0 = ¡0.  
 
In classical mathematics this means that the lametta strings in L are not less numerous than the 
paths in T – even in the limit. How can set theorists argue that the paths in the ordinary complete 
infinite Binary Tree T become more numerous "in the infinite"? [WM: "Das Kalenderblatt 
091224", de.sci.mathematik (23 Dec 2009). WM: "Consider a tree-structure", sci.math (2 Apr 
2015). WM: "A direct comparison test for the Binary Tree", sci.logic (15 Oct 2017)] 

https://groups.google.com/g/sci.math/c/Mhw-TgVywDA/m/SuQSLR2eLr8J
https://groups.google.com/g/sci.math/c/Mhw-TgVywDA/m/SuQSLR2eLr8J
https://groups.google.com/g/de.sci.mathematik/c/cHSjlc6WFXg/m/5zBSG0u6V1cJ
https://groups.google.com/g/de.sci.mathematik/c/cHSjlc6WFXg/m/5zBSG0u6V1cJ
https://groups.google.com/g/sci.math/c/si8_E7JP6hE/m/vopHYw9g_GAJ
https://groups.google.com/forum/#!topic/sci.logic/cqHui2gw4c4
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 The lametta tree (Discussion) 
 
"Yesterday Otto asked this question in MathOverflow [...] No 'professional mathematician' of 
MathOverflow could answer it. After a while it was migrated to Math.StackExchange and there it 
was immediately deleted. Otto has not acted in any way there, but now he has been suspended in 
Math.StackExchange. [...] So he has been punished, in Math.StackExchange, for applying, in 
MathOverflow, the simple {{direct comparison test}}. Could it be that something is rotten in 
Math.StackExchange?" [Heinrich: "Why has Otto been suspended?", Math.StackExchange meta 
(21 Oct 2017)] (This question was deleted after half an hour without any explanation and 
Heinrich was suspended too by the guardians of matheology. So there is definitively something 
rotten in Math.StackExchange and in the community dominated by set theorists.) 
 
"The number of paths leading from the root to some level is equal to the number of nodes at that 
level, and we already know that the set of nodes is countable. [...] That you draw lines all the way 
to 'infinity' does not help them to have any more to do with counting non-terminating paths than 
nodes do." [Conifold in "What are the 'undefinable numbers' in real analysis and philosophy?", 
Philosophy.StackExchange (20 Oct 2017) deleted by the guardians of matheology] My reply: It is 
not necessary to have "any more to do with counting non-terminating paths than nodes do", and it 
is not a counter argument that "we already know that the set of nodes is countable". 
 
"Limits of continuous functions are not always continuous." [Conifold, loc cit] My reply: First, 
the paths in the Binary Tree and in the lametta tree are as continuous as paths can be. And 
second, a discontinuity could also happen in the enumeration of the rational numbers with the 
result that the set is uncountable. Without any "continuity" all transfinity fails. 
 
"The problem is that an infinite path, such as 01010101… is indistinguishable from a finite path 
(one which eventually is all 0's) at every level. Even though it is eventually distinguishable from 
every given finite path, it is never distinguishable from the whole set of finite paths." [Kimball 
Strong in "Is there any such thing as a mathematical paradox?", Quora (15-19 Oct 2019)] My 
reply: For such paths also the diagonal argument would fail. 
 
"You are claiming that the limit of the number of the paths that can be distinguished at level n is 
the number of all paths. This is intuitively true but does not have mathematical basis." [Kimball 
Strong, loc cit] My reply: I am talking only about paths that can be distinguished by nodes. 
 
"At every level we have more lamettas than nodes in the binary tree. But through each of these 
nodes pass infinitely many paths. Maybe you can {{not}} distinguish them just by looking at the 
nodes but they do exist." [Luís Sequeira, loc cit] My reply: Paths that cannot be distinguished by 
nodes correspond to real numbers that cannot be distinguished by digits in the Cantor-list. 
 
"Unfortunately you have not provided a way of moving this from 'true for all finite' to 'true for 
infinite n', and induction won't take you from 'all finite n' to 'infinite n'." [Peter Webb, loc cit] My 
reply: There is no infinite n. And the same follows for all countability and uncountability proofs. 
 
"So you are going to choose to believe that you have found a simple proof that ZF is inconsistent 
that has somehow been missed for 120 years, and which when other mathematicians accept it will 
mean that you will become one of the most famous mathematicians in history?" [Peter Webb, loc 
cit] My reply: I am not "going to choose" but I have established the result. 

https://philosophy.stackexchange.com/questions/29780/what-are-the-undefinable-numbers-in-real-analysis-and-philosophy
https://www.quora.com/Is-there-any-such-thing-as-a-mathematical-paradox
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 2¡0 paths separated and plugged into the Binary Tree 
 
Two paths, A and B, differ if A contains at least one node that is not in B. Vice versa this 
necessarily implies that B contains at least one node that is not in A. 
 
A bunch of X paths is split into two bunches at their last common node N. What is X at most? 
How many paths can be in a bunch? Not more than there are nodes below N crossed by paths of 
the bunch which can further separate the paths of the bunch. Therefore every bunch can contain 
at most countably many paths which later can be separated. 
 
The sequence N(n) = 2n of nodes N at level n gives us the number of path bunches that can be 
distinguished at level n. The preceding levels are irrelevant for this sake. This sequence has, 
assuming actual infinity of set theory, the limit ¡0. 
 
Two paths are distinguishable if and only if they belong to different path bunches. This limits the 
number of distinguishable paths to ¡0. Note that Cantor's theorem concerns only distinguishable 
paths. Paths which always inhabit the same path bunch are not distinguishable from each other. A 
path bunch splits at a node in two bunches: 1 bunch + 1 node Ø 2 bunches. Therefore the number 
of path bunches cannot surpass the number of nodes. [WM: "Mengenlogik", de.sci.mathematik 
(16 Feb 2006)] 
 
Discussion: "I think the error is that a single node can separate uncountably many different paths, 
and so even though there are only countably many nodes it is possible to have uncountably many 
paths so that any two of the paths are observably different. For example the node (0, 1, 0) 
separates any path starting in (0, 1, 0, 1) from any path starting in (0, 1, 0, 0)." [Carl Mummert in 
"Is even this clear contradiction incomprehensible to set theorists?", MathOverflow (23 Jun 
2018)] My reply: The expression "observably different" is clearly wrong. 
 
Discussion: "Even if 'in the limit' there was only one bunch {{of paths distinguishable}} there 
would still be uncountably many paths."[Ben Bacarisse in "How many different paths can exist in 
the Complete Infinite Binary Tree?", sci.logic (10 Jul 2018)] My reply: This is wrong by 
definition. Two paths can be distinguished if and only if they cross different nodes, i.e., if they 
are contained in different path bunches. 
 
Discussion: "You are apparently trying to appeal to a theorem that says that if an < A for all n 
then lim an § A. This statement is false in the context;" [Jürgen Rennenkampff in "How many 
different paths can exist in the Complete Infinite Binary Tree?", sci.logic (15 Jul 2018)] My 
reply: This statement is never false – wherever mathematics applies. 
 
Discussion: "The pathbunches never get beyond every node. It never happens that the (always 
finite number of) pathbunches split into 2¡0 pathbunches. However, if we posit a time after an 
infinite number of steps, we can say that the split happened. This 'it never happens but it 
happened' is unique to processes with no last step. For a process with no last step, you cannot 
conclude something cannot have happened, because there is no step where it happens." [William 
Hughes in "Can that be?", sci.math (19 Jun 2019)] My reply: No reply. 

https://groups.google.com/g/de.sci.mathematik/c/9zOJUzVwtAo/m/Es9FC7U5JzYJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/set theory - Is even this clear contradiction incomprehensible to set theorists_ - MathOverflow.html
https://groups.google.com/g/sci.logic/c/PGtkEQsUzhg/m/RrnrsbdgBQAJ
https://groups.google.com/g/sci.logic/c/PGtkEQsUzhg/m/RrnrsbdgBQAJ
https://groups.google.com/g/sci.logic/c/PGtkEQsUzhg/m/RrnrsbdgBQAJ
https://groups.google.com/g/sci.logic/c/PGtkEQsUzhg/m/RrnrsbdgBQAJ
https://groups.google.com/g/sci.math/c/A1lB5MXIfAk/m/j-NCR-qyAwAJ
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 Distinguishing three kinds of Binary Trees 
 
Ë The complete infinite Binary Tree of actual infinity is said to contain all real numbers of the 
interval [0, 1) as infinite paths, but this is an error (cp. section "Sequences and limits"). It 
contains all paths that always "do something", for instance always go right or alternate, but real 
numbers like 1/3 or 1/π are only approximated. A simple proof consists in the fact that the Binary 
Tree contains only levels with finite indices, where the paths provably differ from their limits.  
 
Unfortunately the complete infinite Binary Tree cannot be used in full completeness in 
mathematics, because every level-index n belongs to the first percent of all natural numbers. 
(Proof: every n multiplied by 100 is a natural number which follows the same rule; cp. section 
"Failure of universal quantification".)  
 
Ë The potentially infinite Binary Tree contains all levels that can be indexed by 1, 2, 3, and so on 
up to every level n. Every index belongs to a finite initial segment of Ù. Beyond every index 
there is an endless supply of further indices. (As far as the numerical accessibility is concerned, 
the complete infinite Binary Tree has the same extension as the potentially infinite Binary Tree.)  
 
Ë The Binary Tree of MatheRealism contains not more levels than can be indexed by natural 
numbers which can be addressed by the computing system. As soon as the Kolmogorov-
complexity of an index exceeds the computing capacities (memory space) of the used system, 
there is no chance to address that index. So there is a first index which cannot be addressed1. 
Subsequent indices, which may have smaller Kolmogorov-complexity, are useless. Every system 
restricted to the accessible universe has finite computing capacity. [WM: "Three kinds of Binary 
Trees", sci.math (16 Apr 2015)] 
 
 
 Limits and the Binary Tree 
 
The Binary Tree contains paths like 0.010101... converging to 1/3 and paths converging to 
irrational numbers but not these limits themselves. However, there is an exception with limits that 
are fractions with denominator divisible by 2 like 0.1000... or 0.000... . Such numbers possess 
several representations. Consider 0 for instance. Besides being represented by the path 0.000... it 
is the limit of the sequence of paths 0.1t, 0.01t, 0.001t, ... Ø 0,000... where t is an arbitrary tail, 
for instance t = 000..., or t = 111..., or t = 010101..., etc., or a mixture of these. 
 
When we assume that every path can be distinguished from all other paths, then the path 0.000... 
differs from all paths of a sequence like  
 
 0.111..., 0.0111..., 0.00111..., ... .        (S) 
 
That means, when each path of this sequence is completely coloured, then the path 0.000... is not 
yet completely coloured. In other words, it is not possible to colour (or to cover) the Binary Tree 
by different sets of infinite paths. Each and every path is required. 
                                                 
1 One could think that "the first index which cannot be addressed" is just addressed by this very sentence, 
but that is an error because this sentence does not define which natural number n it refers to. 
 

https://groups.google.com/g/sci.math/c/KFuInrw20As/m/cThGNHXDVlMJ
https://groups.google.com/g/sci.math/c/KFuInrw20As/m/cThGNHXDVlMJ
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On the one hand, this is clear, because every path of the sequence (S) has a tail of nodes 
consisting of bits 1 only, while 0.000... does not. Let's call this position A. On the other hand, we 
cannot find a node 0 of the path 0.000... which is not covered by the sequence (S). That means, 
we cannot distinguish the path 0.000... from all other paths of the Binary Tree. We can colour or 
cover the whole Binary Tree by a set U of paths not containing the path 0.000... or by a set V 
containing it. Let's call this position B. 
 
If (A) is correct, then there must be nodes in 0.000... that cannot be found and defined. That 
implies that actual infinity, the complete infinite Binary Tree and its infinite paths do not exist. 
Because nodes that cannot be defined cannot yet exist. They only can "come into being". Or 
alternatively there are dark nodes (cp. section "Dark numbers in the Binary Tree"). 
 
If (B) is correct, then 0.000... cannot be distinguished from all paths of the sequence. That implies 
that in a Cantor-list like the following 
 
 0.1 
 0.01 
 0.001 
 ... 
 
when replacing the diagonal digit 1 by 0, the resulting antidiagonal 0.000... cannot be 
distinguished from all entries. Therefore Cantor's diagonal argument fails in this special case and 
hence always, because it is based on a proof by contradiction which never must fail. 
 
Result: In case (A) only potential infinity exists, or actual infinity containing dark nodes and 
numbers, both not allowing for the construction of an antidiagonal complete enough to define a 
real number. In case (B) actual infinity exists but the construction of an antidiagonal can fail. 
[WM: "Re: Limits and the infinite complete Binary Tree and the contradiction of uncountability", 
sci.math (20 Jan 2017)] 
 
Countability of all paths is also obtained from the fact that every path-end has to emerge from a 
node: There are only ¡0 supply points with two connections each, hence 2¡0 in total. 
 
Evidence for dark numbers is obtained from the fact that every level doubles the nunmber of 
paths which are distinguishable by nodes at that level. If in the limit 2¡0 paths are existing and 
can be distinguished, then, by the continuity of paths, there must be levels where half that many, 
and so on, must be distinct by nodes. Those levels are not visible. [WM: "Neujahrsrätsel: Wer 
erkennt die Pioniere der dunklen Zahlen?", de.sci.mathematik (9 Jan 2023)]    
 
 
 Similar techniques in Cantor's list and in the Binary Tree 
 
Cantor divides the set of all infinite digit sequences of the interval [0, 1) into a countable set A 
and the remainder R. The set A is written in form of a sequence, in plain language called a list. An 
antidiagonal digit sequence d is constructed, such that every digit dn of d differs from the 
corresponding digit of the nth digit sequence of A. So Cantor shows for every n œ Ù that the 
finite initial segment 0.d1d2...dn of d is not identical with the finite initial segment of one of the 

https://groups.google.com/forum/#!topic/sci.math/zr23KJOLDfs
https://groups.google.com/g/de.sci.mathematik/c/AT_So33B-G0
https://groups.google.com/g/de.sci.mathematik/c/AT_So33B-G0
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first n digit sequences of A. This is tantamount to showing that every finite initial segment of d is 
equal to one of the digit sequences of R (or one of the following digit sequences of A; but from 
the proof for all n it is concluded, that all digit sequences following in A can be excluded too, and 
the whole antidiagonal digit sequence d is in R). 
 
If the Binary Tree contains the set of all bit sequences of the interval [0, 1) as its paths, then I 
divide them in a countable set A and the remainder R. The set of paths A is utilized to cover all 
nodes. With every node unavoidably every finite initial segment of every path is covered too. 
That means, it is proved that every finite initial segment of every path is identical with the finite 
initial segment of a path of A. 
 
From the proof for all n it is concluded, that every whole path is in A and therefore the set R is 
empty. Should further paths be assumed to exist, they cannot be distinguished by nodes from the 
paths of A. So the uncountability of the bit sequences represented by those paths could not be 
proved by changing bits with finite indices. 
 
Example: All finite initial segments of the path p = 0.111... are contained in paths of the set 
 

0.1000... 
0.11000... 
0.111000... 
... . 

 
There are never two paths of the covering set A existing such that their union contains a larger 
finite initial segment of p than at least one of them. This means that only one path of A covers all 
finite initial segments of p. [WM: "Das Kalenderblatt 100328", de.sci.mathematik (27 Mar 
2010)] 
 
 
 Equal rights for Cantor-list and Binary Tree! 
 
For every line n of the Cantor-list we see that the antidiagonal is not equal to entry 0.an1an2an3... . 
Simultaneously we can see that the number of infinite paths of the Binary Tree that can be 
distinguished by nodes at level n is finite.  
 
          line entry           level 
 
 1 0.a11a12a13...   1      0  
                                               /   \  
 2 0.a21a22a23...   2    0    1  
                                            /  \   /  \  
 3 0.a31a32a33...   3  0  1  0  1  
 

 ...    ...                          ...               ...  
 
Either both results can be extrapolated to the infinite limit, then uncountability is contradicted by 
the Binary Tree because everywhere only finitely many paths can be distinguished. Or both 

https://groups.google.com/g/de.sci.mathematik/c/qAWfSnIkwfk/m/xJbluecG-bIJ
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results are not acceptable in the infinite limit, then the diagonal argument fails, and there is no 
proof of uncountability. 
 
 
 Quantifier swapping in set theory 
 
For every FISON of the set of FISONs there exists a natural number not contained in that FISON. 
Obviously this easily provable theorem does not allow quantifier swapping resulting in: There 
exists a natural number that is not contained in any FISON. 
 
Precisely this quantifier exchange however is required to "prove" the most impressive result of 
set theory: For every Finite Initial Segment of a given Cantor-List (FISCL) there exists a real 
number not contained in the FISCL. This is easy to show. But then the quantifier swapping 
yields: There exists a real number that is not contained in all FISCL of the given Cantor-list. 
[WM: "Quantifier swapping in set theory", sci.math (23 Oct 2020)] 
 
 
 Hilbert's hotel 
 
Hilbert's infinite hotel is completely filled with guests. But when another guest arrives he is 
accommodated too. Every resident guest is asked to move from room number n to n + 1. Even 
infinitely many guests could get rooms when every resident guest doubles his room number. 
 
But if the new guest carries with him some stolen goods which he hands to the guest leaving 
room no. 1, who in turn hands them to the guest leaving room no. 2, and so on, then the stolen 
goods will disappear although no guest disappears and although every guest has carried them 
carefully. – A miracle. [WM: "Die Mona Lisa in Hilberts Hotel", de.sci.mathematik (27 Apr 
2020)] 
 
Remark: All guests with definable room-numbers may stay in their rooms. Only beyond all 
definable room numbers guests are asked to move. Strange. The infinite is needed only to muddy 
the waters. [WM: "Die achte Erklärung", de.sci.mathematik (22 Dec 2022)] 
 
 
 Hilbert's hotel as a parable of Cantor's list 
 
Between Cantor's list (see section "On the diagonal argument" below) and Hilbert's hotel there is 
only the arbitrary difference that Hilbert's hotel is really infinite, unfinished, extendable whereas 
Cantor's list is not. Two different interpretations of one and the same infinity. 
 
Only that allows to conclude that the antidiagonal, as a new guest differing from all resident 
guests or entries of the list, cannot be inserted, for instance into the first position when every 
other entry moves on by one room number. Without Cantor's arbitrary constraint even all 
infinitely many antidiagonals that ever could be constructed could be accommodated. Cantor's 
theorem would go up in smoke. [WM: "Quantifier swapping in set theory", sci.math (23 Oct 
2020)] 

https://groups.google.com/g/sci.logic/c/Z1EIc_s_STo/m/1YIWuh8nDAAJ
https://groups.google.com/g/de.sci.mathematik/c/hcJdrc_wvRw/m/nKHn-bV0BQAJ
https://groups.google.com/g/de.sci.mathematik/c/bqe9gz6GzfM
https://groups.google.com/g/sci.logic/c/Z1EIc_s_STo/m/1YIWuh8nDAAJ
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 On the diagonal argument 
 
The diagonal argument is one of the most famous proof-techniques. Here we will show how and 
why it fails on several occasions. The most fundamental reason is the lack or darkness of actual 
infinity. Further we have seen already that irrational numbers have no decimal representation, so 
that the diagonal argument does not concern irrational numbers at all and therefore does not 
prove anything about irrational numbers. 
 
Infinite digit sequences without the attached powers of 10 (or another usable base) do not 
converge. With only few exceptions they accidentally jump to and fro and do not assume a limit 
because the trembling does never calm down. But just these sequences are produced by the 
diagonal argument. Cantor, in his original version [G. Cantor: "Über eine elementare Frage der 
Mannigfaltigkeitslehre", Jahresbericht der DMV I (1890-91) pp. 75-78], did not define limits at 
all (see section 2.2.3). Therefore the invention of the rule to avoid antidiagonal numbers with 
periods of nines does merely show a big misunderstanding of facts (cp. section "The nine-
problem"). Of course the string 1,0,0,0,... differs from the string 0,9,9,9,... 
 
Finally: The antidiagonal does not exist but is only constructed. If it had existed during the 
creation of the list, it would have been included, wouldn't it? [WM: "Quantifier swapping in set 
theory", sci.math (24 Oct 2020)] 
 
 
 
 Controversy over Cantor's theory 
 
The diagonal argument is applied to sequences of digits and produces a sequence of digits. But 
digits abbreviate fractions. Fractions are never irrational. The limit of a rational sequence can be 
irrational. But, as already mentioned, the diagonal argument does not concern limits, only 
fractions or digits, each of which belongs to a finite initial segment and is followed by infinitely 
many digits. 
 
From an infinite sequence or listing of digits a limit can never be derived, because always 
infinitely many digits remain unknown. Only from a generating formula the limit can be 
obtained. But such formulas are not subject to the diagonal argument. [WM in "Objection to the 
representations of irrational numbers by digits", Wikipedia (1 Oct 2016)] 
 
 
 
 A simple list  
 
In the following list, every entry contains more digits 1 than its predecessors:  
 

0.0 
0.1 
0.11 
0.111 
... . 

https://groups.google.com/g/sci.logic/c/Z1EIc_s_STo/m/1YIWuh8nDAAJ
https://groups.google.com/g/sci.logic/c/Z1EIc_s_STo/m/1YIWuh8nDAAJ
https://en.wikipedia.org/w/index.php?title=Controversy_over_Cantor%27s_theory&oldid=742083940
https://en.wikipedia.org/w/index.php?title=Controversy_over_Cantor%27s_theory&oldid=742083940
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The limit 0.111... is not in the list. Does it contain more digits than all entries of the list? If yes, 
where are they? If no, then the antidiagonal number (constructed when 0 is replaced by 1) is yet 
contained in the list. [WM: "Dik T. Winter says: Definition: sum{i in N} i = 0", sci.math (9 Jun 
2007)] 
 
After removing all entries with less digits than 0.111... nothing remains. 
 
Of course d = 0.111... is not completed in any enumerated line but only in the infinite – alas there 
it is already welcomed by itself.  
 
The projection of d on the horizontal axis is never complete (that would require a completed 
line). But its projection on the vertical axis is assumed to be complete. And from that part it is 
concluded in reverse that d is complete. Only by this incoherent arguing it is possible for d to 
differ from every line.  
 
Not necessary to mention that in analysis this limit is not created by digits. We have to use finite 
definitions for what we never get by digits. The above list does never reach, create, or complete a 
string of digits without a tail of infinitely many zeros. – And in analysis "never" means never and 
not in the infinite! [Fra Enkel in "Large cardinals and mild extensions", MathOverflow (22 Jul 
2013)] 
 
 
 What digit of 0.111... is not contained in its approximations? 

 
Every number of the following sequence contains more digits 1 than all its predecessors: 
 

0.000... 
0.1000... 
0.11000... 
0.111000... 
… . 

 
Does the limiting number 0.111…, not contained in the sequence, contain more digits 1 than all 
numbers of the sequence? If yes, which digits are that? If not, then 0.111… (which is also the 
antidiagonal number of the sequence) cannot be distinguished by means of digits from all 
numbers of the list.  
 
It can be distinguished from every finite initial segment, but that does not mean anything with 
respect to the infinite sequence. 
 
All digits 1 of 0.111... are in no single line but are in the complete list? Remove every line with 
less digits 1. Nothing remains. 
 
Similar problem: Colour all paths of the Binary Tree of the form 0.111..., 0.0111..., 0.00111..., ..., 
then the path 0.000... has not been coloured but has no uncoloured node. [WM: "Das 
Kalenderblatt 091206", de.sci.mathematik (5 Dec 2009)] 

https://groups.google.com/g/sci.math/c/xgi7EB9Xk9g/m/mttiRQorBgUJ
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Kalenderblatt$20091206/de.sci.mathematik/l0l07_rEUao/15HhyFKKRM8J
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Kalenderblatt$20091206/de.sci.mathematik/l0l07_rEUao/15HhyFKKRM8J
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 The squareness of the list 
 
"There first has to be a square list before there can be a diagonal." [G. Greene in "The 
uncountability infinite binary tree.", sci.logic (17 Dec 2012)] The Cantor-list is a square, by the 
bijection between rows and columns in the diagonal. 
 
If it contains ¡0 rows then each entry contains also ¡0 digits. Then, by replacing 0 by 1, the 
antidiagonal number 0.111... of the list 
 

0.000... 
0.1000... 
0.11000... 
0.111000... 
... 

 
either is already in the list because all columns are filled with the digit 1, or there are less rows 
than are required to house the antidiagonal number. But every row of the list contains too many 
zeros, infinitely many, i.e., more than ones (because finite is always less than infinite). That 
makes a representation 0.1, 0.11, 0.111, ... of all approximations to 1/9 impossible. Not even half 
of them can be represented. 
 
In every Cantor-list there are only finitely many pre-diagonal digits and infinitely many post-
diagonal digits. Therefore the "workable" list is always less than half of the complete list. If the 
matrix was a square then not all diagonal digits would have infinitely many successors. 
 
By symmetry same holds for the columns. The "workable" list must be a very small patch in the 
upper left of the infinite list. (See also section "Dark natural numbers in set theory".) [WM: 
"Squareness required", sci. math (6-7 Nov 2016). WM: "Cantor's list is more broad than high.", 
sci.math (Jun-Jul 2018)] 
 
 
 
 Cantor-list of all rational numbers 
 
Consider a Cantor-list that contains a complete sequence (qk) of all rational numbers qk of [0, 1). 
The first n digits of the antidiagonal number d are 0.d1d2d3...dn. It can be shown for every n that 
the Cantor-list beyond line n contains infinitely many rational numbers qk that have the same 
sequence of first n digits as the antidiagonal d.  
 
Proof: There are infinitely many rationals qk with this property. All are in the list by definition. 
At most n of them are in the first n lines of the list. Infinitely many must exist in the remaining 
part of the list. So we have obtained:  
 
 "n $k: 0.d1d2d3...dn = 0.qk1qk2qk3...qkn .É       (*) 
 
This theorem is not less important than Cantor's theorem: 

https://groups.google.com/g/sci.logic/c/nX7WnKVoN7M/m/4Eq50mGVYYsJ
https://groups.google.com/g/sci.logic/c/nX7WnKVoN7M/m/4Eq50mGVYYsJ
https://groups.google.com/g/sci.math/c/DlQipTP3PPI/m/aUffeuS-CQAJ
https://groups.google.com/g/sci.math/c/rzPO5MTh9rU/m/P0X1VaQfBgAJ
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 "k: d ∫ qk . 
 
Both theorems contradict each other with the result that finished infinity as presumed for 
transfinite set theory is not a valid mathematical notion. In order to remove the contradiction 
write Cantor's theorem in the correct form of potential infinity 
 
 "n "k § n: 0.d1d2d3...dn ∫ 0.qk1qk2qk3...qkn 
 
 as the complement of (*) 
 
 "n $k > n: 0.d1d2d3...dn = 0.qk1qk2qk3...qkn . 
 
Stronger estimate: Enumerate all rational numbers to construct a Cantor-list. Replace the diagonal 
digits ann by dn in the usual way to obtain the antidiagonal number d. Beyond the nth row there 
are f(n) rational numbers the first n digits of which are same as the first n digits 0.d1d2d3...dn of 
the antidiagonal number. f(n) = ¶ because 
 
 "n œ Ù "k œ Ù: f(n) > k . 
 
Define for every n œ Ù the function g(n) = 1/f(n) = 0. In analysis the limit of this function is 
limnØ¶ g(n) = 0. So set theory with its limit limnØ¶ f(n) = 0 is incompatible with analysis. Since 
analysis is a branch of mathematics, set theory is incompatible with mathematics. 
  
Cantor's argument constructs from a list (an) of real numbers another real number, the 
antidiagonal number d, that is not contained in the list. The argument is based on the completion 
of the antidiagonal number. But the list contains only all finite initial segments, i.e., decimal- 
fractions 0.d1, 0.d1d2, 0.d1d2d3, ... of d. The irrational limit of d itself is not (and cannot be) 
constructed. Only terminating entries 0.ak1ak2ak3...akk are applied in the diagonal argument. 
[WM: "Matheology § 400", sci.math (Nov-Dec 2013). WM: "The diagonal argument fails in the 
list of all rational numbers-", sci.math (26 Oct 2019)] 
 
 
 
 The diagonal argument depends on representation 
 
Consider a civilization that has not developed decimal or comparable representations of numbers. 
Irrational numbers are obtained from geometric problems or algebraic equations. They are 
defined by the problems where they appear and abbreviated by finite names – just as in human 
mathematics. If all rational numbers in an infinite list are represented only by their fractions and 
all irrational numbers by their finite names, it is impossible to apply Cantor's diagonalization with 
a resulting "antidiagonal number". Such a culture would not fall into the trap of uncountability. It 
is leading astray human mathematics too, because the infinite decimal representation does never 
allow us to identify an irrational number. Note the name decimal-fractions. [WM: "The trap of 
uncountability", sci.math (21 Nov 2015)] 

https://groups.google.com/g/sci.math/c/gE94F4pb8jY/m/TMn0xhB7aTkJ
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 302

 The nine-problem 
 
A Cauchy-sequence has infinitely many (¡0) rational terms. Since all terms of all Cauchy-
sequences are rational, they belong to the countable set of rational numbers. The limit, if a non-
terminating rational or an irrational number, differs from the terms of the sequence. Ignorance of 
these differences has lead to the "9-problem" in Cantor-lists: Provision has been made that the 
antidiagonal number cannot have the form 0.999... . However, this provision is not necessary. 
Cantor's diagonal-argument requires more precision than unwritten limits. Every digit appearing 
in a Cantor-list belongs to a Cauchy-sequence – not to its limit! The Cauchy-sequences 
abbreviated by 1.000... and 0.999... are quite different. The provision shows, however, that set 
theorists have been confusing sequences and their limits for more than one hundred years. (See 
section 2.2.3. – Cantor himself did not make this provision.) 
 
What about writing limnØ¶ in front of every line of a Cantor-list? Or what about writing every 
line of a Cantor-list twice, the second entry always equipped with a limnØ¶? Subject and result of 
diagonalization are always digits, i.e., rational terms of Cauchy-sequences – whether or not these 
sequences stand for themselves or are used as names of irrational numbers. In a rationals-
complete list, this always raises a contradiction. [WM: "Fortsetzung einer zu lang gewordenen 
Diskussion über das Unendliche", de.sci.mathematik (7Apr 2016)] 
 
 
 Limits in Cantor-lists 
 
Taking the limit could spoil the diagonal argument because the argument distinguishes only the 
finite terms of sequences the limits of which can agree. Here is a simple example. Consider the 
list of power sequences of reciprocals of prime numbers: 
 

1/2,   1/4,     1/8,        ...  
1/3,   1/9,     1/27,      ...  
1/5,   1/25,   1/125,    ... 
1/7,   1/49,   1/343,    ... 
1/11, 1/121, 1/1331,  ...  
...  
1/pn, 1/(pn)2, 1/(pn)3, ...  
...  
Ø 0,      0,       0,        ... . 

 
It can be diagonalized by replacing 1/(pn)n by 0, resulting in the antidiagonal sequence 0, 0, 0, ... . 
This is identical with the limit of the list, i.e., of the sequence of entries. In Cantor's original 
version, there is no problem. The limit is not enumerated and therefore does not appear in the 
argument. But if "automatically" the limit is assumed, then this has also to be done with the limit 
of the list. Otherwise the antidiagonal would have one more term than the list has lines – and the 
diagonal argument is superfluous, because the antidiagonal cannot be in the list, caused already 
by this difference. (Note that "n œ Ù: |dn - ann| > 0 does not exclude limnØ¶ |dn - ann| = 0.) WM: 
"The diagonal argument fails in the list of all rational numbers-", sci.math (29 Oct 2019)] 

https://groups.google.com/g/de.sci.mathematik/c/o86GamzBOUk/m/u0u51nNtAgAJ
https://groups.google.com/g/de.sci.mathematik/c/o86GamzBOUk/m/u0u51nNtAgAJ
https://groups.google.com/g/sci.math/c/NbK85E6kfU8/m/D4iNapt3AQAJ
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 Different results of universal quantification? 
 

(1)  "n œ Ù: 
1

9 1
10

n

k
k=

<∑ . 

 
The sum over all these very terms however is said to be 
 

 9 1
10n

n∈

=∑ . 

 
Here it does not matter in the sum of all finite terms that all finite terms fail. 
 
(2)  "n œ Ù: The digit sequence 0.d1d2d3...dn of the antidiagonal in Cantor's list differs from 
the first n entries ak of the list 
 
 "n œ Ù "k § n: 0.d1d2d3...dn ∫ 0.ak1ak2ak3...akn . 
 
And in the limit the antidiagonal is said to differ from all entries of the Cantor-list too. 
 
Here we can conclude, from "each dn fails" to the "failure of all". Unlike in case of the digits 9, it 
does matter in the limit that all finite terms fail. (Since every diagonal digit dn belongs to a finite 
initial sequence of digits, like every 9 in (1), the conclusion to the infinite case requires the same 
logic as the conclusion in the first case.) 
 
(3)  "n œ Ù: The nth level of the Binary Tree has 
 
 N(n) = 2n 
 
nodes. The limit is said to be actually infinite: ¡0.  
 
Here again, like in (1) it does not matter in the limit that all finite terms fail to be infinite. 
 
(4)  "n œ Ù: The number of paths of the Binary Tree that can be distinguished at level n is 
finite, namely 
 
 P(n) = 2n . 
 
In the limit however the number of paths that can be distinguished is said to be actually infinite. 
 
Also here it does not matter that all finite levels fail to distinguish infinitely many paths. 
Moreover, it does not only not matter that "n œ Ù: P(n) is finite and equal to N(n) but the actual 
infinity of P(n) is much larger than that of N(n), namely uncountable, 2¡0. [WM: "How can we 
explain and justify different results of universal quantification?", 
MathematicsEducators.StackExchange (26 Oct 2017)]  
 

https://matheducators.stackexchange.com/questions/13055/how-can-we-explain-and-justify-different-results-of-universal-quantification?noredirect=1&lq=1&lq=1
https://matheducators.stackexchange.com/questions/13055/how-can-we-explain-and-justify-different-results-of-universal-quantification?noredirect=1&lq=1&lq=1
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 Different results of universal quantification? (Answer) 
 
There are no different results of quantification. To see this we have to be clear about real 
numbers first. Either a real number can be represented by an actually infinite sequence of digits 
(i.e. of partial sums of fractions) or this is not the case. If so, then all real numbers of the unit 
interval [0, 1) can also be represented as actually infinite and continuous paths in the Binary Tree. 
If not, then no real number can be represented in Binary Tree and Cantor-list either. 
 
Now we consider the four questions. 
 

(1) "n œ Ù: 
1

9 1
10

n

k
k=

<∑  implies 9 1
10n

n∈

<∑  . 

 
How else could logic work? If we gather a set of green balls, we will not get a red cube. If we 
take a set of failures, we will not get a success. We can even define: Sum all fractions 9/10n that 
fail to yield 1. Like in every infinite sequence that means we have to take ¡0 fractions, namely 
one for every natural index n œ Ù that fails. Correct is  
 

 
1 1

9 9 1
10 10lim

n

k n
n k n

∞

→∞ = =

= =∑ ∑  . 

 
(2) With this interpretation the diagonal argument holds. The infinite sequence of ¡0 failures, 
i.e. of diagonal digits dn, is not in the Cantor-list. But this is not a real number. Limits are only 
defined by the formula defining the sequence, not by its terms. 
 
(3) With respect to the number of nodes N(n) as function of the level number n in the Binary 
Tree we apply the same logic again. Like in (1) the terms of an increasing sequence do not 
include the limit. Since every N(n) < ¡0 there is no level with ¡0 nodes. Only the limit of N(n) 
has ¡0 nodes, but it does not belong to the Binary Tree. However, since there are ¡0 levels with 
finite number of nodes, the complete, actually infinite Binary Tree has ¡0 nodes too. 
 
(4) It is easy to see that at level n we can distinguish precisely P(n) = 2n paths. (It is irrelevant 
how many may be there "in principle". We consider in mathematics what we can distinguish.) 
Thus we cannot distinguish more than countably many paths in the whole Binary Tree. An upper 
estimate is obtained by putting all nodes of all levels on one common level, say at ω (which is not 
existing in the Binary Tree). More cannot be distinguished. But remember that the interpretation 
of infinite representations by digit sequences or paths has been introduced to circumvent the lack 
of uncountably many finite definitions. This approach has been proved to fail. 
 
What is the answer to this seeming contradiction of uncountably many real numbers according to 
the diagonal argument and only countably many according to the Binary Tree? There is no actual 
infinity at all. There is no complete Cantor-list, and hence there cannot be a complete diagonal 
number. And of course there is no complete Binary Tree either. It has only served to prove its 
nonexistence like Cantor's diagonal argument only has served to prove the nonexistence of the 
completed infinity assumed by him. 
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 Approximatable numbers contradict Cantor's diagonal argument 
 
Definition: A real number r is approximatable if for every natural number n the nth digit rn can 
be found by a finite method. This does not require a finite formula for all its digits but only a 
method to find digit rn by a finite calculation or decision.  
 
Approximatable numbers are rational numbers, irrational numbers defined by finite formulas, and 
arbitrary digit sequences which are either appended by a finitely defined string or ending in the 
finite (since no infinite string can be obtained by arbitrary decision, i.e, without a finite formula). 
The ending digit sequences are rational numbers. The set of all approximatable numbers is clearly 
countable because every approximatable number is finitely defined.  
 
If there is a list of n approximatable numbers, then their nth digits can be calculated and linked 
together. Therefore the diagonal d of every finite part of a list of approximatable numbers is an 
approximatable number too.  
 
Theorem   There is no set of all approximatable numbers.  
 
Proof by contradiction: Assume that the set of all approximatable numbers exists. List the set and 
consider the diagonal number d. For every n its digit dn results from a finite computation, namely 
that one supplying this digit dn = rnn. Note that a finite series of finite computations is a finite 
computation too. Construct the antidiagonal number according to a fixed algorithm. It is an 
approximatable number too but not in the list at any finite place. Contradiction.É [WM: 
"Approximatable numbers contradict Cantor.", sci.math (14 Jul 2018)] 

https://groups.google.com/g/sci.math/c/YyL1XFP-C40/m/0UPVJnFtAQAJ
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 Choosing and well-ordering undefinable elements? 
 
"A well-ordering (infact, most of them are) can be incomprehensible to us and impossible to 
adequately show is one if given to us. We just know one always exists." [Zelos Malum in "Three 
facts that appear incompatible without dark numbers", sci.math (15 Jan 2020)] 
 
 
 The axiom of choice and similar axioms 
 
The axiom of choice (AC) facilitates the proof that every set can be well-ordered, implying that it 
is always possible to choose an element from every non-empty set and to combine the chosen 
elements into a set. "Choosing something" means pointing to or showing this something, or, if 
this something has no material existence, defining it or labelling it by an index, i.e., by a finite 
word or name. For uncountable sets this is known to be impossible; a countable alphabet is not 
sufficient to label uncountably many elements (cp. section "The list of everything"); there are 
only countably many indices. And no remedy is facilitated by "uncountable alphabets"! An 
alphabet is a simply ordered finite set. Otherwise you would never find most letters of the 
alphabet – cp. the phone book. See also the sections "Comments on undefinable mathematics and 
unusable languages" and "On uncountable alphabets". 
 
Therefore the proof implies that two elements which cannot be identified, distinguished, and put 
in an order can be identified, distinguished, and put in an order. This is a contradiction in ZFC, 
since in every model including the whole universe of set theory it is necessary to identify and to 
distinguish elements that shall be chosen. Since this is impossible for uncountably many 
elements, there is no well-ordering in any uncountable model. And the proof for a model without 
well-ordering (carried out by forcing, cp. section 3.2.3) is superfluous.  
 
Consider a geometry that contains the axiom: "For every triple of points there exists a straight 
line containing them." When you ask for the straight line that contains the points (0|1), (0|2), (1|0) 
the masters of that theory reply that some straight lines cannot be constructed but that they 
certainly "exist". If you ask what in this case existence would mean, you get insulted. 
 
Here are some axioms of similar scientific value as the axiom of choice: 
Ë Axiom of two even primes: There are two even prime numbers. (But provably it is impossible 
to determine whether the second one is less or larger than 2.) 
Ë Axiom of prime number triples: There is a second triple of prime numbers, besides (3, 5, 7). 
(But provably this second triple is not arithmetically definable.)  
Ë Axiom of meagre sum: There is a set of n different positive natural numbers with sum n2/2. 
(This axiom is not constructive. Provably no such set can be constructed.) 
Ë Axiom of ultimate mathematical simplification: All mathematical problems are solved by 
whatever is declared as their solutions. (This axiom is guaranteed to be not less useful than the 
axiom of choice in considerably shortening proofs about uncountable sets.) 
Ë Axiom of well-ordering: Every set can be well-ordered. (This axiom is not constructive. In 
most cases provably no set theoretic definition of a well-order can be found.) 
 
How obvious a contradiction has to result from an axiom in order to reject it? [WM: "Three facts 
that appear incompatible without dark numbers", sci.math (18 Jan 2020)] 

https://groups.google.com/g/sci.math/c/otnjopDA2eA/m/JSUgGPtUFQAJ
https://groups.google.com/g/sci.math/c/otnjopDA2eA/m/JSUgGPtUFQAJ
https://groups.google.com/g/sci.math/c/otnjopDA2eA/m/JSUgGPtUFQAJ
https://groups.google.com/g/sci.math/c/otnjopDA2eA/m/JSUgGPtUFQAJ
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 Zermelo's defence of the axiom of choice 
 
The following defence of the unprovable but fundamental principle of choice is given by 
Zermelo: "Now also in mathematics unprovability is known to be not tantamount to invalidity, 
because it is clear that not everything can be proved since every proof presupposes unproven 
principles. In order to discard such a fundamental principle one had to establish its invalidity in 
special cases or contradictory consequences; but none of my opponents has made an attempt." [E. 
Zermelo: "Neuer Beweis für die Möglichkeit einer Wohlordnung", Math. Ann. 65 (1908) p. 112] 
 
With respect to uncountable sets this challenge has certainly been met by listing all countably 
many objects that can be identified and thus ordered (cp. sections "The list of everything" and 
"The axiom of choice and similar axioms"). For countable sets AC is a true and basic principle. 
 
 
 An invalid step in Zermelo's proof of well-ordering 
 
In his proof (cp. section 2.13) Zermelo considers any two different γ-sets M'γ and M''γ and 
concludes that always one of them is identical with a segment of the other. 
 
"Because the first element of every γ-set is m1 since the corresponding segment A does not 
contain an element, i.e., M - A = M. If now m' were the first element of M'γ which differed from 
the corresponding element m'' then the corresponding segments A' and A'' must be equal and 
hence also the complementary sets M - A' and M - A'' and as their distinguished elements m' and 
m'' themselves, contrary to the assumption." [E. Zermelo: "Beweis, daß jede Menge 
wohlgeordnet werden kann", Math. Ann. 59 (1904) p. 515] 
 
Here Zermelo uses a step-by-step argument which is not allowed, because it would presuppose a 
well-order, the countability and even finiteness of the real numbers: 
 
Theorem   All initial segments C of the well-ordered set — are countable. 
 
Proof: Let x œ —\C be the first real number of —\C, i.e., the first real number that follows on C in 
the well-ordering of —, such that C » {x} is the first uncountable initial segment of —. This is a 
contradiction, because if C is countable, then C » {x} is countable too. É 
 
Theorem   All initial segments F of the well-ordered set — are finite. 
 
Proof: Let x œ —\F be the first real number of —\F, i.e., the first real number that follows on F in 
the well-ordering of —, such that F » {x} is the first infinite initial segment of —. This is a 
contradiction, because if F is finite, then F » {x} is finite too. É 
 
An infinite union of finite sets need no longer be finite. An infinite union of countable sets need 
no longer be countable. But an infinite union of segments of γ-sets must remain a γ-set, i.e., well-
ordered? Why should it? Zermelo's step-by-step argument here collapses to unjustified belief. 
[WM: "Das Kalenderblatt 091123", de.sci.mathematik (22 Nov 2009)] 

http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002261952
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0059?tify=%7b%22pages%22:%5b532%5d,%22panX%22:0.44,%22panY%22:0.502,%22view%22:%22info%22,%22zoom%22:0.606%7d
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Das$20Kalenderblatt$20091123/de.sci.mathematik/VtrClODjgr4/VywU3R374YEJ
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 What is the advantage of the expenses to accept AC? 
 
Alice accepts the axiom of choice (AC). So there exists a well-order of — in some platonic shelf. 
Alice cannot find it, but it is relieving to know that it exists because a good logician then can 
apply it nevertheless.  
 
Carl denies AC. But he knows of Alice and therefore he knows of the existence of the well-order 
of —. He cannot change it, in particular because he cannot find it. But he lives in the same world 
as Alice. So without the disadvantageous confession to believe in the nonsensical idea that 
undefinable and undistinguishable elements can be well-ordered, i.e., defined, distinguished, and 
chosen, he can nevertheless apply it too – since it is there, guaranteed by Alice. [WM: "What is 
the advantage of the expenses to accept AC?", sci.math (3 Feb 2017)] 
 
 
 
 Well-ordering and Zorn's lemma 
 
The axiom of choice implies that every set can be well-ordered (cp. section 2.13). But ordering of 
elements requires that these elements can be distinguished by labels. Cantor stressed that 
arguments against actual infinity become invalid "as soon as a principle of individuation, 
intention, and ordination of actually infinite numbers and sets has been found." [G. Cantor, letter 
to A. Schmid (26 Mar 1887)]. Since there are only countably many labels for individuation, the 
axiom of choice is a counterfactual axiom with respect to uncountable sets.  
 
The axiom of choice is equivalent to Zorn's lemma (cp. section 2.12.9): If a partially ordered set S 
has the property that every chain has an upper bound in S, then the set S contains at least one 
maximal element. Without this feature, every element would have another next element. This 
successorship would not stop at natural indices but would run through all ordinal numbers. This 
argument is obviously as invalid here as in the original "proof" that every set can be well-ordered 
(cp. section 2.13). We will never reach any non-natural number when running through the natural 
numbers. 
 
 
 Accessing inaccessible numbers 
 
An accessible number, according to Borel, is a number which can be described as a mathematical 
object. The problem is that we can only use some finite process to describe a real number, so only 
such numbers are accessible. We can describe rationals easily enough, for example either as, say, 
one seventh or by specifying the repeating decimal expansion 142857. Hence rationals are 
accessible. We can specify Liouville's transcendental number easily enough as having digit 1 in 
place n! and 0 elsewhere. Provided that we have some finite way of specifying the nth term in a 
Cauchy-sequence of rationals we have a finite description of the real number resulting as its limit. 
However, as Borel pointed out, there are a countable number of such descriptions. Hence, as 
Chaitin writes: "Pick a real at random, and the probability is zero that it's accessible – the 
probability is zero that it will ever be accessible to us as an individual mathematical object." [J.J. 
O'Connor, E.F. Robertson: "The real numbers: Attempts to understand", St. Andrews (2005)] 
 

https://groups.google.com/forum/#!topic/sci.math/tEH2OQebPTY
https://groups.google.com/forum/#!topic/sci.math/tEH2OQebPTY
http://www-history.mcs.st-and.ac.uk/HistTopics/Real_numbers_3.html
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But how to pick inaccessible numbers? Only accessible numbers can get picked. Unpickable 
numbers cannot appear anywhere, neither in mathematics nor in Cantor's lists. Therefore Cantor 
"proves" that the pickable numbers, for instance numbers that can appear as an antidiagonal 
number of a defined Cantor-list, i.e., the countable numbers, are uncountable. 
 
Also "Chaitin's constant" (cp. section 2.3.2 "An uncomputable real number") is not more nor less 
uncomputable than the smallest positive fraction. "If there is a Turing Halting problem that is 
undecidable within our own system of reasoning? Is it then still a proper defined number?" 
[Lucas B. Kruijswijk in "Shannon defeats Cantor = single infinity type", sci.math (13 Dec 2003)] 
"We could construct a similar number. x1 = 1 iff God is real, zero otherwise (non computable!), 
x2 = 1 iff there are 2 gods of equal power, x3 = 1 iff there are 3 gods of equal power, ... [...] Now 
we can construct the non computable irrational!" [Herc, loc cit] 
 
 
 
 Comments on undefinable mathematics and unusable languages 
 
A question related to section "The axiom of choice and similar axioms" was answered by Noah 
Schweber. [User: "Why is ZFC called free of contradictions?", Math.StackExchange (12 Apr 
2017)] I will cite some parts (printed in blue) and give some comments.  
 
NS: First of all, we can distinguish objects from each other, even if they're undefinable 
individually! Think about the real numbers. These are uncountable, so lots of real numbers are 
undefinable; however, any two real numbers can be distinguished from each other by saying 
which one is bigger. 
 
WM: Every real number that you can compare with anything is defined (by your choice) and is 
thus definable. Undefinable real numbers cannot be put into any processing unit. You cannot 
compare undefinable real numbers because all decimal representations as far as you can use them 
are finite strings. You cannot even think of undefinable reals as individuals. 
 
NS: The more fundamental problem, however, essentially boils down to the difference between 
definability without parameters and definability with parameters. This isn't an outright definition 
[...] in the usual sense, but it is a definition with parameters. [...] A well-ordering of an 
uncountable set (say, —) is itself not necessarily definable in any good sense [...] most elements 
of an uncountable collection are undefinable – so most ordinals are undefinable! So there's no 
reason to believe that we can get a genuine definition [...] from this definition-with-parameters. 
 
WM: No genuine definition, not in any good sense, no outright definition. That is true.  
 
NS: How many definitions-with-parameters are there? 
 
WM: Why is this admittedly insufficient topic elaborated further? 
 
NS: Well, there's as many of these as there are parameters – that is, there are exactly as many 
definitions-with-parameters as there are objects in our universe, so we're not going to "run out". 
And indeed every object a is definable by the formula-with-parameters x = a. This is of course a 

https://groups.google.com/g/sci.math/c/iKDaHmyW7S4/m/wOjMeAX-mE4J
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/170419 Why is ZFC called free of contradictions MSE.html
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very odd notion of definability, but it's the one corresponding to the kind of definability you get 
from a well-ordering of a set. 
 
WM: "Very odd" is an euphemism. It is not a definition. 
 
NS: So the apparent contradiction is only coming from the conflation of the notion of definability 
without parameters and definability with parameters. 
 
WM: "Apparent"? 
 
NS: [...] there is no way to write the formula "x is definable" in the language of set theory. 
 
WM: Therefore we use mathematics and find that all words of all languages are elements of one 
and the same countable set. What words are real definitions and what words are not is irrelevant 
since every subset of a countable set is a countable set. 
 
NS: This is essentially due to Tarski's undefinability theorem. 
 
WM: This theorem is nothing but an attempt to veil the contradiction. 
 
NS: And in fact – and very surprisingly – even though intuitively there must be lots of 
undefinable elements in any model of ZFC, this turns out to not necessarily be the case! 
 
WM: Of course you cannot take an undefinable element and use it as parameter. First you would 
have to define it. 
 
NS: That's simply false. You really should read a text on basic model theory before you claim to 
have found a contradiction in ZFC. 
 
WM: Every language is countable. Otherwise you could not use it. 
 
NS: You're conflating a language with a usable language – or, more precisely, you're making an 
ontological assumption that every mathematical object is "knowable" in some sense. 
 
WM: Using usable language is the basic principle of mathematics and even of set theory. Every 
axiom and theorem of ZFC is expressed in usable language. Try to express some mathematics in 
a not usable language. Try to send something via internet in a not usable language. Fail. 
 
NS: There's no justification for this, though. If you take this as your starting point, then of course 
there are only countably many mathematical objects; but that's not a background assumption of 
mathematical practice. And in particular, it can't be turned into an actual contradiction from the 
ZFC axioms – all you can do is show that the ZFC axioms contradict your view of what the 
mathematical universe is. 
 
WM: In mathematics we prove assertions. Therefore, take an undefinable element as a parameter. 
Show how you do it. Fail 
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NS: If you truly think you can produce a contradiction from the ZFC axioms, I encourage you to 
try to produce a computer-verified proof of 0 = 1 directly from the ZFC axioms. 
 
WM: A proof will never convince hard-boiled set theorists believing in undefinable entities of 
anything. Consider geometry. Of course there can be not-finitely definable straight lines in 
geometry so that always three points lie on one of them. No problem – since they are undefinable. 
So you can believe in their existence since no computer can falsify this existence if you accept it. 
 
NS: [...] the OP advocates a philosophical position which might be called physicalism (I've not 
heard a specific name for this, although it's not too rare): 
 
WM: Hopefully this position is upheld by all true mathematicians. 
 
NS: namely, that there is a connection between mathematical existence and physical reality in 
that mathematical objects can only be said to exist if they are "representable" in the physical 
universe.  
 
WM: It is not "physicalism" but simply reasonable to require that every object of mathematics is 
definable. Everything else is theology. Computer-verified proofs do never establish undefinable 
results. Computers don't believe in theology. You can see your error when you try to take two 
undefinable real numbers. How would you "take" them and put them into a computer? 
 
NS: The existence of uncountable sets is incompatible with the physicalist philosophy [...] But 
this is completely uncontroversial. 
 
WM: No it isn't at all. Even in the first part of this answer it was incidentally assumed that every 
real number can be taken, i.e., can be defined. 
 
NS: So the OP has only argued for "ZFC is false" insofar as they have argued for "physicalism is 
true" – and they haven't done that at all. 
 
WM: Remember what you have said about definitions with parameters. They are no definitions. 
Now it seems that these non-things are the cornerstones of mathematics. 
 
Noah Schweber's comment on the comments reproduced above: If your manuscript mentioned 
that the thing I am arguing for is the plausible formal consistency of ZFC rather than its truth (let 
alone truth free of intuitive assumption – I've certainly never argued that ZFC should be seen as 
true regardless of your philosophy of mathematics), then you would be representing my position 
more accurately; and if you disclosed the fact that your own intuition about what mathematics 
means is not the only perspective on the subject, you would be representing your own position 
more honestly. 
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 On uncountable alphabets 
 
"By an alphabet A we mean a nonempty set of symbols." [H.-D. Ebbinghaus, J. Flum, W. 
Thomas: "Mathematical logic", 2nd ed., Springer, New York (1994) p. 11] 
 
That is true but insufficient to describe an alphabet that can be applied to form words and 
expressions. An alphabet is an alphabetically or lexically ordered string or list of symbols, where 
"lexically ordered" means that an algorithm exists to find a desired word within finite time. 
 
"The set {cr | r œ —}, which contains a symbol cr for every real number r, is an example for an 
uncountable alphabet." [loc cit p. 13] 
 
That is impossible because the set of symbols is countable – at least if transmitted through the 
internet, printed, or carved of matter within the universe. 
 
"Finally, as Gödel observes, his argument is restricted to countable vocabularies; Henkin proves 
the results for uncountable languages. [...] Henkin (Corollary 2) uses the uncountable vocabulary 
to deduce the full force of the Löwenheim-Skolem-Tarski theorem: a consistent first order theory 
has models in every infinite cardinality. [...] Henkin already points out that his proof (unlike 
Gödel's) generalizes easily to uncountable vocabularies. [...] McKinsey (also noting the 
uncountable application) and Heyting give straightforward accounts in Mathematical Reviews of 
the result of Henkin's papers on first order and theory of types respectively with no comments on 
the significance of the result. Still more striking, Ackermann's review of Henkin's proof gives a 
routine summary of the new argument and concludes with 'The reviewer can not follow the 
author when he speaks of an extension to an uncountable set of relation symbols, since such a 
system of notations can not exist'." [John Baldwin: "The explanatory power of a new proof: 
Henkin's completeness proof" (25 Feb 2017)] 
 
"Ref. kann dem Verf. aber nicht folgen, wenn er von der Möglichkeit einer mehr als abzählbaren 
Menge von primitiven Symbolen spricht, da es ein derartiges Bezeichnungssystem doch nicht 
geben kann." [W. Ackerman: Review of "L. Henkin: 'The completeness of the first-order 
functional calculus'", Journal of Symbolic Logic 15 (1950) p. 68]  
 
Ackermann's clear and correct position seems "striking". Logic has really become a perverted 
subject – useful and interesting like chess competitions of mentally disabled persons! 
 
"Roughly, a formal language could be completely mastered by a suitable machine, without any 
understanding. (This needs qualification where the formal language has an uncountable alphabet: 
In such case it is not clear that the formal language could be completely mastered by anything.)" 
[Geoffrey Hunter: "Metalogic", 6th ed., University of California Press (1996) p. 4f] 
 
"However, in building up formulas, conjunctions of sets of formulas of power less than κ and 
quantifications over sets of variables of power less than λ are allowed. If κ is bigger than ω, this, 
of course, allows formulas which are not 'writable' in the sense of being finite strings of symbols. 
Also, in the book, no notions of recursiveness, admissibility, or even definability are applied to 
the formulas or sets of formulas considered." [W.P. Hanf: "Review of M.A. Dickmann: 'Large 
infinitary languages, model theory'", Bull. Am. Math. Soc. 83,2 (1977) p. 184] 

http://homepages.math.uic.edu/~jbaldwin/pub/chietihenkfeb20.pdf
http://homepages.math.uic.edu/~jbaldwin/pub/chietihenkfeb20.pdf
https://books.google.de/books?id=oHpMtskGcv0C&printsec=frontcover&hl=de#v=onepage&q&f=false
https://projecteuclid.org/euclid.bams/1183538661
https://projecteuclid.org/euclid.bams/1183538661
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"A well-known theorem of Mills asserts that there is a model of Peano Arithmetic M in an 
uncountable language such that M has no elementary end extension (e.e.e.). I ask whether every 
complete extension of PA in an uncountable language can have models of every cardinality with 
arbitrary large e.e.e.'s." [shahram: "Elementary end extensions of models of Peano arithmetic in 
uncountable languages", MathOverflow (11 Sep 2013)] 
 
"You simply name all the submanifolds of your manifold and work with an uncountable 
language." [user 1686 in "Algebraic description of compact smooth manifolds?", MathOverflow 
(19 Nov 2009)] 
 
"For uncountable languages, the logic is not complete with respect to the standard algebra [0, 1]G, 
and completeness fails already for propositional logic." [Emil Jeřábek in "Compactness and 
completeness in Gödel logic", MathOverflow (12 Mar 2014)] 
 
"Extending Shelah's main gap to non first-order or even to first-order theories in an uncountable 
language is a major hard open problem." [Rami Grossberg in "Main gap phenomenon", 
MathOverflow (19 Mar 2015)] 
 
"Anyway, it's impossible to countably axiomatize a (consistent) theory in an uncountable 
language, unless all but countably many of the symbols are left completely arbitrary by the 
axioms." [Emil Jeřábek in "Is the following theory countably axiomatizable?", MathOverflow (13 
Dec 2016)] 
 
"TΩ is not countably axiomatizable for trivial reasons: it has an uncountable language, and says 
non-trivial things about each symbol in that language." [Noah Schweber, loc cit] 
 
"You may also find it helpful to think of a computer whose keyboard has, not the usual 101 keys, 
but infinitely many keys; [...] In this book we'll study the 'sentences' that can be typed on such a 
keyboard [...] Also for simplicity of notation, we have chosen an alphabet that is only countably 
infinite. That alphabet is adequate for most applications of logic, but some logicians prefer to 
allow uncountable alphabets as well. (Imagine an even larger infinite computer keyboard, with 
real numbers written on the key caps!)" [Eric Schechter: "Classical and nonclassical logics", 
Princeton Univ. Press (2005) p. 207f] 
 
"How could the manufacturer write a real number except the few which have their own names 
like 2 or √3 or 1/4 or π? [...] the real numbers written on the key caps have to be individuals, i.e., 
it is not sufficient to distinguish each one from some 'given' real numbers but each one must 
differ from all other real numbers. How can that be possible by finite strings of symbols on the 
key caps? I assume consent that infinite strings of symbols don't carry any information that could 
be with sufficient completeness conveyed to the typist." [Wilhelm: "How to write an individual 
real number?", MathematicsEducators.StackExchange (27 Nov 2017)] 
 
"It seems like it needs comment that this is only a hypothetical/theoretical thought experiment. 
No such keyboard is actually constructable. Not even the simpler countably infinite one." [Daniel 
R. Collins, loc cit] 
 

https://mathoverflow.net/questions/141845/elementary-end-extensions-of-models-of-peano-arithmetic-in-uncountable-languages
https://mathoverflow.net/questions/141845/elementary-end-extensions-of-models-of-peano-arithmetic-in-uncountable-languages
https://mathoverflow.net/questions/5344/algebraic-description-of-compact-smooth-manifolds
https://mathoverflow.net/questions/160112/compactness-and-completeness-in-g%C3%B6del-logic
https://mathoverflow.net/questions/160112/compactness-and-completeness-in-g%C3%B6del-logic
https://mathoverflow.net/questions/175812/main-gap-phenomenon
https://mathoverflow.net/questions/257132/is-the-following-theory-countably-axiomatizable
https://matheducators.stackexchange.com/questions/13216/how-to-write-an-individual-real-number
https://matheducators.stackexchange.com/questions/13216/how-to-write-an-individual-real-number
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"This is not a hypothetical question since a rather big group of logicians claims that uncountable 
alphabets can be used in formal languages. If so, we should know a means how to use them." 
[Wilhelm, loc cit] 
 
"You want to use a finite/countable alphabet of symbols to construct the language of real 
numbers. That is simply not possible, so why do you keep on trying. You need an uncountably 
big alphabet to have any chance at all, and then you could simply make — itself your alphabet." 
[Dirk Liebhold, loc cit] 
 
"The point you're missing is that, if you take the real numbers to be your alphabet, they are the 
very symbols you use to write with. [...] You know what symbol corresponds to what number 
because the symbol is the number." [Hurkyl, loc cit] 
 
"A symbol is not a number. An alphabet is an alphabetically or lexically ordered set, namely a list 
or sequence of symbols that serve to form words while almost all real numbers cannot be defined 
let alone be chosen. The real numbers are definitely not an alphabet." [Wilhelm, loc cit] 
 
"Zero probability does not mean impossibility. The magnitude of the real number defines it and 
this will have position." [Jeffery Thompson, loc cit] 
 
"But it is hard to touch a selected number if the probability is zero. Further it is impossible to 
write a word containing two neighbouring numbers because neighbours are not defined on the 
real line. Nevertheless there are no gaps either." [Wilhelm, loc cit] 
 
And uncountable languages? 
 
"The ω-regular languages are a class of ω-languages that generalize the definition of regular 
languages to infinite words. Büchi showed in 1962 that ω-regular languages are precisely the 
ones definable in a particular monadic second-order logic called S1S." ["Omega-regular 
language", Wikipedia] 
 
"To consider uncountable languages we have to look at infinite strings in place of finite strings. 
(AFAIK, having an infinite alphabet is not very interesting and doesn't correspond to a realistic 
model of computation by itself.)" [Kaveh in "Is there any uncountable Turing decidable 
language?", ComputerScience.StackExchange (19 Feb 2016)] 
 
"Languages are collections of words. Words are finite strings. The input is always finite. That's 
how languages are defined in the context of computability." [Yuval Filmus in "Can a recursive 
language be uncountable?", ComputerScience.StackExchange (29 Apr 2015)] 
 
According to Wiktionary an uncountable alphabet has been applied already hundreds of years 
ago. See the Glagolitic alphabet. 

https://en.wikipedia.org/wiki/Omega-regular_language
https://en.wikipedia.org/wiki/Omega-regular_language
https://cs.stackexchange.com/questions/53187/is-there-any-uncountable-turing-decidable-language
https://cs.stackexchange.com/questions/53187/is-there-any-uncountable-turing-decidable-language
https://cs.stackexchange.com/questions/41963/can-a-recursive-language-be-uncountable
https://cs.stackexchange.com/questions/41963/can-a-recursive-language-be-uncountable
https://en.wiktionary.org/wiki/Glagolitic#English
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 The relativeness of the power set 
 
 A common property of all models of ZFC 
 
When Skolem had proved his theorem that every first-order theory like ZFC has a countable 
model unless it is self-contradictory (cp. 3.4.1 "Skolem's first proof" in chapter III) he tried to 
take the sting out of it by proposing that there could be countable models of ZFC which were 
lacking the mapping from the set ω (which is indispensable in a model of ZFC) to the countably 
many elements of the power set of ω – by this trick preserving the uncountability of the power set 
in the model, because also this uncountability is indispensable in the model. From "outside" this 
model could be countable. 
 
In the following we will present plenty of quotes stating that the power set is not absolute, usually 
without any supporting statements other than the big argument implicit to all reasoning: "If the 
uncountable power set is not relative but absolute, then set theory cannot be maintained."  
 

"Since the Skolem-Löwenheim 'paradox', namely, that a countable model of set 
theory exists which is representative of the stumbling blocks that a nonspecialist 
encounters, I would like to briefly indicate how it is proved. What we are 
looking for is a countable set M of sets, such that if we ignore all other sets in 
the universe, a statement in M is true precisely if the same statement is true in 
the true universe of all sets." [Paul J. Cohen: "The discovery of forcing", Rocky 
Mountain J. Math. 32,4 (2002) p. 1076] 

 
There is a common property of all models of ZFC: Each one contains the axiom of infinity and 
therefore contains an inductive set ω.1 It is irrelevant how to denote its elements. The names of 
the natural numbers 1, 2, 3, ... are convenient and appropriate. If a finite or infinite subset of ω 
were missing from the model then its elements k, m, n, ... (where k means 1 or 2 or 3 or ..., and so 
do m and n, and ...) would be missing too. Hence no subset of Ù must be missing. It could be 
argued that the model must not contain undefinable sets. With the same right however this could 
be claimed for the usual universe V of set theory. Then there is nothing uncountable because only 
countably many definitions do exist (see "The list of everything"). Therefore this argument fails. 
From outside the power set of Ù turns out to be uncountable. If the model has only countably 
many subsets of Ù, then it is clearly not a model of all theorems (including the axioms) of ZFC. 
 
One page earlier already, Cohen had referred to Skolem's "explanation": 
 

"The paradox vanishes when we realize that, to say that a set is uncountable, is 
to say that there is no enumeration of the set. So the set in M which plays the 
role of an uncountable set in M, although countable, is uncountable when 
considered in M since M lacks any enumeration of that set." [Paul J. Cohen: 
"The discovery of forcing", Rocky Mountain J. Math. 32,4 (2002) p. 1075] 

                                                 
1 For example, it turns out that every standard transitive model M of ZFC contains all the von Neumann 
ordinals as well as ¡0. [Timothy Y. Chow: "A beginner's guide to forcing", arXiv (8 May 2008)] – How 
"does it turn out"? This question remains as unanswered as the question why the uncountable power set is 
not absolute. 

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
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This argument appears over and over again. It is invalid. Not the lack of an enumeration is the 
important thing but the important thing is clearly the complete presence of all subsets of Ù. In the 
complete set Ù they are automatically present. And they are visible from "outside"! 

 
In Gödel's universe some subsets of a set in L are missing. Otherwise the model 
would be uncountable and not constructible by formulas, according to ZFC, also 
from "outside", i.e., in the mathematics of our world. "The classes and sets of 
the model Δ will form a certain sub-family of the classes and sets of our original 
system Σ [...] We call the classes and sets of Δ constructible [...] Constructible 
sets are those which can be obtained by iterated application of the operations 
given by axioms" [Kurt Gödel: "The consistency of the continuum hypothesis", 
Princeton University Press (1940) p. 35] 
 

This is the usual trick to keep the model free of uncountability, although it is easily seen through. 
It fails; if Ù is constructible, then every element of Ù is constructible and hence every subset of Ù 
is constructible too. None is missing. A concise and instructive version of Kurt Gödel's argument 
is presented by Hrbacek and Jech [Karel Hrbacek, Thomas Jech: "Introduction to set theory", 2nd 
ed., Marcel Dekker, New York (1984) p. 232] 
 

"Let now X Œ ω. The Axiom of Constructibility guarantees that X œ Lα+1 for 
some, possibly uncountable, ordinal α. This means that there is a property P 
such that n œ X if and only if P(n) holds in (Lα, œ). By the Skolem-Löwenheim 
Theorem, there is an at most countable set B Œ Lα such that (B, œ) satisfies the 
same statements as (Lα, œ)." 

 
This is what the authors derive from the Skolem-Löwenheim Theorem, but they withhold the 
essential condition that this only holds for consistent theories. So their proof is only valid when 
consistency of ZFC is assumed. (Otherwise everything including CH could be proved too, but 
with much less effort.) 
 
Uncountably many subsets of Ù could not all be definable, that is true. But that does not hinder 
them to have to belong to every model – just as the undefinable well-ordering of all subsets of Ù 
belongs to the standard universe of set theory. The contrary statements quoted below are given 
either thoughtlessly or explicitly with the aim of deceiving.  

 
"Let B œ M be a complete Boolean algebra [...] which is complete inside M, 
meaning that if A Œ B and A œ M then ⁄A œ M and ¤A œ M. Note that B need 
not contain the joins and meets of all its subsets – just those that lie in M." 
[Clive Newstead: "Boolean-valued models and forcing" (2012)] 
 

Again we read the usual excuse to keep models free of uncountability. It fails. The axiom of 
infinity requires ω, and the axiom of power set requires all subsets of ω. Otherwise not all 
theorems of ZF are satisfied, and so the model is not a model of ZF. Here are some texts 
supporting this apology, claiming that missing subsets do not undermine a model of ZF – but 
without any justification. 
 



 317

"In particular, there exists some countable model of ZFC. How can this happen, 
when it is a theorem of ZFC that there exists an uncountable set, and all its 
elements must also belong to the model? If we view our countable model M as 
a subset of the canonical model of ZFC, and we let X be a set such that M £ X 
is uncountable, then there is a bijection f: ω Ø X in V, but no such bijection is an 
element of M. Thus, it is consistent both that the universe of M is a countable 
set, and that it models the statement 'there exists an uncountable set.'" [Rowan 
Jacobs: "Forcing" (2011) p. 2]  
 
"There are some sets that every transitive model of ZFC will contain. For 
instance, the Axiom of Infinity ensures that the natural numbers Ù (alternately 
called ω when viewed as an ordinal number) will be in every transitive model. 
In particular, not only does every model M have some interpretation of Ù, but 
all of these interpretations are necessarily the same set. By contrast, every 
transitive model of ZFC must contain some interpretation of —, by taking the 
power set of Ù. However, what subsets of Ù exist will vary from model to 
model, so the interpretations of — will not necessarily be identical. In general 
this will be true of all power set constructions – different models may disagree 
on which subsets of some given set exist, so the power sets of that set may be 
different." [Rowan Jacobs: "Forcing" (2011) p. 3]  
 
"A crucial counterexample is the powerset of ¡0, denoted by 2¡0. Naively, one 
might suppose that the powerset axiom1 of ZFC guarantees that 2¡0 must be a 
member of any standard transitive model M. But let us look more closely at the 
precise statement of the powerset axiom. Given that ¡0 is in M, the powerset 
axiom guarantees the existence of y in M with the following property: For every 
z in M, z œ y if and only if every w in M satisfying w œ z also satisfies w œ ¡0. 
Now, does it follow that y is precisely the set of all subsets of ¡0? 
 No. First of all, it is not even immediately clear that z is a subset of ¡0; the 
axiom does not require that every w satisfying w œ z also satisfies w œ ¡0; it 
requires only that every w in M satisfying w œ z satisfies w œ x. However, under 
our assumption that M is transitive, every w œ z is in fact in M, so indeed z is a 
subset of ¡0. 
 More importantly, though, y does not contain every subset of ¡0; it contains 
only those subsets of x that are in M. So if, for example, M happens to be 
countable (i.e., M contains only countably many elements), then y will be 
countable, and so a fortiori y cannot be equal to 2¡0, since 2¡0 is uncountable. 
The set y, which we might call the powerset of ¡0 in M, is not the same as the 
'real' powerset of ¡0, a.k.a. 2¡0; many subsets of ¡0 are 'missing' from y. This is 
a subtle and important point," [Timothy Y. Chow: "A beginner's guide to 
forcing", arXiv (2008) p. 6] 
 

                                                 
1 Every set x has a so-called power set y = P(x). This is expressed formally as "x $y "z: z œ y ñ z Œ x. 
Compare also section 2.12 "ZFC-Axioms of set theory". 

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Jacobs.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2011/REUPapers/Jacobs.pdf
http://arxiv.org/pdf/0712.1320.pdf
http://arxiv.org/pdf/0712.1320.pdf
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Even more subtle and important is the fact, that the axiom of power set defines the "real" power 
set of every set in the model. If Ù is in the model, then there must not be missing any of its (in 
"reality" uncountably many) subsets. Or the other way round: If any subset of Ù is missing in M, 
then M is not a model of the whole ZFC (including the "real" power set axiom). Therefore a 
countable model of ZFC and a model of whole ZFC are mutually incompatible. Skolem's proof 
implies that ZFC cannot have any model. 

 
"More generally, one says that a concept in V is absolute if it coincides with its 
counterpart in M. For example, 'the empty set', 'is a member of', 'is a subset of', 
'is a bijection', and '¡0' all turn out to be absolute for standard transitive models. 
On the other hand, 'is the powerset of' and 'uncountable' are not absolute. For a 
concept that is not absolute, we must distinguish carefully between the concept 
'in the real world' (i.e., in V) and the concept in M. A careful study of ZFC 
necessarily requires keeping track of exactly which concepts are absolute and 
which are not. [...] the majority of basic concepts are absolute, except for those 
associated with taking powersets and cardinalities," [Timothy Y. Chow: "A 
beginner's guide to forcing", arXiv (2008) p. 6f] 

 
If any non-empty subset S Œ Ù is missing in M, then the elements of this subset S, and 
hence these elements of Ù, must be missing in M. (Otherwise subset S is not missing.) 
Then M is not even a model of ZF for violating the axiom of infinity.  
 

"Let us look carefully at what the Powerset Axiom really states. It says that for 
every x in M, there exists a y in M with the following property: if z is a member 
of M such that every w in M satisfying w œ z also satisfies w œ x, then z œ y. We 
see now that even if œ is interpreted as membership [...], it does not follow that 
y is the set of all subsets of z. [...] Now, it turns out that because M is transitive, 
the z's are in fact subsets of x. What 'goes wrong' is the rest of the axiom: y does 
not contain every subset of x; it only contains those subsets of x that are in M. 
So it is perfectly possible that this 'powerset' of x is countable. 
 What should we call y? Calling it the 'powerset of x' is potentially confusing; 
I prefer to reserve this term for the actual set of all subsets of x. The usual 
jargon is to call y 'the powerset of x in M'. 
 As an exercise in understanding this concept, consider Cantor's famous 
theorem that the powerset of ω is uncountable. Cantor's proof can be mimicked 
using the axioms of ZFC to produce a formal theorem of ZFC. This yields: 'The 
powerset of ω in M is uncountable in M.' In order to see more clearly what this 
is saying, let us expand this out more fully to obtain: 'There is no bijection in M 
between ω and the powerset of ω in M', where a bijection is a certain set (in 
fact, a certain set of ordered pairs, where an 'ordered pair' ‚x, yÚ is defined set-
theoretically as {{x}, {x, y}}). So even though the powerset of ω in M is 
countable, and we can construct a bijection in the 'real world' between ω and the 
powerset of ω in M, it turns out that this bijection is not a member of M. There 
is therefore no contradiction between being 'uncountable in M' and being 
countable (this is known as 'Skolem's paradox'). 
 Once you grasp this point that appending 'in M' is crucial and can change the 
meaning of a term or a sentence dramatically, you may start to worry about all 

http://arxiv.org/pdf/0712.1320.pdf
http://arxiv.org/pdf/0712.1320.pdf
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kinds of things in the preceding paragraphs. For example, shouldn't we 
distinguish between 'ω' and 'ω in M'? This is a legitimate worry. Fortunately, the 
transitivity of M implies that a lot of things, including 'is a subset of', 'is a 
function', 'ω', and other basic concepts, are absolute, meaning that they mean 
the same whether or not you append 'in M'. A complete treatment of forcing 
must necessarily include a careful discussion of which concepts are absolute and 
which are not. However, this is a rather tedious affair, so we will gloss over it. 
Instead, we will simply warn the reader when something is not absolute." [Tim 
Chow: "Forcing for dummies", sci.math.research (10 Mar 2001)] 

 
If "is a subset of" is absolute, then no subset can be missing. Then its absence is in contradiction 
with the axiom of power set which requires that all subsets are existing (cp. section 2.12.5). 
Therefore there is no model of ZFC that contains less than all subsets of the inductive set. 
Therefore there is no model of ZFC that is countable from any perspective.  
 
Most advocates of ZFC claim that the notions of "contained as an element" or of set or subset are 
undefined as such and need a model to become defined. That is a clear indication of fraud. The 
only meaning that has to be observed by all models of ZFC is given by the axioms of ZFC (cp. 
section 2.12) like: There exists an infinite set that contains the empty set. 
 
There are two possible ways to build a model. The first one is by "iterated application of the 
operations given by axioms". By the axiom of infinity the model contains all elements of ω. But 
then it is unavoidable, by the same argument, that by the axiom of power set the model contains 
all subsets of ω – not only some of them. The second alternative does not apply the axioms but 
constructs every element. Then, of course, all elements of ω have to be constructed, for instance 
as { }, {{ }}, {{{ }}}, and so on, or briefly 111... where a 1 shows that its index is in the model. 
But if this is possible, then it is also possible to go through the sequence and to drop some 1, 
indicating the presence of its index, and to replace it by 0, indicating the absence of its index. 
 
What Skolem proved in fact is that every model of any theory is countable – or better: not 
uncountable. Nowhere in his proof Skolem proves the existence of an uncountable model. 
Apparently he simply accepted what Cantor seemingly had "proven". In fact the set of all finitely 
definable elements is countable (or better: not uncountable), cp. section "The list of everything". 
 

"'All' just turns out not to mean what you think it means." [G. Greene in "Countable 
model of ZFC", sci.logic (2 Apr 2017)] 

 
How does this happen to "turn out"? By assuming Cantor's finished infinity? If there are only 
these two alternatives: "infinity is finished and all means not all", or "all means all and infinity is 
not finished", every sober mind will know what to choose. 
 
 

https://groups.google.com/forum/#!searchin/sci.math.research/forcing$20for$20dummies/sci.math.research/pQdPHJYML0E/ZrvqIxpd1sIJ
https://groups.google.com/g/sci.logic/c/kaS_AM87TIs/m/a2x7BT5vAQAJ
https://groups.google.com/g/sci.logic/c/kaS_AM87TIs/m/a2x7BT5vAQAJ
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 Comments on Cohen's legacy 
 
The following text printed in blue is taken from the last paragraph, titled "Some observations of a 
more subjective nature" by Paul Cohen, the inventor of forcing (see section 3.2.2) [Paul J. Cohen: 
"The discovery of forcing", Rocky Mountain Journal of Mathematics 32,4 (2002) p. 1099f] I 
have added some subjective remarks. 
 
Everyone agrees that, whether or not one believes that set theory refers to an existing reality, 
there is a beauty in its simplicity and in its scope. Someone who rejects that sets exist as 
"completed wholes" swimming in an ethereal fluid beyond all direct human experience has the 
formidable task of explaining from whence this beauty derives. 
 
That is a religious statement. Further it is wrong. There are people who think that set theory is an 
unscientific and ugly construct, for instance myself. 
 
On the other hand, how can one assert that something like the continuum exists when there is no 
way one could even in principle search it, or even worse, search the set of all subsets, to see if 
there was a set of intermediate cardinality? Faced with these two choices, I choose the first. The 
only reality we truly comprehend is that of our own experience. But we have a wonderful ability 
to extrapolate. The laws of the infinite are extrapolations of our experience with the finite.  
 
Most of these extrapolations, starting with the use of the bijection as a measure for infinite sets, 
are absolutely unscientific because (1) really scientific results will never depend on "clever 
choice" of indices, and (2) universal quantification over infinite sets shows that every element is 
followed by infinitely many elements, proving that universal quantification fails per se. Analytical 
extrapolations however, like the never decreasing wealth of Scrooge McDuck or the never 
decreasing number of undefiled intervals when enumerating the rational numbers (cp. the 
sections "Scrooge McDuck" and "Not enumerating all positive rational numbers") are refused by 
set theorists because they show that the necessary assumption of finishing infinity is untenable. 
 
If there is something infinite, perhaps it is the wonderful intuition we have which allows us to 
sense what axioms will lead to a consistent and beautiful system such as our contemporary set 
theory. The ultimate response to CH must be looked at in human, almost sociological terms. 
 
I would be very interested to know whether possibly existing foreign civilizations have gone 
astray in this respect as much as humans. 
 
We will debate, experiment, prove and conjecture until some picture emerges that satisfies this 
wonderful taskmaster that is our intuition. 
 
Cohen repeatedly cites intuition. But intuition is furiously exorcized by set theorists if it sheds 
doubt on the results of set theory. 
 
I think the consensus will be that CH is false. 
 
I think the consensus will be that CH is meaningless. 
 

https://projecteuclid.org/download/pdf_1/euclid.rmjm/1181070010
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{{Gödel}} told me that it was unthinkable that our intuition would not eventually discover an 
axiom that would resolve CH.  
 
We need no further axioms. We have to recognize merely the fact that infinity is infinite in every 
respect. Infinity is potential or, to use an expression coined by Cantor, infinity is absolute. 
 
 
 Comments on Chow's beginner's guide to forcing 
 
The following text printed in blue is taken from Chow's essay [Timothy Y. Chow: "A beginner's 
guide to forcing", arXiv (2008) p. 6] which was frequently cited in chapter III. I have added some 
critical remarks which were inappropriate in chapter III but which I found hard to restrain there. 
 
Naively, one might suppose that the powerset axiom of ZFC guarantees that 2¡0 must be a 
member of any standard transitive model M.  
 
This is unscientific polemics. It is not naive to take an axiom word by word by what it says.  
 
But let us look more closely at the precise statement of the powerset axiom. Given that ¡0 is in 
M, 
 
Probably the text means that the set Ù of natural numbers is in M or briefly ω is in M. If so, why 
not say so? In fact some proponents of modern set theory identify ω and ¡0. Even Cantor is 
reported to have done so in his later years. But should the use of ¡0 veil the fact that all natural 
numbers are in M? Anyhow, Ù or ¡0 has to be in M. This is not, as it sounds, a possible premise 
but unavoidable when M is a model of ZF and therefore of the axiom of infinity. 
 
the powerset axiom guarantees the existence of y in M with the following property: For every z in 
M, z œ y if and only if every w in M satisfying w œ z also satisfies w œ ¡0. Now, does it follow 
that y is precisely the set of all subsets of ¡0? No. First of all, it is not even immediately clear that 
z is a subset of ¡0 [...] However, under our assumption that M is transitive, every w œ z is in fact 
in M, so indeed z is a subset of ¡0. More importantly 
 
Why "more" importantly? The former argument is admittedly invalid, so it is not in the least 
important and "more importantly" sounds more important than it could be. 
 
The set y, which we might call the powerset of ¡0 in M, is not the same as the "real" powerset of 
¡0, a.k.a. 2¡0; many subsets of ¡0 are "missing" from y. This is a subtle and important point, so 
let us explore it further. 
 
This is not subtle – and important is it at most as a tool to deceive the naive reader. The power set 
axiom requires x Œ Ù ‹ x œ P(Ù). In words: either a model of ZF contains all subsets of Ù or it 
is not a model of ZF. Therefore it guarantees the real power set of Ù in every set M that contains 
Ù. This set is uncountable from outside. Therefore there is no countable model of ZF. According 
to Skolem's result, this fact proves the inconsistency of ZF. 

http://arxiv.org/pdf/0712.1320.pdf
http://arxiv.org/pdf/0712.1320.pdf
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 Two contradictory statements about Gödel's constructible model 
 
From section 2.17.2 we obtain the two following statements: 
Ë Since by the axiom of infinity the model Δ must contain the minimal inductive set ω, we could 
have started also from there, L* = ω or L* = Ù, instead of L0 = «.  
Ë "Not all concepts can be proved to be absolute; for example P {{the power set}} and V {von 
Neumann's universe with all subsets of its sets}} cannot be proved to be absolute." [Kurt Gödel: 
"The consistency of the continuum hypothesis", Princeton University Press (1940) p. 44] 
 
That means, all finite sets and Ù are in V as well as in L but not all subsets of Ù are in L.  
 
That is impossible. The ZF-axioms are model-independent. That means the possible subsets do 
not at all depend on Δ but only on the axioms of infinity and of power set (see 2.12) quoted here 
in Zermelo's original version1: 
 
Axiom VII.   The domain contains at least a set Z which contains the null-set as an element and is 
such that each of its elements a is related to another element of the form {a}, or which with each 
of its elements a contains also the related set {a} as an element. (Axiom of the infinite.) 
 
Axiom IV.   Every set T is related to a second set î(T) (the '"power set" of T), which contains all 
subsets of T and only those as elements. (Axiom of power set.) 
 
A model of a theory is a structure that satisfies the sentences of that theory, in particular its 
axioms. Therefore every model of this theory contains Ζ = {{ }, {{ }}, {{{ }}}, ...} as well as all 
its subsets. This holds for all its possible models. We have always S Œ Ζ fl S œ P(Ζ).  
 
"All" in the axiom of power set means with no doubt that all collections of the elements of Ù (or 
ω or Z) have to exist in the model; no subset must be missing. So we get an absolute power set 
P(Ù) which, according to Hessenberg's proof (cp. section 2.4), is uncountable and hence not in a 
model that is "countable from outside". 
 
So the corrected statement reads: Since by the axioms of infinity and of power set the model Δ 
must contain all sets and all subsets of the inductive set ω, we could have started also from there, 
L* = P(ω) or L* = P(Ù), instead of L0 = «. 
 
In a less formal way we can argue: If all n œ Ù can be constructed individually, but not all 
subsets of Ù, then this means that deleting some n is harder than constructing them. That's hard to 
believe. For instance the Binary Tree is said to be constructible. But with it automatically all 

                                                 
1 Axiom VII. Der Bereich enthält mindestens eine Menge Z, welche die Nullmenge als Element enthält 
und so beschaffen ist, daß jedem ihrer Elemente a ein weiteres Element der Form {a} entspricht, oder 
welche mit jedem ihrer Elemente a auch die entsprechende Menge {a} als Element enthält. (Axiom des 
Unendlichen.) Axiom IV. Jeder Menge T entspricht eine zweite Menge îT (die "Potenzmenge" von T), 
welche alle Untermengen von T und nur solche als Elemente enthält. (Axiom der Potenzmenge.) [E. 
Zermelo: "Untersuchungen über die Grundlagen der Mengenlehre I", Math. Ann. 65 (1908) pp. 265ff] 
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subsets of Ù (and all real numbers) are constructed as (limits of) its paths. The only conclusion of 
the inconstructibility of all subsets of Ù is that not all elements of Ù can be constructed.  
 
By the way, the so-called axiom of constructibility, abbreviated by V = L, claims that every set of 
V is constructible. 
 
 
 There is no countable model of ZF(C) 
 
A model of a theory is a structure that satisfies the sentences of that theory. 
 
A model of the Peano axioms for instance is every not repeating sequence with first term 1 (or 0) 
like the sequences (1/n) or (2n) or (xn), even with x = 1, namely if not the distinctiveness of 
numerical values but of the structures of written symbols is concerned – a question that is left 
undecided by the Peano axioms. The only fixed member of a Peano model is 1 (or 0). 
 
A model of the group axioms is the set of integers with addition (Ÿ, +) or the set of positive 
rational numbers with multiplication (–+, ÿ) or the set of 2-vectors with vector addition (—2, +) or 
the set of invertible 2μ2-matrices with matrix multiplication (M2, ∏) or the set of bijective 
mappings of a set on its permutations with concatenation (f, o). The neutral element defined by 

the group axioms looks very different for every model in the given cases; it is 0, 1, 0
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 1 0
0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

and fid, respectively. Obviously here no fixed member belonging to all groups is specified. 
 
In the following we will understand by ZA Zermelo's original axiomatization [E. Zermelo: 
"Untersuchungen über die Grundlagen der Mengenlehre I", Math. Ann. 65 (1908) pp. 261-281].  
 
ZA includes the axioms: 
Ë Axiom I. Every set is determined by its elements. 
Ë Axiom II. There exists an (improper) set, the "null-set" 0, which does not contain any element 
at all. 
Ë Axiom IV. Every set T is related to a second set î(T) (the "power set" of T), which contains all 
subsets of T and only those as elements {{in the following denoted by P(T)}}. 
Ë Axiom VII. The domain contains at least one set Z which contains the null-set as an element 
and has the property that every element a of it corresponds to another one of the form {a}, or 
which with each of its elements a contains also the corresponding set {a} as an element.  
 
These axioms are the same in ZF(C). Therefore the results obtained here are vaild too for ZF(C). 
 
Contrary to the Peano or group axioms, ZA specifies the set Z0 = {0, {0}, {{0}}, ...} of elements 
of the form {...{{{0}}}...}, the minimum inductive set. As Zermelo explicitly states Z0 is the 
common part of all possible sets satisfying axiom VII, the intersection of the sets Z, and therefore 
Z0 belongs to every domain of ZA (and of ZF(C)). That implies in particular that all its elements, 
all pairs, all triples, and all combinations of its elements are the same in every domain of a model 
satisfying ZA (and ZF(C)). This implication does not necessitate any further axioms. Axiom IV is 
only required to guarantee that the set of all subsets is a set again.  

https://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002262002
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Now it is easy to see from axiom I that all combinations of elements of Z0 determine sets which 
are subsets of Z0. By axiom IV these subsets form a set, the power set P(Z0), and by Cantor's 
theorem it is clear that P(Z0) is uncountable. 
 
Therefore: If the power set of Z0 is uncountable in the universe V, then it is uncountable in every 
model, namely it is absolutely uncountable, i.e., uncountable for every model "from outside" too. 
 
From this aspect it is not surprising that Zermelo did never accept Skolem's result.  
 
Nobody knows a model of ZF(C), let alone a countable model. What a countable model of ZF(C) 
would prove however is that Z0 need not have an uncountable power set in spite of the fact that 
axiom I guarantees the existence of all its subsets with no regard to definability or other 
restrictions of the model. How could this happen? Only by the understanding that a model which 
cannot define an undefinable subset of Z0 does not contain that undefinable subset of Z0. Alas this 
idea can only evolve from the inversion of the implication in the axiom of separation (see 2.12.2) 
which reads briefly stated: "every defined subset B of A exists". The inversion "only defined 
subsets B of A exist" is of course invalid. 
 
First this is violating logic, and second the same would be true in the set theory of the universe V 
and everywhere else. Most subsets of Z0 are undefinable in our set theory. No uncountable power 
set could exist within our set theory because almost all its elements are not definable there – and 
nowhere else. So, if undefinability of sets makes them not existing, then there are only countable 
models. If however this is not the case, then there are only uncountable models.  
 
Conclusion: Either there are no countable models of ZF(C). Then Skolem's theorem proves the 
inconsistency of ZF(C). Or there are only countable models of ZF(C). Then this fact proves the 
inconsistency of all significant results of set theory. So either ZF(C) has no countable model and 
therefore it is inconsistent. Or ZF(C) has only countable models and therefore it is wrong.1 The 
least we can say is that this theory is of no interest in mathematics and other sciences. 
 
In other words: Every model M of a set theory containing the axioms of infinity and power set 
contains all subsets of ω, where "all" refers to all subsets that are available for the "outside 
observer" – or the outside observer recognizes that M is not a model of these two axioms. 
Therefore uncountability is a self-contradictory notion. 

                                                 
1 Note that when God at the end of times will consider our universe and its universe of sets, then he will be 
able to count all elements of all sets that ever have appeared, including all "antidiagonal numbers" and 
including all antidiagonal numbers he might have bothered to construct himself. Note that it is impossible 
to insert undefinable digit sequences in a Cantor-list. Note that it is as impossible to extract an undefinable 
antidiagonal number from a Cantor-list. But every list and every antidiagonal number are defined at least 
by their spatio-temporal coordinates. This proves that also in our real physical universe ZF(C) is countable 
from inside and from outside. 



 325

 Topology 
 
 Covering all rational points by rational intervals 
 
Cover all rational points1 qn of the positive real axis, for instance using Cantor's famous  
enumeration (cp. section 2.1), by closed2 intervals 
 
 In = [qn - 10-n/2, qn + 10-n/2] 
 
of measure 10-n. The first three intervals obtained in this way are shown in this figure above the 
abscissa: 
 
 
 
 
 
The infinitely many intervals following could be seen under a microscope only. But if each one 
had been marked by a notch of a femtometer width, no free space would have been left. 
 
The intervals cover a measure of less than 1/9 (because many are overlapping). To demonstrate 
the relation between intervals and complement assume for definiteness that N points of the first 
part [0, 1000] of the real axis are covered by the first N intervals of total measure º 1/10. Then 
their average distance 103/N is 10000 times their average length 10-1/N; the complement is as 
empty as the matter surrounding us. Using smaller intervals or a larger part of the real axis, the 
emptiness of the universe could be undercut. 
 
To establish the required infinite measure, uncountably many irrational points would have to 
populate the complement. But two irrational points of the complement always have a rational 
point between each other, that means an interval In, because there are no rationals outside of 
intervals. Further every interval has rational endpoints which again are covered by intervals. 
Therefore isolated intervals cannot exist but infinitely many intervals are sticking together 
without an interruption. We call this construct a cluster. If the intervals do not cover the whole 
positive real axis, clusters must have ends. These ends cannot be rational points because all 
rationals are covered by intervals. The ends of clusters – and only those – constitute the points of 
the complement. 
 
The clusters or their endpoints can be considered as structuring and enumerating a Cantor-list. 
The only difference is that the enumeration does not follow the natural order of Ù. So we need 
uncountably many irrational numbers in the complement separated by countably many clusters. 
That is a contradiction similar to uncountably many terms in a sequence or uncountably many 
entries populating a Cantor-list. 
                                                 
1 We do not distinguish between a real number x and a point x with real coordinate, because we adopt 
Cantor's axiom uniquely relating real numbers and points of the real line. 
2 Open intervals would not make a difference because every endpoint is rational and is covered by another 
interval. Therefore always infinitely many intervals are sticking together without an interruption. Only 
then this sequence can have an irrational limit.  
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The points of the complement are not more than countable because each one is constricted 
between two clusters. Every point of the complement can be put in bijection with the cluster the 
right endpoint of which it is.  
 
Where are the missing irrational points? 
 
According to set theory they form a "completely scattered space", the so-called "Cantor dust", 
such that the missing irrational points (limits of infinite sequences of intervals, i.e., endpoints of 
clusters would not be enough) are limits of arbitrary, imagined infinite sequences. These 
irrational points must be separated from each other. Separated by what? There is nothing 
available. This is incompatible with real analysis and basic topology. 
 
Assume that the point ξ is in the complement (however it may have been defined) but not a limit 
of a cluster. Then it has, like every point on the real axis, two open intervals (-¶, ξ) and (ξ, ¶) 
around itself. But there is an open ε-neighbourhood without points of any cluster (otherwise ξ is a 
limit). So this neighbourhood must be an interval of the complement. This is a contradiction 
because intervals with only irrational points cannot exist on the real axis. 
 
The claim of set theory that ξ is a degenerate interval (i.e., a point) without adjacent intervals is 
not acceptable because there are no gaps and no disconnected points on the continuous real axis. 
[WM in "Cantor / Abbildung N auf R", de.sci.mathematik (30 Nov 2008). WM: "Matheology § 
019", sci.math (27 May 2012). Ganzhinterseher: "How can Clusters in Cantor dust absorb enough 
irrational points?", MathOverflow (31 Dec 2018)] 
 
 
 
 Covering all rational points by irrational intervals 
 
Instead of handling clusters the rational points of the real axis may be covered in a simpler way 
by closed intervals with irrational endpoints, 
 
 Φn = [qn - 10-nÿ◊2, qn + 10-nÿ◊2] 
 
for instance. All intervals together have measure (2/9)ÿ◊2 or less. The open complement Ξ of 
infinite measure does not contain any rational point because they are confined within intervals. 
All endpoints of the intervals are endpoints of the open complement Ξ. The further structure of 
the complement is not of interest. There are only three important facts: 
 
Ë Cantor's axiom: Every real number determines a point on the real axis. 
Ë The rational points can be included in intervals of arbitrarily small total measure. 
Ë Between two irrational numbers α < β there is a rational number q with α < q < β. 
 
Topology of the real axis supplies with ◊ = —\–: 
 
 "α œ ◊ "q œ – $β œ ◊\{α}: |α - β| < |α - q|     (1) 
 "α œ ◊ "β œ ◊\{α} $q œ –: |α - q| < |α - β| .     (2) 

https://groups.google.com/g/de.sci.mathematik/c/rlHjIgNSOII/m/2-ttuaHz0ywJ
https://groups.google.com/forum/#!searchin/sci.math/%22Matheology$20%C2%A7019%22/sci.math/4ppkwe6EPg8/8y8YipSOXnoJ
https://groups.google.com/forum/#!searchin/sci.math/%22Matheology$20%C2%A7019%22/sci.math/4ppkwe6EPg8/8y8YipSOXnoJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190102 MO Clusters.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/190102 MO Clusters.html
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For every point α œ Ξ however only (1) is satisfied: For every rational point q œ — there is an 
irrational point β ∫ α closer to α – but not vice versa. 
 
But can an irrational α œ Ξ  exist at all? Since in the natural order there cannot exist two 
irrational numbers without a rational number between them, there is no irrational point in the 
complement either. The remainder of the real axis of infinite length is empty – if ¡0 is a sensible 
notion and if there are only ¡0 rational points on the real axis. Moreover even without further 
irrational numbers in the complement, the endpoints alone would provide an existence proof for 
irrational numbers without rational numbers between them. And if all Φn were extended by a 
factor 1.01, the irrational endpoints would disappear. [WM: "Matheology § 019", sci.math (1 Jun 
2012). Hans Hinterseher: "How can the following three principles be reconciled?", 
MathOverflow (29 Nov 2018). WM: "I will enjoy your attempts.", sci.math (5-8 Dec 2018)] 
 
 
 
 Symmetry considerations 
 
Removing N disconnected intervals from a circle leaves N disconnected intervals in the 
complement – if N is finite. Harnack had extrapolated this to the case of ¡0 intervals. [Axel 
Harnack: "Ueber den Inhalt von Punktmengen", Math. Annalen 25 (1885) pp. 241-250] For a 
simple proof see section "Ants moving notches". But this result shows either that the measure of 
the circle is zero or that the notion of countability is wrong. The latter is forbidden to think in set 
theory (even stronger than the former). Therefore a countable number of intervals removed from 
the real axis, must leave an uncountable number of separated points in the complement.1  
 
We can replace the intervals by their midpoints without reducing the complement or changing the 
structure of separation. And the example does not depend on the rational character of points, 
since we could shift the whole system by π. After replacing the lengthy expression "cluster or 
separated (degenerate) interval or point of Cantor-dust" by "atom" we get the theorem: 
 
 (1) Removing ¡0 atoms separates 2¡0 atoms in the complement. 
 (2) Removing 2¡0 atoms separates ¡0 atoms in the complement. 
 
(2) follows by symmetry, for instance when removing what in (1) has remained. Therefore we 
can state the general rule: Removing N atoms leaves N or 2N or log2N atoms, depending on N. If 
we stop however in (2) after having removed ¡0 atoms, we have, according to (1), separated 
more atoms in the complement, namely 2¡0, than after finishing. [WM: "Clusters and Cantor 
dust", sci.logic (4 Jan 2019). WM: "Warum gibt es so viele verschiedene Gegendarstellungen?", 
de.sci.mathematik (10 Dec 2018).] 

                                                 
1 These points must be separated because the set of intervals could contain all rational numbers, and 
irrational numbers cannot exist side by side, i.e., in a common interval without rational numbers. Their 
behaviour resembles protons and neutrons. 

https://groups.google.com/forum/#!searchin/sci.math/%22Matheology$20%C2%A7019%22/sci.math/4ppkwe6EPg8/8y8YipSOXnoJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181203 MSE 3 principles.html
https://groups.google.com/forum/#!topic/sci.math/lBnPNEYspiI
https://groups.google.com/g/sci.logic/c/5A6TuGC5UCg/m/l3v6K9bcFQAJ
https://groups.google.com/g/sci.logic/c/5A6TuGC5UCg/m/l3v6K9bcFQAJ
https://groups.google.com/forum/#!topic/de.sci.mathematik/GeR-sLKO-io
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 How can points in the complement be created? 
 
Cover all rational points qn of the positive real axis by closed intervals with irrational endpoints 
[qn - ◊2/2n, qn + ◊2/2n] having total measure less than 2◊2. The complement is infinite. 
 
What is the complement? Uncovered points ξ can appear according to two principles: 
 
 (1) An end of an interval does not lie in any other interval but borders the complement. 
 (2) There is a limit of an infinite sequence of intervals which are connected without gaps.1 
 
But principle (1) is not feasible, because the ends en are irrational and therefore cannot border an 
open or degenerated interval of only irrational points ξ. Irrational points with no intervals 
between them are excluded by the fact that between any two irrational numbers there is a rational 
number.2 Principle (2) however requires ¡0 intervals of ¡0 rational points each in order to create 
one point of the complement. Therefore we cannot create more points of the complement than are 
in intervals. In fact far less only. 
 
Result: The complement cannot be larger than the covering intervals are together. This disproves 
the assumption that by reordering sets remain the same. [WM: "What scatters the space?", 
sci.math (18-25 May 2020)] 
 
 
 
  Two basic principles of topology 
 
Definition: Two items of the real axis touch each other if they are disjunct and there is nothing 
between them. By this definition two points or two closed intervals or two open intervals cannot 
touch each other. 
 
 (1) Every point x of the real axis touches two open intervals (-¶, x) and (x, ¶). 
 (2) Between two irrational points ξ and ξ' there is always a rational point. 
 
If we cover all rational points qn of the positive real axis by intervals In = [qn - 1/2n, qn + 1/2n] 
then a point ξ of the complement can only be pinned between two clusters, each consisting of 
infinitely many closed intervals. If the rationals are countable, then the set of clusters is countable 
too and has countably many ends. There cannot be more ends touching the complement. The 
measure of the real axis is zero. [WM: "Covering the rationals by intervals with irrational ends", 
sci.logic (18 May 2020)] 

                                                 
1 Otherwise one of them would not lie in any other interval and we had principle (1) 
2 Note that the number of elements in the complement would nevertheless be limited to one per endpoint 
en: If en borders the complement, then there is a point ξ of the complement in every neighbourhood by 
definition. Now assume that there are two such points ξ and ξ'. Then we know that ξ and ξ' are separated 
by at least one interval. This interval has a finite measure. Therefore we can reduce the neighbourhood to 
half of this measure such that only one point ξ remains. 

https://groups.google.com/g/sci.math/c/CTUA5O2L7X0/m/yijfC7rFAgAJ
https://groups.google.com/forum/#!searchin/sci.logic/%22Covering$20the$20rationals$20by$20intervals$20with$20irrational$20ends%22%7Csort:date/sci.logic/Yz1GZ1P_ic0/ceosClzUAAAJ
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 Ants moving notches 
 
(1) Define a sequence (pn) of points pn = 1/n in the unit interval. These points define subintervals 
An = [1/(n+1), 1/n] for odd n and Bn = [1/(n+1), 1/n] for even n. The intervals of sort A, marked 
by ===, and of sort B, marked by ---, are alternating. If the points are indicated by n, we have 
something like the following configuration (drawing not to scale):  
 

 ...7--6==5---4===3-------2===========1 . 
 

Theorem   If two neighbouring points pn and pn+1 are exchanged, the number of intervals remains 
the same, for example: 
 

 ...7--6==5---3===4-------2===========1 . 
 

The intervals remain alternating. In particular, the number of intervals cannot increase.  
 
(2) Define a set of intervals Im in the unit interval such that interval Im has length |Im| = 10-m and 
covers the rational number qm of a suitable enumeration of all rational numbers of the unit 
interval. Then the union of all Im has measure 1/9 or less (if intervals overlap). The remaining 
part of the unit interval has measure 8/9 or more and is allegedly split into uncountably many 
singletons. A sketch of the intervals Im ~~~ is given here: 
 

 ... a b~~~~~~~~~c~~~~~~~~~d~~~~~~e f~~~g~~~h i~~~j k~~~l . 
 

We cannot exclude intervals lying within intervals like c~~~d within b~~~e or, alternatively, 
overlapping intervals like b~~~d and c~~~~e and also adjacent intervals like f~~~g and g~~~h. 
 
(3) Let the endpoints pn of the configuration described in (1) move in an arbitrary way, say 
powered by little ants moving notches. Then it cannot be excluded that the pn and the endpoints 
of the Im of (2) will coincide (no particular order is required) 
 

 ... a b~~~~~~~~~c~~~~~~~~~d~~~~~~e f~~~g~~~h i~~~j k~~~l 
 ... 3=7-------------11========5--------12=4---2===9-8==10-6==1 . 
 

As our theorem shows, there will be not more than ¡0 intervals in the end position. This includes 
the set of Im and the set of intervals in the complement. In case that intervals fall into intervals, 
the complete number can be reduced; in no case it can grow. Therefore the assertion of 
uncountably many degenerate intervals (so-called singletons – but there cannot exist irrational 
singletons without rational numbers separating them) in the complement has been refuted. 
 
(4) The same may occur in the unit interval bent to a circle, i.e., on a ring of circumference 1. In 
the first step construct ¡0 pairs of endpoints pn. Then let the endpoints slide in an arbitrary way. 
They could in principle reach the configuration of the intervals Im covering the rationals qm with 
length 10−m. This is not excluded as a final state – if the Im can be brought to existence at all. In 
mathematics the ¡0 complementary intervals will never become uncountably many singletons 
during this continuous process. [WM: "Matheology § 030", sci.logic (10 Jul 2012)] 

https://groups.google.com/g/sci.logic/c/hOHmaYXFOzY/m/jGkINiaZCgAJ
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 Arguing over "scattered space" 
 
"As it is included into the irrational endpoints it cannot contain irrational numbers either. The 
flaw is here." [fedja in "How can the following three principles be reconciled?"1, MathOverflow 
& Math.StackExchange (29 Nov 2018)] This comment is merely a counterfactual claim.  
 
"One thing you will observe is that some of your larger intervals contain many of the smaller 
intervals, so you have a redundant cover. Another thing to observe is this is the wrong forum for 
this question.2" [Gerhard Paseman, loc cit] This answer explains, but in the wrong direction, even 
decreasing the number of disconnected parts or atoms of the complement. 
 
The most common and frequent answer, avoiding any further thought, says "as soon as you have 
an infinite number (even countable), weird things can (and do) happen." [Guillaume Brunerie in 
"Covering the Rationals – A Paradox?", MathOverflow (12 Feb 2012)]. But if the number of 
intervals can explode "in the infinite", the number of slots in Cantor-lists can explode too. 
 
Another frequent answer "a point of the complement could have on each side an infinite sequence 
of removed intervals approaching it rather than having a directly adjacent interval" [Mike Terry 
in "Covering all rational points by irrational intervals", sci.logic (24 Nov 2018)] claims one point 
per infinite cluster sequence. That is a yield of 1/¶ whereas ¶/1 would be required. (Note that 
there are no limits x without some terms of the sequence converging to x and only to x.) 
 
It has been claimed that in spite of symmetry between removed and remaining parts (see section 
"Symmetry considerations") ¡0 finite intervals let uncountably many atoms in the complement: 
"Yes, they do." [George Greene, loc cit (27 Dec 2018)] 
 
And even completely impossible things have been claimed: "There are points in the complement 
C that are neither endpoints of intervals nor interior points of C." [Jürgen Rennenkampff in 
"Clusters and Cantor dust", sci.logic (5 Jan 2019)] So there are points in C that are not in C? "C 
has no interior – that much is true." [Jürgen Rennenkampff, loc cit] No interior? That means that 
most of the real line is empty, a vacuum. 
 
Finally the truth comes to light: "the question intended is not 'find me any sub-interval of — that 
is adjacent to x'. It is 'find me one of the intervals in the given partition that is adjacent to x'." 
[Mike Terry, loc cit (6 Jan 2019)] That is a clever move! Simply forget and drop what could raise 
disturbing conflicts, investigate only a given partition. But that's not mathematics – it's a fraud. 
 
Every point on the real line, scattered or not, is an endpoint of two (at least half-) open intervals. 
Since two points cannot lie "next to" each other, there is always an open interval between them. 
Since the complement has no open intervals, every endpoint of a covering interval lies in another 
covering interval. All overlap. There is no complement other than limits of infinite sequences of 
overlapping intervals (gaps in the sequence would exhibit "next to" points). Thus, if the rational 
numbers in natural order are countable, then the real line has measure zero. [WM: "The rationals 
in natural order on the real line are not countable", sci.math (20-23 Jul 2020)] 
                                                 
1 For the three principles see section "Covering all rational points by irrational intervals". 
2 The "Research Community" of MathOverflow mercilessly deletes stuff that does not hit their level, in 
particular if this level is surpassed as here is obvious from the quoted answer. 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181203 MSE 3 principles.html
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/181203 MSE 3 principles.html
https://mathoverflow.net/questions/88267/covering-the-rationals-a-paradox?rq=1
https://groups.google.com/g/sci.logic/c/0Dzy1OjA0Aw/m/7dvUo-ReDgAJ
https://groups.google.com/g/sci.logic/c/0Dzy1OjA0Aw/m/7dvUo-ReDgAJ
https://groups.google.com/g/sci.logic/c/5A6TuGC5UCg/m/l3v6K9bcFQAJ
https://groups.google.com/g/sci.logic/c/5A6TuGC5UCg/m/l3v6K9bcFQAJ
https://groups.google.com/g/sci.logic/c/5A6TuGC5UCg/m/l3v6K9bcFQAJ
https://groups.google.com/forum/#!topic/sci.math/jaOQwreD-7k
https://groups.google.com/forum/#!topic/sci.math/jaOQwreD-7k
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 The Kronecker-plane (I) 
 
The fundamental principle of Cantor's diagonal argument is this: Every digit sequence of the 
Cantor-list has a diagonal digit. If we run through the ordered set of all natural numbers, then we 
hit each one exactly once. It is impossible to circumvent the diagonal because 
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1jk
k
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=
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In order to scrutinize this principle we define the Kronecker-wall 
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For every natural number k we have 
 
 lim 0jkj→∞

δ =  

 
and we get the remarkable result 
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because the limit of the sequence 1, 1, 1, ... is 1, and the infinite sum 0 + 0 + 0 + ... is 0. 
 
It is impossible to circumvent the Kronecker-wall in the Kronecker-plane. It would be possible 
beyond the outmost right edge at j = ¶, alas ¶ is not a part of the plane. 
 
This arguing, however, is false because contrary to sequences like 1/k every sequence ( jkδ ) 

assumes its limit lim 0jkj→∞
δ =  already for finite argument j, i. e., inside of the Kronecker-plane. 

That means it is possible to run through the ordered set of all natural numbers within the 
Kronecker-plane and without clashing with the Kronecker-wall. The way defined by j = k + 1, for 
instance, never collides with the Kronecker-wall but contains all natural numbers j and k. 
Obviously there are many such ways.  
 
Thus, Cantor's Grund-Satz is invalid. Not every infinite way through the plane from bottom to 
top crosses the diagonal. But such a way is only possible if the set of natural numbers and with it 
the Kronecker-plane and its top do not exist as an actually finished infinity. Kronecker certainly 
would have agreed. [W. Mückenheim: "Die Geschichte des Unendlichen", 7th ed., Maro, 
Augsburg (2011) p. 116. WM: "Das Kalenderblatt 110414", de.sci.mathematik (13 Apr 2011)] 
 

https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
https://groups.google.com/forum/#!topic/de.sci.mathematik/qxujQ54la1s
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 The Kronecker-plane (II) 
 
We are standing at the edge of the infinite Kronecker-plane. Nothing is living here, no animals, 
no trees, not even a blade of grass; only hot air is wafting over the dry desert landscape. 
Sometimes the tempest drives a ripped off shrub of wormwood or a torn plastic bag or an empty 
yoghurt cup across our path. In the far distance a huge mountain range rises discouragingly, the 
Kronecker-wall. If you want to cross the plane, you will unavoidably encounter the obstacle and 
you will have to climb over, because for every way j that you choose (see figure previous page) 
 
 1jk

k∈

δ =∑  . 

 
This merciless law is the fundamental principle of Cantor's lifework, the Grund-Satz which he 
has concocted of his teacher's work: To run from south to north through the plane, i.e. to pass 
through all natural numbers, is impossible without crossing the Kronecker-wall. 
 
Unless we go west as far as possible and choose the way at j = 0. Because for both, Kronecker 
and Cantor, zero was not a natural number, and therefore 
 
 0 0 k

k∈

δ =∑  . 

 
And yet there is another way for the knowledgeable scout. Far, far in the east, there were ω 
resides and the sun rises, the radiation of which however is scorching and burning the 
unprotected wayfarer, there is 
 
 0k

k
ω

∈

δ =∑  

 
and the brave man can draw his course and run free. Alas this is an empty promise! Who will 
reach the edge? 
 
But stop! There is even another way! The limit is taken always before ω, that means in the finite 
domain before the strip of ω. For every k there is a j that allows to avoid the wall – at least always 
during the next step. Before reaching k = j traverse and switch the way to j = k + 1 (see figure 
previous page). It allows you to remain in the plane. 
 
So the Kronecker-wall does not cover the whole plane? Not at all! It covers hardly the smallest 
part! This is simply shown by the fact that there are infinitely many ways to avoid it, for instance 
j = k + 1, j = k + 2, j = k + 3, ... and many, many more, if you apply fractions, products, 
logarithms, roots, or powers. By this technique you will not miss any natural number k and (not 
reach the north though, because it does not exist, but) advance as far as you like in northern 
direction – unbounded, with no limit. [WM: "Das Kalenderblatt 101121", de.sci.mathematik (20 
Nov 2010)] 
 
 

https://groups.google.com/forum/#!topic/de.sci.mathematik/4fGxAHe4apM
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 An analytical path through the Kronecker-plane 
 
An analytical equivalent is this: Consider the sequence of functions fn(x) with n = 1, 2, 3, ...  
 

 1 for 1
( )

0 else
{n

n x n
f x
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Then we obtain 
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This difference between the limit of the integral and the integral over the limit is often cited as 
evidence that for sequences of sets the limit of the sequence of cardinal numbers need not be 
identical with the cardinal number of the limit set as has been discussed in section "Limits of 
sequences of cardinal numbers". This however is a misleading analogy. The limit of the sequence 
of sets should be one and the same set with compatible properties describing the elements and 
their cardinality. In the above formula however, we treat two completely different cases, namely 
the integral over a track within the plane, starting and arriving at a finite number n, and the track 
over the margin at ¶, i.e., outside of the plane, a track which in fact does not exist, since ¶ is not 
a constant. 
 
 
 
 My meadow saffron dream 
 
I had a dream. I saw an infinite green real line with its infinitely many unit intervals and in every 
unit interval there stood a purple meadow saffron, covering about one hundredth of the interval. 
And I thought that these flowers can be re-ordered such that they become dense, covering all 
rational numbers and squashing themselves. No green part of the real line is any longer visible 
and between every two flowers there is another one. 
  
Then I awoke and looked around me. And I realized, yes, I was only dreaming. And those who 
can believe in that dream in the waking state must be set theorists. 
 
And it became as clear as never before to me: People want to be deceived, but Cantor, 
unwillingly of course, has accomplished the biggest fraud in history of science. [WM: "I had a 
dream", sci.math (2 Sep 2017)] 

https://groups.google.com/forum/#!topic/sci.math/dnGL6ZiIC4E
https://groups.google.com/forum/#!topic/sci.math/dnGL6ZiIC4E
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 On continuity-preserving manifolds 
 
Cantor's essay on continuity-preserving manifolds [G. Cantor: "Über unendliche lineare 
Punktmannichfaltigkeiten" (3), Math. Ann. 20 (1882) pp. 113-121] contains a proof showing that 
the manifold —n (with n ¥ 2) remains continuous if the set of points with purely algebraic 
coordinates is taken off. According to Cantor's interpretation this is a peculiar property of 
countable sets. In fact, this property does not only hold for all countable sets but it is the same for 
many uncountable sets too. It becomes immediately clear, by simplifying the proof, that the 
continuity of —n is also preserved, if the uncountable set of points with purely transcendental 
coordinates is removed. 
 
In the following the expressions "manifold" and "continuum" denote the n-dimensional Euclidean 
space. They are used synonymously with the set of points, each of which is determined by a tuple 
of n coordinates, which the n-dimensional Euclidean space is isomorphic to. 
 
By defining origin and axes of a coordinate system the points of a manifold are subdivided into 
three sets: the countable set ¿¿ of those points with purely algebraic numbers as coordinates, the 
uncountable set ”” of those points with purely transcendental numbers as coordinates, and the 
uncountable set ¿” of the remaining points with mixed coordinates, i. e., with at least one 
algebraic number and at least one transcendental number serving as a coordinate. Of course these 
properties do not belong to a point itself because the type of coordinate system as well as its 
origin and its axes can be chosen in an arbitrary way. But once the system has been fixed, the 
bijective mapping of the points N of the continuum on the n-tuples (x1, x2, ..., xn) is fixed too: 
 
 N ¨ (x1, x2, ..., xn) œ —n = ¿¿ » ”” » ¿” .     (1) 
 
A line or curve l connecting two points of —n may contain infinitely many points of ¿¿. If the 
latter set is taken off, l is no longer continuous in the remaining manifold (—n \ ¿¿). But —n 
(with n ¥ 2) remains continuous even if the set of points with purely algebraic coordinates is 
taken off. This means between two of the remaining points, with not purely algebraic coordinates, 
which Cantor called N and N', one can always find a continuous linear connection of the same 
character, which Cantor called l'. In short 
 
 N, N' œ (—n \ ¿¿)   fl   $l'(N, N'): N, N' œ l' Õ (—n \ ¿¿) .    (2) 
 
Cantor's proof of the continuity of (—n \ ¿¿) 
 
The set ¿¿ is countable. Hence, any interval of the uncountable set l contains points belonging 
to the uncountable set (—n \ ¿¿). We consider a finite set of them {N1, N2,..., Nk}. Between any 
pair of these points a part of a circle can be found which connects these points but contains no 
point of ¿¿. This is shown for two points, N and N1, as follows: The centres of circles which on 
their circumference contain at least one point of ¿¿ form a countable set. The centres of circles 
containing on their circumference N and N1 belong to a straight line (i.e., an uncountable set). 
This line contains at least one point which is centre of a circle containing on its circumference N 
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and N1 but not any point of ¿¿. As this can be exemplified for any pair of the finite set of points 
{N, N1, N2 ,..., Nk, N'} the proof is complete (see fig. (a) for the two-dimensional case). 
 
Simplified proof of the continuity of (—n \ ¿¿) 
 
This proof would work as well, if only the original pair of points, N and N', had been considered. 
But even straight lines can serve as connections. We apply Cartesian coordinates to show this. At 
least one coordinate, say xν, of the not purely algebraic point 
 
 N = (x1, ..., xν-1, xν, xν+1, ..., xn)       (3) 
 
is transcendental. Let this be constant while all the other xμ (with μ = 1, ..., ν-1, ν+1, ..., n) are 
continuously changed until they reach the values of the coordinates of N' 
 
 (x'1, ..., x'ν-1, xν, x'ν+1, ..., x'n)  .       (4) 
 
The xμ (with μ = 1, ..., ν-1, ν+1, ..., n) define a hyper plane —n-1 Õ —n within which we can 
choose an arbitrary way. If at least one of the final coordinates x'μ is transcendental, we finish the 
proof by changing xν to x'ν without leaving the set ”” » ¿” (see fig. (b) for the two-dimensional 
case). If none of the final coordinates x'μ is transcendental, we stop the process of continuously 
changing the xμ for one of those coordinates, xρ, at the transcendental value x''ρ before the final 
algebraic value x'ρ of (4) is reached (or we re-adjust x''ρ afterwards). Then, staying always in the 
set ”” » ¿”, we let xν approach x'ν, which in this case must be transcendental, and finally we 
complete the process by changing xρ from its intermediate transcendental value x''ρ to its final 
value x'ρ (see fig. (d) for the two-dimensional case). 
 
This method can also be applied to any pair of points of {N, N1, N2 ,..., Nk, N'} of l belonging to 
the set ”” » ¿”. Although the complete length of the connection l' remains unchanged, the 
deviation of any of its points from the straight line l can be made as small as desired (see fig. (c) 
for the two-dimensional case). 
 
Proof of the continuity of (—n \ ””) 
 
Cantor considered the preserved continuity of (—n \ ¿¿) a peculiar property of countable sets 
(cp. section 4.2.2 "Physical space"). He obviously overlooked that taking off the uncountable set 
”” leads to a continuous manifold too, similar to that remaining after taking off ¿¿. This fact 
becomes immediately clear from the proof given in the preceding section but remains veiled in 
Cantor's original version. 
 
Obviously any pair of points with at least one algebraic coordinate can be connected by a 
continuous linear subset of the same character 
 
 N, N' œ (—n \ ””)   fl   $l'(N, N'): N, N' œ l' Õ (—n \ ””) .    (5) 
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The proof runs precisely as demonstrated above, with the only difference that those coordinates 
which there and in the caption of the figure are prescribed as transcendental, now have to be 
algebraic. We can even go further and take off all points with purely non-rational coordinates or 
even all points with purely non-natural coordinates, so that there remains at least one xν œ Ù of 
point N and at least one x'μ œ Ù of point N'. It is obvious then that N and N' have a continuous 
connection as depicted in fig. (b) or in fig. (d) along the "grid lines". In fact there are infinitely 
many of these connections. 
 
As an example we consider points N = (n, ξ) and N' = (n', ξ') with n, n' œ Ù and ξ, ξ' œ — in the 
two-dimensional Cartesian coordinate system —2. After taking off all points except those with at 
least one coordinate being a natural number, we have in the remaining manifold the connection 
by changing coordinates as described in (6). First, moving along the grid line x1 = n, change ξ, 
the possibly non-natural x2-coordinate of N, to an intermediate coordinate x''2 = m, choosing any 
natural number m. Then change x1 = n to x'1 = n', moving along grid line x''2 = m. Finally change 
x''2 = m to x'2 = ξ', moving along grid line x'1 = n', briefly  
 
 N = (x1, x2) = (n, ξ) Ø (n, m) Ø (n', m) Ø (n', ξ') = (x'1, x'2) = N' .   (6) 
 
The connection does not contain any point with purely non-natural coordinates. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Connection l' circumventing points of ¿¿ between N = (x1, x2) and N' = (x'1, x'2) proposed by 
Cantor, (b) l' of the present proof in case x2 and x'1 are transcendental, (c) same as (b) in case a 
smaller deviation of l' from the straight line l is requested, (d) l' of the present proof in case only 
x2 and x'2 being transcendental. 
 
[W. Mückenheim: "On Cantor's important proofs", arXiv (2003)] 

http://arxiv.org/pdf/math.GM/0306200
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 Is it possible that mathematics is fundamentally wrong? 
 
Mathematics is fundamentally wrong – at least what many modern mathematicians consider the 
fundament of mathematics: transfinite set theory. It is easy to prove (see below) that the set of 
rational numbers is not equinumerous with the set of natural numbers, because the so-called set-
limit is required to show that no rational numbers remain without natural index. This set limit 
also "proves" that Scrooge McDuck can get bankrupt when he receives 10 $ per day and spends 1 
$ per day. 
 
Proof: For every given positive rational number a natural number can be given and vice versa. 
Usually it is claimed that this proves the equinumerosity of the set Ù of natural numbers and the 
set – of positive rational numbers. But since the same can be claimed for the set Ù of natural 
numbers and the set — of positive real numbers too, this fact is not relevant.  
 
The latter is not accepted as a proof of equinumerosity of Ù and — because there is a counter 
proof by the diagonal argument. In the former case of Ù and – however there is also a counter 
proof, namely from calculus.  
 
Every fixed natural number n belongs to a finite initial segment {1, 2, 3, ..., n} which is followed 
by infinitely many natural numbers {n+1, n+2, n+3, ...}, i.e., by nearly all natural numbers. Same 
holds for the rational numbers. In order to prove equinumerosity we have to show that these huge 
remainders are equinumerous. This however can be contradicted. In every interval [0, n] on the 
real line there are infinitely many rational numbers not indexed by the first n natural numbers. 
Their number grows by an infinity with every step from n to n+1. Therefore we have a function 
f(n) of positive rational numbers less than n which are not indexed by a natural number between 1 
and n. According to calculus this function has the (improper) limit infinite.  
 
Usually set theorists do not accept this argument because they blindly depend on the bijection 
between given numbers. This is insufficient because, as said above, the bijection between given 
numbers covers only a vanishing part of all numbers. [W. Mückenheim in "Is it possible that 
mathematics is fundamentally wrong?", Quora (25 Dec 2016)] 

https://www.quora.com/Is-it-possible-that-mathematics-is-fundamentally-wrong/answer/Wolfgang-Mueckenheim-1?__nsrc__=4&__snid3__=3356986508
https://www.quora.com/Is-it-possible-that-mathematics-is-fundamentally-wrong/answer/Wolfgang-Mueckenheim-1?__nsrc__=4&__snid3__=3356986508
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 Collected paradoxes 
 
Strange things happen "at infinity". As we have seen, transfinite set theory requires the belief in 
the following paradoxical results: 
 
Ë There exist undefinable "real" numbers, i.e., undefinable subsets of Ù. See sections "The list of 
everything" and "A common property of all models of ZFC". 
Ë Alternatively every real number can be "defined" by an actually infinite sequence of digits, but 
without defining the last digit and the digit next to the last one and the digit next to that one and 
so on – in infinity. This leads to dark numbers. See "Dark natural numbers in set theory". 
Ë Fractions can become irrational "at infinity". See section "Sequences and limits". 
Ë Well-ordering of objects that cannot be identified and distinguished is possible. See section 
"Choosing and well-ordering undefinable elements?". 
Ë After ω unions in vain the union ω + 1 reaches the aim ω or Ù. See section "ω + 1 unions". 
Ë There are strictly increasing series that contain their limit. The sequence of all finite initial 
segments of Ù does not contain Ù, but their union yields Ù, which would be impossible if Ù was 
not a term of the inclusion-monotonic sequence. See section "Inclusion monotony". 
Ë Diverging sequences of sets can have empty limits. See sections "Dark natural numbers in set 
theory", "Scrooge McDuck", and "A disappearing sequence". 
Ë There are different irrational numbers without a rational number between them. See section 
"Covering all rational points by irrational intervals". 
 
Some things seem to turn to the contrary when infinity is finished. 
 
 
 Endorsers – or the naïveté of contemporary set theorists 
 
In section 2.13 we have learnt about the early, naïve approach of well-ordering reported by 
Hausdorff: Counting to ω and beyond. This method is unfeasible because of two reasons. Firstly, 
the method would supply a way to obtain a definable well-ordering of the real numbers which is 
known to be impossible, and secondly, the first ordinals are the natural numbers which cannot be 
exhausted in a step-by-step procedure without violating Peano's successor axiom.  
 
Nevertheless there are some contemporary logicians who persist to endorse this method. In 
MathOverflow, answering the question [Wilhelm: "Endorsers of the method of well-ordering 
reported by Hausdorff?", MathOverflow (11 Mar 2018)] Emil Jeřábek counterfactually claimed: 
"This does not violate any Peano axioms. It is a perfectly valid and commonly used construction. 
[...] Peano axioms are axioms of natural numbers. The sequence here is not indexed by natural 
numbers, but by ordinals, so Peano axioms are irrelevant." And Joel David Hamkins boasted: "I 
endorse this method." 
 
Cast in the same mould, Cohen suggests "we repeat this process countably many times" (cp. 
section 3.4.3). And Hrbacek and Jech ponder, in order to increase the cardinality of a model, "if 
this procedure is iterated ¡2 times" (cp. section 2.18.3). How can ¡0 be surpassed in order to trick 
Hilbert's hotel that otherwise excludes an increase of cardinality? 
 

https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Hausdorff.htm
https://www.hs-augsburg.de/~mueckenh/Transfinity/Material/Hausdorff.htm
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 Opinions of scholars associated with David Hilbert 
 
"{{Cantor's}} theory of transfinite numbers; this appears to me as the most admirable blossom of 
mathematical spirit and really one of the supreme achievements of purely intellectual human 
activity. [...] No one shall drive us from the paradise which Cantor has created for us. [...] 
Obviously it is only possible to reach these aims if we succeed in obtaining the complete 
elucidation about the essence of the infinite." [D. Hilbert: "Über das Unendliche", Mathematische 
Annalen 95 (1925) pp. 167 & 170] 
 
Hermann Weyl, who in 1930 became Hilbert's successor at the university of Göttingen, said: 
"The sequence of numbers which grows beyond any stage already reached by passing to the next 
number, is a manifold of possibilities open towards infinity; it remains forever in the status of 
creation, but is not a closed realm of things existing in themselves. That we blindly converted one 
into the other is the true source of our difficulties, including the antinomies – a source of more 
fundamental nature than Russell's vicious circle principle indicated. Brouwer opened our eyes 
and made us see how far classical mathematics, nourished by a belief in the 'absolute' that 
transcends all human possibilities of realization, goes beyond such statements as can claim real 
meaning and truth founded on evidence." [H. Weyl: "Levels of infinity: Selected writings on 
mathematics and philosophy", Peter Pesic (ed.), Dover Publications (2012) p. 141]  
 
Paul Bernays, 1934-1939 Hilbert's co-author of "Grundlagen der Mathematik (Foundations of 
Mathematics)" said: "If we pursue the thought that each real number is defined by an arithmetical 
law, the idea of the totality of real numbers is no longer indispensable, and the axiom of choice is 
not at all evident." [P. Bernays: "On Platonism in mathematics" (1934) p. 7] 
 
Wilhelm Ackermann, 1938 Hilbert's co-author of "Grundzüge der theoretischen Logik (Principles 
of mathematical logic)" said: "The reviewer however cannot follow the author when he speaks of 
the possibility of a more than countable set of primitive symbols since such a system of names 
cannot exist." [W. Ackermann: "Review of Leon Henkin: 'The completeness of the first-order 
functional calculus'", J. Symbolic Logic 15,1 (1950) p. 68] 
 
Kurt Schütte, 1933 Hilbert's last doctoral student, said: "If we define the real numbers in a strictly 
formal system, where only finite derivations and fixed symbols are permitted, then these real 
numbers can certainly be enumerated because the formulas and derivations on the basis of their 
constructive definition are countable." [K. Schütte: "Beweistheorie", Springer (1960)] 
 
Even David Hilbert himself gave a remarkable summary after carefully scrutinizing the infinite: 
"Finally we will return to our original topic and draw the conclusions of all our investigations 
about the infinite. On balance the result is this: The infinite is nowhere realized; it is neither 
present in nature nor admissible as the foundation of our rational thinking – a remarkable 
harmony of being and thinking." [D. Hilbert: "Über das Unendliche", Mathematische Annalen 95 
(1925) p. 190] 
 
 

https://gdz.sub.uni-goettingen.de/id/PPN235181684_0095?tify=%7b%22pages%22:%5b165%5d,%22view%22:%22toc%22%7d
https://books.google.de/books?id=wc4R0BHdo-sC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.de/books?id=wc4R0BHdo-sC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://www.phil.cmu.edu/projects/bernays/Pdf/platonism.pdf
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0095?tify=%7b%22pages%22:%5b165%5d,%22view%22:%22toc%22%7d
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 Comments on papers by Bertrand Russell by Philip Ehrlich 
 
In his paper Recent Work On The Principles of Mathematics, which appeared in 1901, Bertrand 
Russell reported that the three central problems of traditional mathematical philosophy – the 
nature of the infinite, the nature of the infinitesimal, and the nature of the continuum – had all 
been "completely solved" [1901, p. 89]. Indeed, as Russell went on to add: "The solutions, for 
those acquainted with mathematics, are so clear as to leave no longer the slightest doubt or 
difficulty" [1901, p. 89]. According to Russell, the structure of the infinite and the continuum 
were completely revealed by Cantor and Dedekind, and the concept of an infinitesimal had been 
found to be incoherent and was "banish[ed] from mathematics" through the work of Weierstrass 
and others [1901, pp. 88, 90]. These themes were reiterated in Russell's often reprinted 
Mathematics and the Metaphysician [1918] and further developed in both editions of Russell's 
The Principles of Mathematics [1903; 1937], the works which perhaps more than any other 
helped to promulgate these ideas among historians and philosophers of mathematics. In the two 
editions of the latter work, however, the banishment of infinitesimals that Russell spoke of in 
1901 was given an apparent theoretical urgency. No longer was it simply that "nobody could 
discover what the infinitely little might be" [1901, p. 90], but rather, according to Russell, the 
kinds of infinitesimals that had been of principal interest to mathematicians were shown to be 
either "mathematical fictions" whose existence would imply a contradiction [1903, p. 336; 1937, 
p. 336] or, outright "self-contradictory", as in the case of an infinitesimal line segment [1903, p. 
368; 1937, p. 368]. In support of these contentions Russell could cite no less an authority than 
Georg Cantor, the founder of the theory of infinite sets. [...] But ... "The German logician 
Abraham Robinson, who invented what is known as non-standard analysis, thereby eventually 
conferred sense on the notion of an infinitesimal greater than 0 but less than any finite number." 
[A.W. Moore: "The infinite", Routledge, London (1990) p. 69] 
 
B. Russell: "Recent work on the principles of mathematics", Int. Monthly 4 (1901) pp. 83-101. 
B. Russell: "The principles of mathematics", Cambridge University Press (1903). 
B. Russell: "Mathematics and the metaphysicians" in "Mysticism and logic", London (1918). 
B. Russell: "Principles of mathematics", 2nd ed., Norton, New York (1937). 
 
[P. Ehrlich: "The rise of non-Archimedean mathematics and the roots of a misconception I: The 
emergence of non-Archimedean systems of magnitudes", Arch. Hist. Exact Sci. 60 (2006) p. 1f]  
 
 
 Comments on a paper by Bertrand Russell 
 
[B. Russell: "Mathematics and the metaphysicians" in "Mysticism and logic", Allen & Unwin, 
London (1918) pp. 57-74] 
  
1) His {{Boole's}} book was in fact concerned with formal logic, and this is the same thing as 
mathematics. [p. 57] 
 "Kant already has taught [...] that mathematics includes a solid contents that is 
independent of logic and therefore cannot be substantiated by logic." [D. Hilbert: "Über das 
Unendliche", Math. Annalen 95 (1925)] 
 "Gradually the pendulum swung in the direction of pure logic and abstraction, actually so 
much that a dangerous separation between "pure" mathematics and essential realms of 

https://link.springer.com/article/10.1007/s00407-005-0102-4
https://link.springer.com/article/10.1007/s00407-005-0102-4
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application emerged. [...] But it seems and it is to hope that this period of isolation has ended." 
[R. Courant, H. Robbins: "Was ist Mathematik?", Springer, Berlin (1962)]  
 "To create mathematics from pure logic has not yet been managed." [Gerhard Hessenberg: 
"Grundbegriffe der Mengenlehre", Vandenhoeck & Ruprecht, Göttingen (1906)]  
 
2) Pure mathematics consists entirely of assertions to the effect that, if such and such proposition 
is true of anything, then such and such another proposition is true of that thing. [p. 57] 
 Of course every statement can be formulated as an implication – but need not. Pure 
mathematics consists of statement like "1 + 1 = 2", "1 < 2", "2 is a prime number", "2m2 = n2 has 
no solution in integers", "π and e are transcendental", "a point is what cannot be separated into 
parts", "the cube, one of five Platonic solids, has 8 vertices, 12 edges, and 6 sides" – without ifs 
and buts! 
 
3) These rules of inference constitute the major part of the principle of formal logic. [p. 58] 
 True but irrelevant. In mathematics formal logic is merely applied as an auxiliary tool, in 
particular if the mental capacity of mathematicians otherwise would be stretched too far, and 
crutches are required to pass through difficult landscape. 
 
4) Thus mathematics may be defined as the subject in which we never know what we are talking 
about, nor whether what we are saying is true. [p. 58] 
 That may be true for Russell's vision of mathematics but not for real mathematics. 
 
5) Now the fact is that, though there are indefinables and indemonstrables in every branch of 
applied mathematics, there are none in pure mathematics except such as belong to general logic. 
[p. 58] 
 In the following Russell praises transfinite set theory. Obviously he had not yet realized in 
1917 what Cantor and König knew in 1906 already, namely the countability of the set of 
definitions. If the set of all real numbers was uncountable, as Russell believed, then almost all 
"real" numbers would lack any definition or demonstration. 
 
6) For instance, nothing is plainer than that a whole always has more terms than a part, or that a 
number is increased by adding one to it. But these propositions are now known to be usually 
false. Most numbers are infinite. [p. 60] 
 So the laudable pure mathematics without indefinables and indemonstrables collapses into 
nothing. 
 
7) He {{Leibniz}} was prevented from succeeding by respect for the authority of Aristotle, 
whom he could not believe guilty of definite, formal fallacies; but the subject which he desired to 
create now exists, in spite of the patronising contempt with which his schemes have been treated 
by all superior persons. [p. 61] 
 Patronizing contempt is the customary means to defend an out-dated credo. 
 
8) The solutions, for those acquainted with mathematics, are so clear as to leave no longer the 
slightest doubt or difficulty. This achievement is probably the greatest of which our age has to 
boast. [p. 63] 
 Rather it is the greatest intellectual fraud of all times, as the present chapter shows. 
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9) The proofs favourable to infinity, on the other hand, involved no principle that had evil 
consequences. [p. 66] 
 How that? Russell himself later mentions Tristram Shandy [p. 69f]. And before that he 
explicitly says The fundamental numbers are not ordinal but are what is called cardinal [p. 67]. 
Nevertheless he does not become aware of the fact that in the Tristram Shandy case only the 
sequence of cardinal numbers has mathematical meaning? "This is an instance of the amazing 
power of desire in blinding even very able men to fallacies which would otherwise be obvious at 
once." [Bertrand Russell: "What I believe" in "Why I am not a Christian and other essays on 
religion and related subjects", Paul Edwards (ed.), Allen & Unwin, London (1957)] 
 
10) There are exactly as many fractions as whole numbers. [p. 68] 
 In mathematics this is provably wrong, cp. section "Not enumerating all positive rational 
numbers". 
 
11) There is a greatest of all infinite numbers, which is the number of things altogether, of every 
sort and kind. It is obvious that there cannot be a greater number than this, because, if everything 
has been taken, there is nothing left to add. Cantor has a proof that there is no greatest number, 
and if this proof were valid, the contradictions of infinity would reappear in a sublimated form. 
But in this one point, the master has been guilty of a very subtle fallacy, which I hope to explain 
in some future work. [p. 68] 
 Of course a limit ordinal (like ω in case of Ù) is always needed for actual or "finished" 
infinity. But Cantor defers potential infinity only from the domain of natural numbers to the 
domain of transfinite ordinals where he then calls it the absolute infinite (cp. section 1.2). All 
problems the potentially infinite is (unjustly) blamed for would reappear there. When writing this 
Russell must have been in a state with formative influence of rational thinking. 
 
12) Note added in 1917: Cantor was not guilty of a fallacy in this point. [p. 68] 
 What a shame. Rational influence has ceased. 
 
13) If Achilles were to overtake the tortoise, he would have been in more places than the tortoise, 
but we saw that he must, in any period, be in exactly as many places as the tortoise. [p. 69] 
 Achilles will reach and overtake the tortoise like the hour hand will reach 12 o'clock. But 
that has nothing to do with an infinite subdivision of the distance. For proof try to start at the 
other end (with an infinitely small step). There is no infinite sum of 1/2 + 1/4 + 1/8 + ..., there is 
only a limit, approached but never reached by any term of the sequence of partial sums. 
 
14) This paradoxical but perfectly true proposition depends upon the fact that the number of days 
in all time is no greater than the number of years. [p. 70] 
 False claim. The factor is about 365 for every interval of time that can be verified. Results 
that cannot be verified belong to dirty mathematics, not to pure mathematics. 
 
15) But nowadays the limit is defined quite differently, and the series which it limits may not 
approximate to it at all. This improvement is also due to Cantor, and it is one which has 
revolutionised mathematics. [p. 71] 
 Yes, it has transformed clear and consistent mathematics into self-contradictory 
matheology. In the present case: If all natural numbers are infinitely far distant from the limit ω: 
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What makes up this distance? How does this distance come into being? What, besides unprovable 
matheologial belief, does accomplish it? 
 
16) But the unavoidable technicalities of this subject render it impossible to explain to any but 
professed mathematicians. [p. 71] 
 Strange. Euler recommended that one should check the own understanding by explaining 
the subject to a cobbler's apprentice. 
 
17) In the best books there are no figures at all. [p. 72] 
 Well, that makes it clear why matheologians are unable to explain their theory to others, 
let alone to cobblers' apprentices. But with certainty we can say that those books are not the best 
ones. Rather those books should have been written better – or better should not have been written 
at all. Only poor thinkers dispense with most human means of expression and communication 
except the only language that they believe to be able to master. 
 
18) But it is certain that his {{Euclid's}} propositions do not follow from the axioms which he 
enunciates. [...] he uses two circles which are assumed to intersect. But no explicit axiom assures 
us that they do so, and in some kinds of spaces they do not always intersect. It is quite doubtful 
whether our space belongs to one of these kinds or not. Thus Euclid fails entirely to prove his 
point in the very first proposition. [...] Under these circumstances, it is nothing less than a scandal 
that he should still be taught to boys in England. [p. 73] 
 That is hair-raising! When in the endpoints of a straight line of length l two circles with 
radius l are centred, then they intersect – in every plane that is possible in whatever kind of space 
of our universe. On the other hand, Russell praises Peano to the skies ("the science which Peano 
has perfected") and does not recognize that Peano's celebrated axioms of natural numbers don't 
even touch them (except 1 or 0) but define only sequences without repetitions starting at 1 (or 0) 
like (0,) 1, 4, 9, ... or (0,) 1, 1/2, 1/3, ... or (0,) x0, x1, x2, x3, ... (where x can even be chosen as 1, 
namely if we understand by "non-repeating" the shape of the symbol and not its numerical value. 
This possible interpretation is nowhere excluded by the Peano axioms because by "successors" 
the character of number is not sufficiently cleared.) Of course one can make the natural numbers 
of these sequences – but not without additional definitions or axioms. Besides their infinity the 
basic property of natural numbers is their constant distance. It is impossible to define the natural 
numbers without that notion, i.e., without first having the addition of 1. And no Peano axiom 
defines that. 
 
19) A book should have either intelligebility or correctness; to combine the two is impossible, but 
to lack both is to be unworthy of such a place as Euclid has occupied in education. [p. 73] 
 Then first of all transfinite set theory has to be erased from all curricula. 
 
20) The proof that all pure mathematics, including Geometry, is nothing but formal logic, is a 
fatal blow to the Kantian philosophy. [...] Kant's theory also has to be abandoned. The whole 
doctrine of a priori intuitions, by which Kant explained the possibility of pure mathematics, is 
wholly inapplicable to mathematics in its present form. [p. 74] 
 There is no such proof and there cannot be such a proof because the claim which has been 
plucked out of thin air is false. But it explains why Russell and Cantor were in such a good 
harmony. Cantor mentioned "just this abominable mummy, as Kant is" [G. Cantor, letter to B. 
Russell (19 Sep 1911)]. It is overdue to abandon what they have tried to sell as "mathematics in 
its present form". 
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 Psychological aspects of set theory 
 
Every scientific theory is more or less depending on human psychology. In case of set theory 
psychological and religious aspects are intimately intermingled and of special weight, as Cantor's 
approach clearly shows (cp. section 4.1 "Cantor on theology"). In the present section we will 
scrutinize these psychological aspects.  
 
 
 
 A psychological argument 
 

Cantor knew about the true Father of Christ, the true 
Author of Shakespeare's Writings, the true Jakob 
Böhme, and the true Infinity. Nowadays his disciples 
endorse only one of his four findings. 

 
More than 1000 students of Engineering, Informatics, and Design have attended my lecture series 
on the History of the Infinite starting in 2003 and presented until today. Nearly everyone could 
accurately answer examination questions like: 
 
Ë Why is an enumeration of "all fractions" impossible? 
Ë Why is Cantor's diagonal argument mistaken? 
Ë Show by the game "We conquer the Binary Tree" that the set of infinite paths in the Binary 
Tree is not uncountable. 
 
What makes the difference to mathematicians the overwhelming majority of whom are of 
different opinion? Have my students failed to understand transfinite set theory? Are they less 
intelligent than average mathematicians? Of course not. Those mathematicians who believe that it 
requires a lot of intelligence to comprehend Cantor's simple ideas cannot be very bright. As 
Cantor already stated himself (cp. section 4.3 "Cantor on the ease of his theory") that it does not 
require mathematical training to understand the basics of his theory. The enumeration of a 
countable set and the exclusion of the antidiagonal number from the "list" are really not difficult 
to understand. The only difference that I can figure out is this: While my students learn these 
things in Lesson HI11, only few days before they learn the contradictions in Lesson HI12, for 
mathematicians this time interval extends over years or decades, often filled with much time and 
effort invested into set theory. This erects a psychological block which is hard to remove. 
 
It is clear, for instance, that the complete infinite Binary Tree cannot be diagonalized (since it 
already contains every infinite bit sequence). Nevertheless this is not a problem for set theorists. 
They simply claim it could be done (cp. the discussion to section "Colour the Binary Tree") or 
they refuse to think at all about that case in order to avoid running into cognitive dissonance. 
 
So they will remain believing or pretending to "understand" that infinity somehow can be 
finished, that they can simply count beyond the infinite, that irrational numbers can be 
represented by (decimal) fractions, that translation invariance is violated with finite strings, that 
set limits are somehow more convincing than cardinality limits of analysis, that set theory 
requires a lot of brightness, and that only they have enough. There appears to be no remedy. 

https://www.hs-augsburg.de/homes/mueckenh/HI/
https://www.hs-augsburg.de/homes/mueckenh/HI/HI11.PPT
https://www.hs-augsburg.de/homes/mueckenh/HI/HI12.PPT
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 Matheology 
 

A matheologian is a man or, in rare cases, a woman 
who believes in thoughts that nobody can think, 
except, perhaps, a God or, in rare cases, a Goddess.  

 
I have often been asked why I have coined the word matheology and in what sense I use it. Here 
is my answer: Humans consist of molecules. Theologians recognize more, namely something that 
exists beyond and independently of the molecules and that persists even when the body has 
dispersed, namely what they call the soul. Set theorists argue in a similar way: They believe in 
"real numbers" that cannot be addressed in mathematical discourse in analogy to souls that 
cannot be analyzed using physical instruments. But these "real numbers" have properties. For 
instance they can be well-ordered, that means they must have features to distinguish them 
although no human is able to do so. Further, according to the actual infinity of set theory, the 
infinite Binary Tree with its countably many nodes and edges can be constructed such that all 
nodes and edges are there and none is missing. These components I would like to call 
allegorically the "molecules of the tree". Set theorists recognize more, namely uncountably many 
paths of infinite length. The molecules of the tree do not confirm this. For every infinite path P, 
there is a node where it deviates from a fixed path P0. But there is no node by which P0 deviates 
from all other paths P. So nodes (at finite levels – and others do not exist) do never individualize 
a path (like digits do never individualize a real number). On the other hand, the antidiagonal 
number of the Cantor-list is defined by its digits only. If the paths of the Binary Tree are not 
individualized by their nodes, then also the antidiagonal number of the Cantor-list is not 
individualized and cannot be recognized as distinct from all entries of the list. 
 Another facet of matheology is the belief that different ways of representing one and the 
same thing generate different things. A simple example is the sequence of partial sums when 
written in a condensed form like 3/1, 31/10, 314/100, ... = 3, 3.1, 3.14, ... = 3.14... . Here we have 
changed nothing mathematically but merely used an abbreviation and yet another abbreviation. 
But matheology makes an "irrational number" from the last sequence of decimal fractions.  
 The allusion to theology also suggests itself because the "souls" of matheology go back to 
the work of a very religious strict antidarwinist. The punch line is however that Cantor never 
used these "souls". His original diagonal argument, the cause of all matheologial delusions, used 
exclusively "molecules", namely strings of bits (indicated by the letters m and w) existing at finite 
places without any limits defined at all. And Cantor determinedly denied the existence of 
undefinable numbers or other undefinable objects of mathematics; cp. the letter from Cantor to 
Hilbert of 8 August 1906, in chapter II. 
 By the way, there is another striking analogy between theology and set theory: In early 
religious belief God resided in a distance infinitely far from men. Modern theology however 
teaches that He is always around in zero distance, invisible though. According to Cantor ω is 
infinitely far from all natural numbers n: "ω - n is always equal to ω" [Cantor, p. 395]. But 
according to modern set theory ω is in zero distance from all n; after von Neumann ω is Ù. "The 
distance from n to Ù is neither ¡0 nor ω [...]. It is 0." [F. Jeffries in "Comments on 20 sentences 
from Bertrand Russell's 'Mathematics and the metaphysicians'", sci.math (8 May 2016)] 
 
More can be found in a series of 555 essays on transfinite set theory that appeared under the title 
"Matheology" from 9 May 2012 to 5 December 2014 in sci.math. 
 

https://groups.google.com/g/sci.math/c/arzdza5tLtM/m/xNLs632XBgAJ
https://groups.google.com/g/sci.math/c/arzdza5tLtM/m/xNLs632XBgAJ
https://www.hs-augsburg.de/~mueckenh/Transfinity/KB/
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 Parallel evolution in theology and set theory 
 
In the beginning there were many Gods living on Mount Olympus. Later it turned out that there is 
no God on top of this mountain. So Gods retired into the heaven above the sky. Meanwhile 
cosmonauts and astronauts reported them missing there too. So they retired to invisibility in deep 
space or into another dimension.  
 
In the beginning Cantor proclaimed uncountably many real numbers. Later it turned out that so 
many numbers cannot exist in a mathematics where everything has to be finitely defined. So the 
real numbers had to retire to infinite digit strings. Meanwhile we know from the Binary Tree that 
at most countably many continuous paths starting from the root node can be distinguished. Now 
the real numbers have retired into indistinguishability, where they exist even well-ordered.  
 
That's why this kind of "mathematics" should be called matheology and become divorced and 
separated and put in quarantine from any kind of serious science. 
 
 
 
 Déjà vu 
 
If there were a scientific proof of Copernicanism, Bellarmine conceded in his letter, then the 
passages in Scripture should be reconsidered, since "we should rather have to say that we do not 
understand them than to say something is false which had been proven". But since no such proof 
"has been shown to me", he continued, one must stick to the manifest meaning of Scripture and 
the "common agreement of the holy fathers". All of these agreed that the sun revolves around the 
Earth. [Amir Alexander: "Infinitesimal", Oneworld, London (2015) p. 84]  
 
Why does this paragraph remind me strongly of modern mathematics? 
 
 
 
 Modern mathematics as religion (by Norman J. Wildberger) 
 
Modern mathematics doesn't make complete sense. The unfortunate consequences include 
difficulty in deciding what to teach and how to teach it, many papers that are logically flawed, the 
challenge of recruiting young people to the subject, and an unfortunate teetering on the brink of 
irrelevance. 
 
If mathematics made complete sense it would be a lot easier to teach, and a lot easier to learn. 
Using flawed and ambiguous concepts, hiding confusions and circular reasoning, pulling 
theorems out of thin air to be justified 'later' (i.e. never) and relying on appeals to authority don't 
help young people, they make things more difficult for them. 
 
If mathematics made complete sense there would be higher standards of rigour, with fewer but 
better books and papers published. That might make it easier for ordinary researchers to be 
confident of a small but meaningful contribution. If mathematics made complete sense then the 
physicists wouldn't have to thrash around quite so wildly for the right mathematical theories for 
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quantum field theory and string theory. Mathematics that makes complete sense tends to parallel 
the real world and be highly relevant to it, while mathematics that doesn't make complete sense 
rarely ever hits the nail right on the head, although it can still be very useful. 
 
So where exactly are the logical problems? The troubles stem from the consistent refusal by the 
Academy to get serious about the foundational aspects of the subject, and are augmented by the 
twentieth centuries' whole hearted and largely uncritical embrace of Set Theory. 
 
Most of the problems with the foundational aspects arise from mathematicians' erroneous belief 
that they properly understand the content of public school and high school mathematics, and that 
further clarification and codification is largely unnecessary. Most (but not all) of the difficulties 
of Set Theory arise from the insistence that there exist 'infinite sets', and that it is the job of 
mathematics to study them and use them. 
 
In perpetuating these notions, modern mathematics takes on many of the aspects of a religion. It 
has its essential creed – namely Set Theory, and its unquestioned assumptions, namely that 
mathematics is based on 'Axioms', in particular the Zermelo-Fraenkel 'Axioms of Set Theory'. It 
has its anointed priesthood, the logicians, who specialize in studying the foundations of 
mathematics, a supposedly deep and difficult subject that requires years of devotion to master. 
Other mathematicians learn to invoke the official mantras when questioned by outsiders, but have 
only a hazy view about how the elementary aspects of the subject hang together logically. 
 
Training of the young is like that in secret societies – immersion in the cult involves intensive 
undergraduate memorization of the standard thoughts before they are properly understood, so that 
comprehension often follows belief instead of the other (more healthy) way around. A long and 
often painful graduate school apprenticeship keeps the cadet busy jumping through the many 
required hoops, discourages critical thought about the foundations of the subject, but then 
gradually yields to the gentle acceptance and support of the brotherhood. The ever-present 
demons of inadequacy, failure and banishment are however never far from view, ensuring that 
most stay on the well-trodden path. 
 
The large international conferences let the fellowship gather together and congratulate themselves 
on the uniformity and sanity of their world view, though to the rare outsider that sneaks into such 
events the proceedings no doubt seem characterized by jargon, mutual incomprehensibility and 
irrelevance to the outside world. The official doctrine is that all views and opinions are valued if 
they contain truth, and that ultimately only elegance and utility decide what gets studied. The 
reality is less ennobling – the usual hierarchical structures reward allegiance, conformity and 
technical mastery of the doctrines, elevate the interests of the powerful, and discourage dissent. 
 
There is no evil intent or ugly conspiracy here – the practice is held in place by a mixture of well-
meaning effort, inertia and self-interest. We humans have a fondness for believing what those 
around us do, and a willingness to mold our intellectual constructs to support those hypotheses 
which justify our habits and make us feel good. 
 
[Norman J. Wildberger: "Set theory: Should you believe?" (2005)] 
 
 
 

http://web.maths.unsw.edu.au/~norman/views2.htm
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 Opinion 68 (by Doron Zeilberger) 
 
Herren Geheimrat Hilbert und Prof. Dr. Cantor, I'd like to be Excused from your "Paradise": It 
is a Paradise of Fools, and besides feels more like Hell 
 
David Hilbert famously said: 
 
"No one shall expel us from the paradise that Cantor has created for us." 
 
Don't worry, dear David and dear Georg, I am not trying to kick you out. But, it won't be quite as 
much fun, since you won't have the pleasure of my company. I am leaving on my own volition. 
 
For many years I was sitting on the fence. I knew that it was a paradise of fools, but so what? We 
humans are silly creatures, and it does not harm anyone if we make believe that ¡0, ¡1, etc. have 
independent existence. Granted, some of the greatest minds, like Gödel, were fanatical platonists 
and believed that infinite sets existed independently of us. But if one uses the name-dropping 
rhetorics, then one would have to accept the veracity of Astrology and Alchemy, on the grounds 
that Newton and Kepler endorsed them. An equally great set theorist, Paul Cohen, knew that it 
was only a game with axioms. In other words, Cohen is a sincere formalist, while Hilbert was just 
using formalism as a rhetoric sword against intuitionism, and deep in his heart he genuinely 
believed that Paradise was real. 
 
My mind was made up about a month ago, during a wonderful talk (in the INTEGERS 2005 
conference in honor of Ron Graham's 70th birthday) by MIT (undergrad!) Jacob Fox (whom I am 
sure you would have a chance to hear about in years to come), that meta-proved that the answer 
to an extremely concrete question about coloring the points in the plane, has two completely 
different answers (I think it was 3 and 4) depending on the axiom system for Set Theory one 
uses. What is the right answer?, 3 or 4? Neither, of course! The question was meaningless to 
begin with, since it talked about the infinite plane, and infinite is just as fictional (in fact, much 
more so) than white unicorns. Many times, it works out, and one gets seemingly reasonable 
answers, but Jacob Fox's example shows that these are flukes. 
 
It is true that the Hilbert-Cantor Paradise was a practical necessity for many years, since humans 
did not have computers to help them, hence lots of combinatorics was out of reach, and so they 
had to cheat and use abstract nonsense, that Paul Gordan rightly criticized as theology. But, 
hooray!, now we have computers and combinatorics has advanced so much. There are lots of 
challenging finitary problems that are just as much fun (and to my eyes, much more fun!) to keep 
us busy. 
 
Now, don't worry all you infinitarians out there! You are welcome to stay in your Paradise of 
fools. Also, lots of what you do is interesting, because if you cut-the-semantics-nonsense, then 
you have beautiful combinatorial structures, like John Conway's surreal numbers that can 
"handle" "infinite" ordinals (and much more beyond). But as Conway showed so well (literally!) 
it is "only" a (finite!) game. 
 
While you are welcome to stay in your Cantorian Paradise, you may want to consider switching 
to my kind of Paradise, that of finite combinatorics. No offense, but most of the infinitarian lore 
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is sooo boring and the Bourbakian abstract nonsense leaves you with such a bitter taste that it 
feels more like Hell. 
 
But, if you decide to stick with Cantor and Hilbert, I will still talk to you. After all, eating meat is 
even more ridiculous than believing in the (actual) infinity, yet I still talk to carnivores, (and even 
am married to one). 
 
[Doron Zeilberger: "Opinion 68" (23 Nov 2005)] 
 
 
 
 Cantor's Theory: Mathematical creationism (by David Petry) 
 
Cantor's theory (classical set theory) has the same relationship to the mathematical sciences as 
Creationism theory has to the physical sciences. They are similar in content and similar in origin. 
Cantor's theory is essentially a creation myth. 
 
Both Cantor's theory and Creationism theory are founded on the proposition that we must 
acknowledge the existence of some abstract infinite entity lying beyond what we can observe in 
order to understand the reality that we do observe. 
 
Furthermore, both have religious origins, and both try to hide their religious origins. Creationism 
comes from ancient Jewish religious teachings about the origin of the universe, and Cantor's 
theory of the infinite has its origins in Medieval Jewish religious/mystical teachings known as 
Kabbalah, wherein the world of the infinite is a higher level of existence. 
 
Both Cantor's theory and Creationism theory are pseudoscience. Both the Creationists and the 
Cantorians impose upon their disciples a world view in which people must modify their thinking 
to incorporate certain axioms handed down from higher authority, and they are then compelled to 
accept any "logical" conclusions derived from those axioms. Anyone who dares to suggest that 
those axioms and the conclusions derived from those axioms don't pass reality checks, is 
demonized as an idiot, imbecile, crackpot, heretic, or some other kind of subhuman, and excluded 
from the community. 
 
Both theories do interfere with scientific, technological and social progress. 
 
A new world view, and a new paradigm for mathematics, have emerged from the computer 
revolution. This new world view strips away the mysticism from our understanding and theories 
of the mind ... 
 
We now think of the brain as a computer, and the mind as the software running on the computer. 
Mathematics is a tool invented by the mind to help it understand the world in a precise, 
quantitative way. The brain and the mind (and mathematics) have co-evolved, and this evolution 
can be explained without recourse to abstract entities lying outside the world we observe. 
 
Furthermore, due to the existence of computers which are clearly distinct from the human brain, 
we are forced to admit that there is something about the virtual world that has an objective 

http://www.math.rutgers.edu/~zeilberg/Opinion68.html
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existence. From a mathematical perspective, we can think of the computer as a microscope which 
helps us peer into a world of computation, and then mathematics itself is the science which 
studies the phenomena observed in that (virtual) world. The world of computation can be 
accepted as a given, just as the physical world is accepted as a given in the physical sciences. The 
fundamental objects living in the world of computation are data structures and algorithms, and a 
foundation for mathematics can be built on those objects. We study mathematics because the 
phenomena observed in the world of computation can serve as a model for phenomena observed 
in the physical world. 
 
For those who accept this new world view, it is quite absurd to think that the mind, which lives in 
the world of computation, can "prove" the existence of a super-infinite world which has no 
connection to the phenomena observed in the world of computation. The explanation for Cantor's 
theory lies in the ability of the mind to delude itself. 
 
Footnote 1: Everyone in the United States knows what Creationism is, but perhaps other people 
don't. The Creationists take the biblical creation myth as literal scientific truth, and they want the 
public schools to teach this theory as an alternative to evolution. 
 
Footnote 2: One interesting difference between the Cantorians and the Creationists is a political 
difference. The Creationists have strong connections to Christian/conservative politics, and the 
Cantorians have connections to Humanistic/liberal politics.  
 
Footnote 3: Debunking pseudoscience is a noble endeavor. 
 
[David Petry: "Cantor's theory: Mathematical creationism", sci.math (22 Nov 2004)] 
 
 
 
 

 

https://groups.google.com/forum/#!searchin/sci.math/Cantor$27s$20Theory$3A$20Mathematical$20creationism%7Csort:date/sci.math/nh1SeIWYONg/Uhfxwkmfzz4J


 351

VII   MatheRealism 
 
MatheRealism1 as a philosophical foundation of mathematics is based on the alliterative 
Materialism and the undisputable fact that mathematics is not independent of physical constraints 
of reality. Mathematics as monologue, dialogue, and discourse needs tools for expressing and 
communicating ideas. MatheRealism denies the existence of entities which, in principle, can 
never be observed or communicated – in particular thoughts that no-one can think. MatheRealism 
distinguishes between numbers which can be determined exactly and ideas which can not. 
MatheRealism leads to the elimination of any actual infinity from mathematics. [W. 
Mückenheim: "MatheRealism", PlanetMath.Org (3 May 2007)] 
 
 
 
 Mathematics and reality 
 

"How is it possible that mathematics, which is a product of human thinking independent 
of all experience, fits reality in such an excellent way?" [A. Einstein: "Geometrie und 
Erfahrung", Festvortrag, Berlin (1921); reprinted in A. Einstein: "Mein Weltbild", C. 
Seelig (ed.), Ullstein, Frankfurt (1966) p. 119] 

 
Without mental images from sensory impressions and experience thinking is impossible. Without 
reality (which includes the apparatus required for thinking as well as the objects of thinking – we 
never think of an abstractum "number 3" but always of three things or the written 3 or the spoken 
word or any materialization which could have supplied the abstraction) mathematics could not 
have evolved, like a universe could not have evolved without energy and mass. Therefore real 
mathematics agrees with reality in the excellent way it does. 
 
Einstein answers his question in relative terms: "In so far the theorems of mathematics concern 
reality they are not certain, and in so far as they are certain they do not concern reality." [A. 
Einstein: "Geometrie und Erfahrung", Festvortrag, Berlin (1921); reprinted in A. Einstein: "Mein 
Weltbild", C. Seelig (ed.), Ullstein, Frankfurt (1966) p. 119f] 
 
He states a contraposition (R fl ¬C) ñ (C fl ¬R). Both statements are equivalent. Both 
statements are false. To contradict them a counterexample is sufficient. A theorem of 
mathematics is the law of commutation of addition of natural numbers a + b = b + a. It can be 
proven in every case in the reality of a wallet with two pockets. [WM: "Das Kalenderblatt 
120615", de.sci.mathematik (14 Jun 2012)] 
 
 

                                                 
1 Please do not mix up MatheRealism with so-called Realism in the current philosophy of mathematics 
which, in fact, is merely an idealism without any roots in reality. 

https://planetmath.org/MatheRealism
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Kalenderblatt$20120615%7Csort:date/de.sci.mathematik/YJad-aMiUp8/sFNlNr62j0cJ
https://groups.google.com/forum/#!searchin/de.sci.mathematik/Kalenderblatt$20120615%7Csort:date/de.sci.mathematik/YJad-aMiUp8/sFNlNr62j0cJ
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 Kolmogorov complexity 
 

"Ultrafinitists don't believe that really large natural numbers exist. The hard part is getting 
them to name the first one that doesn't." [John Baez: "The inconsistency of arithmetic", 
The n-Category Café (30 Sep 2011)] "The problem is not the size of the number but its 
information contents. On a simple pocket calculator, you can multiply 1030 by 1050, but 
you cannot add or multiply two numbers with more than 10 digits there. In real life, you 
can do superexponentiation [...] but you cannot use a sequence of more than 10100 digits 
that lack a finite expansion rule like 0.101010… or Σ1/n2." [WM, loc cit] 

  
"In algorithmic information theory, the notion of Kolmogorov complexity is named after the 
famous mathematician Andrey Kolmogorov even though it was independently discovered and 
published by Ray Solomonoff a year before Kolmogorov. Li and Vitanyi, in 'An Introduction to 
Kolmogorov Complexity and Its Applications' (p. 84), write: Ray Solomonoff [...] introduced 
[what is now known as] 'Kolmogorov complexity' in a long journal paper in 1964. [...] This 
makes Solomonoff the first inventor and raises the question whether we should talk about 
Solomonoff complexity." ["Matthew effect", Wikipedia] 
 
A string x of bits with |x| = n bit is incompressible, if no string p of bits with less than n bits 
exists, which defines or generates the string x (for instance via a computer program). 
 "The idea is that a string is random if it cannot be compressed. That is, if it has no short 
description. Using {{Kolmogorov complexity}} C(x) we can formalize this idea via the 
following. 
 Theorem 1.2.   For all n, there exists some x with |x| = n such that C(x) ¥ n. Such x are 
called (Kolmogorov) random.  
 Proof. Suppose not. Then for all x, C(x) < n. Thus for all x there exists some px such that 
g(px) = x and |px| < n. Obviously, if x ∫ y then px ∫ py.  
 But there are 2n - 1 programs of length less than n, and 2n strings of length n. {{Compare 
the finite paths up to level n - 1 in the Binary Tree and the paths wit n nodes, i.e., those with one 
nth node beyond the level n - 1}}. By the pigeonhole principle, if all strings of length n have a 
program shorter than n, then there must be some program that produces two different strings. 
Clearly this is absurd, so it must be the case that at least one string of length n has a program of 
length at least n." [Lance Fortnow: "Kolmogorov complexity" (2000)] 
 
In order to simplify this notion (since it has turned out to confuse some readers) let us introduce 
the Text Complexity (TC) which is the measure for the least number of symbols by which a 
notion like a real number can be expressed on a common keyboard. "One hundred" for example 
has TC 3 since "100" or "102" need three symbols. Most natural numbers will be expressed best 
by their digits. 123123123123123123123123123123123123123123123123123123123123, here 
expressed with 60 symbols, however has TC = 27, which is obtained from the 27 symbols of 
"20_strings_123_concatenated". Of course these complexities depend on the used language, in 
particular on the basic equipment of words. For instance we could introduce an abbreviation for 
"20" and for "string" and for "concatenated" or use Latin C for 100. But in order to understand 
and to apply the corresponding argument (cp. section "An upper bound for cardinal numbers") a 
rough measure is sufficient. For further discussion of this topic see [WM in "Infinities and 
infinitesimals", sci.math.research (12 Jun 2007)]. 

https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039564
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039580
http://en.wikipedia.org/wiki/Matthew_effect_(sociology)
http://people.cs.uchicago.edu/~fortnow/papers/kaikoura.pdf
https://groups.google.com/forum/?hl=de#!topic/sci.math.research/Gs8GQy9JyGI
https://groups.google.com/forum/?hl=de#!topic/sci.math.research/Gs8GQy9JyGI
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 Kronecker confirmed 
 
"The mathematical nature cannot be outwitted, but mathematicians have been outwitted to an 
alarming degree. As the often praised book by Bolzano proves, this deception has been 
accomplished by the roughest means. Bolzano wants to prove that a function of x which is 
positive in a point of the domain of continuity and negative in another, necessarily is zero in 
between. And always it is concluded in this way: Either there exists a value at which the function 
is zero or there is none. Bolzano's only shrewdness is that he continues not by the argument but 
on the curve. But for that sake one should know, from a given point, how long the function is still 
positive, how long it is still negative. But considering functions like Σ¶n=1 sin(n2x)/n2 we can see 
immediately that we cannot see it. Bolzano's explanations cannot even be applied to square roots 
of whole functions. And that is the best proof of their falsehood." ["Über den Begriff der Zahl in 
der Mathematik", Public lecture in summer semester 1891 – Kronecker's last lecture. "Sur le 
concept de nombre en mathematique" Cours inédit de Leopold Kronecker à Berlin (1891) 
Retranscrit et commenté par Jacqueline Boniface et Norbert Schappacher: Revue d'histoire des 
mathématiques 7 (2001) p. 269f] 
 
In fact in MatheRealism Bolzano's proof is invalid. A zero with Kolmogorov complexity of more 
than 10100 bit cannot exist. 
 
 
 Does the infinitely small exist in reality? 
 
Quarks are the smallest elementary particles presently known. Down to 10-19 m there is no 
structure detectable. Many physicists including the late W. Heisenberg are convinced that there is 
no deeper structure of matter. On the other hand, the experience with the step-wise recognition of 
molecules, atoms, and elementary particles suggests that these physicists may be in error and that 
matter may be further divisible. However, it is not divisible in infinity. There is a clear-cut limit. 
 
Lengths which are too small to be handled by material meter sticks can be measured in terms of 
wavelengths λ of electromagnetic waves with 
 
 λ = c/ν  (c = 3ÿ108 m/s) .  
 
The frequency ν is given by the energy E of the photon 
 
 ν = E/h (h = 6,6ÿ10-34 Js) . 
 
A photon cannot contain more than all the energy E = mc2 of the universe which has a mass of 
about m = 5ÿ1055 g (including the dark matter). This yields the complete energy E = 5ÿ1069 J. So 
the absolute minimum of distance is 4ÿ10-95 m. [W. Mückenheim: "The infinite in sciences and 
arts", Proceedings of the 2nd International Symposium of Mathematics and its Connections to the 
Arts and Sciences (MACAS 2), B. Sriraman, C. Michelsen, A. Beckmann, V. Freiman (eds.), 
Centre for Science and Mathematics Education, University of Southern Denmark, Odense (2008) 
pp. 265-272 & arXiv] 
 

http://smf4.emath.fr/Publications/RevueHistoireMath/7/pdf/smf_rhm_7_207-275.pdf
http://smf4.emath.fr/Publications/RevueHistoireMath/7/pdf/smf_rhm_7_207-275.pdf
https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://arxiv.org/ftp/arxiv/papers/0709/0709.4102.pdf
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 Does the infinitely large exist in reality? 
 
Modern cosmology teaches us that the universe has a beginning and is finite. But even if we do 
not trust in this wisdom, we know that relativity theory is as correct as human knowledge can be. 
According to relativity theory, the accessible part of the universe is a sphere of R = 50ÿ109 light 
years radius containing a volume of 1080 m3. (This sphere is growing with time but will remain 
finite forever.) "Warp" propulsion, "worm hole" traffic, and other science fiction (and scientific 
fiction) does not work without time reversal. Therefore it will remain impossible to leave (and to 
know more than) this finite sphere. Modern quantum mechanics has taught us that entities which 
are not measurable in principle, do not exist. Therefore, also an upper bound (which is certainly 
not the supremum) of 10365 for the number of elementary spatial cells in the universe can be 
calculated from the minimal length of 10-95 m estimated above. 
 
"Merely by existing, all physical systems register information. And by evolving dynamically in 
time, they transform and process that information. The laws of physics determine the amount of 
information that a physical system can register (number of bits) and the number of elementary 
logic operations that a system can perform (number of ops). The universe is a physical system. 
This paper quantifies the amount of information that the universe can register and the number of 
elementary operations that it can have performed over its history. The universe can have 
performed no more than 10120 ops on 1090 bits." [S. Lloyd: "Computational capacity of the 
universe", arXiv (2001)] 
 
A similar estimation has been performed by Krauss and Starkman: "The physical limits to 
computation have been under active scrutiny over the past decade or two, as theoretical 
investigations of the possible impact of quantum mechanical processes on computing have begun 
to make contact with realizable experimental configurations. We demonstrate here that the 
observed acceleration of the Universe can produce a universal limit on the total amount of 
information that can be stored and processed in the future, putting an ultimate limit on future 
technology for any civilization, including a time-limit on Moore's Law {{chip performance will 
double every 1 or 2 years}}. The limits we derive are stringent, and include the possibilities that 
the computing performed is either distributed or local. A careful consideration of the effect of 
horizons on information processing is necessary for this analysis, which suggests that the total 
amount of information that can be processed by any observer is significantly less than the 
Hawking-Bekenstein entropy {{kÿπ(R/LPlanck)2}} associated with the existence of an event 
horizon in an accelerating universe. [...] We first consider the total amount of energy that one can 
harvest centrally. [...] one finds Emax º 3.5ÿ1067 J, comparable to the total rest-mass energy of 
baryonic matter within today's horizon. This total accessible energy puts a limit on the maximum 
amount of information that can be registered and processed at the origin in the entire future 
history of the Universe. [...] Dividing the total energy by this value yields a limit on the number 
of bits that can be processed at the origin for the future of the Universe: Information Processed 
[...] = 1.35ÿ10120. [...] It is remarkable that the effective future computational capacity for any 
computer in our Universe is finite, although, given the existence of a global event horizon, it is 
not surprising. Note that if the equation of state parameter w for dark energy is less than -1, 
implying that the rate of acceleration of the Universe increases with time, then similar although 
much more stringent bounds on the future computational capacity of the universe can be derived. 
In this latter case, distributed computing is more efficient than local computing (by a factor as 

https://arxiv.org/pdf/quant-ph/0110141.pdf?utm_source=twitterfeed&utm_medium=twitter
https://arxiv.org/pdf/quant-ph/0110141.pdf?utm_source=twitterfeed&utm_medium=twitter
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large as 1010 for w = -1.2, for example), because the Hawking-Bekenstein temperature increases 
with time, and thus one gains by performing computations earlier in time. [...] On a more 
concrete level, perhaps, our limit gives a physical constraint on the length of time over which 
Moore's Law can continue to operate. [...] Our estimate for the total information processing 
capability of any system in our Universe implies an ultimate limit on the processing capability of 
any system in the future, independent of its physical manifestation and implies that Moore's Law 
cannot continue unabated for more than 600 years for any technological civilization." [Lawrence 
M. Krauss, Glenn D. Starkman: "Universal limits on computation", arXiv (2004)] 
 
Therefore it is not only theoretically wrong that a process can always be completed when every 
single step can, but it is already practically impossible to perform a step the identification of 
which requires more than 10120 bits. 
 
"The entanglement phenomenon [...] signifies that the Continuum is not a set, a 'bag of points', 
but that the points on it appear as the consequence of our activities. [...] The Continuum C (or the 
field —) appears as a numerical approximation to a complex reality of observations. – It is not a 
set in the original sense of traditional set theory. In particular, the power set axiom cannot be 
applied to it." [Edouard Belaga: "From traditional set theory – that of Cantor, Hilbert, Gödel, 
Cohen – to its necessary quantum extension", Institut des Hautes Études Scientifiques (Jun 2011) 
pp. 28 & 30] See also section "Entangled states in quantum mechanics: The EPR-paradox". 
 
 
 How long lasts eternity? 
 
We know that the universe has been expanding for about 14ÿ109 years. This process, depending 
on the mass density of the universe, will probably continue in eternity. Strictly speaking the 
universe will remain expanding without bound if its over-all total energy 
 
 E = T + V 
 
is positive. For a rough estimation consider a small mass element m on the surface of a 
homogeneous sphere of radius R and mass density ρ that contains the whole mass M of the 
universe. The potential energy is given by 
 

 24
3

mMV G Gm R
R

= − = − ρ π  

 
where G is the constant of gravitation. As the velocity v of the mass element we put the product 
of radius R and Hubble constant H so that the kinetic energy is given by  
 

 2 2( )
2 2
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The total energy has the sign of 
 

http://arxiv.org/abs/astro-ph/0404510
http://preprints.ihes.fr/2011/M/M-11-18.pdf
http://preprints.ihes.fr/2011/M/M-11-18.pdf
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being independent of m and R. The universe will expand forever if  
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The critical density ρc = 5ÿ10-27 kg/m3 is about the mass of three hydrogen atoms per cubic meter. 
According to newer astronomic results the over-all energy density is very close to zero, 
suggesting a Euclidean space, an expansion with asymptotic velocity zero but without bound. 
Eternity, however, will never be completed. So time like space has a potentially infinite 
character. Both are of unbounded size but always finite. 
 
Will intelligent creatures survive in eternity? One constraint is the limited supply of free energy 
which is necessary for any form of life. This problem could be solved however, according to 
Dyson [F.J. Dyson: "Time without end: Physics and biology in an open universe", Rev. Mod. 
Phys. 51 (1979) pp. 447-460], by living for shorter and shorter intervals interrupted by long 
phases of hibernation. By means of series like 1/2 + 1/4 + 1/8 + ... Ø 1, a limited amount of 
energy could then last forever – and with it intelligent life, although a life that wakes only for 
milliseconds in hundreds of years is of debatable quality. 
 
Alas, there is the risk of sudden death of a creature by an accident. If we assume that in our 
civilisation one out of 200 lives ends in an unnatural way, then we can calculate that the risk to 
die by external cause during this very minute is at least 10-10 because there are roughly 
 
 200 ÿ 80 a ÿ 365 d/a ÿ 24 h/d ÿ 60 min/h = 8.4 billion minutes 
 
in 200 lives of 80 years average duration, one of which ends by external cause. The risk that 
7,000,000,000 people will die during this very minute is then 10-70,000,000,000 (not taking into 
account cosmic catastrophes, epidemic diseases etc.). This is a very small but positive 
probability. And even if in future the risk of accidental death can be significantly reduced while 
the population may be enormously increased1, the risk of a sudden end of all life within a short 
time interval is not zero and, therefore, will occur before eternity is finished. So, after a while, 
nobody will be present to measure time – and it may well be asked whether an entity does exist 
that in principle cannot be measured. [W. Mückenheim: "The infinite in sciences and arts", 
Proceedings of the 2nd International Symposium of Mathematics and its Connections to the Arts 
and Sciences (MACAS 2), B. Sriraman, C. Michelsen, A. Beckmann, V. Freiman (eds.), Centre 
for Science and Mathematics Education, University of Southern Denmark, Odense (2008) pp. 
265-272 & arXiv. W. Mückenheim: "Die Mathematik des Unendlichen", Shaker-Verlag, Aachen 
(2006) p. 135] 
 
Anyhow, fact is: A clock operating in eternity would never show "eternity completed". 

                                                 
1 but at most to 1080 individuals because this is the number of atoms in the accessible universe, and life 
without at least one atom seems impossible. 

https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://arxiv.org/ftp/arxiv/papers/0709/0709.4102.pdf
http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8322-5587-9&search=yes


 357

 Is the heaven infinite? 
 
The existence of a creator has become more and more improbable in history of mankind. 
Copernicus, Bruno, and Darwin contributed to remove mankind from the centre of the universe, 
the position chosen by God for his creatures. The development of the character of God himself 
closely reflects the social development of human societies. G.C. Lichtenberg noted: "God created 
man according to his image? That means probably, man created God according to his." 
 
The discovery of foreign cultures, in America and Australia, revealed that people there had not 
been informed in advance about the God of Jews, Christians, or Moslems – a highly unfair state 
of affairs in case belief in this God was advantageous before or after death.  
 
The results of neurology and cerebral surgery show that characteristic traits and behaviour 
usually retraced to the human soul can be arbitrarily manipulated by electric currents, drugs, or 
surgery while an immortal soul cannot be localized. 
 
Of course it is impossible to prove or to disprove the existence of one or more Gods, but it is easy 
to disprove the absolutum, as Cantor called it, i.e., the infinity of every property of a God. 
Medieval scholastics already asked, whether God could make a stone that heavy that he himself 
was incapable of lifting it. God cannot know the complete future unless the universe is 
deterministic. But in this case, there could be no free will and no living creature could prove itself 
suitable or unsuitable to enter paradise or hell – and the whole creation was meaningless. 
 
Therefore, actual infinity, as being inherent to theological items, cannot be excluded but is at best 
problematic; it is certainly not due to every property of God. [W. Mückenheim: "The infinite in 
sciences and arts", Proceedings of the 2nd International Symposium of Mathematics and its 
Connections to the Arts and Sciences (MACAS 2), B. Sriraman, C. Michelsen, A. Beckmann, V. 
Freiman (eds.), Centre for Science and Mathematics Education, University of Southern Denmark, 
Odense (2008) pp. 265-272 & arXiv] 
 
 
 
 What are numbers? 
 
Numbers are special properties of objects like colour or size, perhaps a bit more precise, but not 
different in principle. They define how many parts the object has or can have. 
 
An early herdsman may have reported a loss of cattle to his master by saying: There were as 
many lions as I have eyes. They have taken as many cows as I have fingers. In some languages 
the word for 5 is the same as that for hand [M. Cantor: "Vorlesungen über Geschichte der 
Mathematik", Vol. 1, 3rd ed., Teubner, Leipzig (1907)]. These sentences are similar to other 
comparative descriptions: The lions were larger than big dogs. Their skin was as yellow as the 
sun. Their roar was as loud as thunder. They were as strong as bears. I fled as swiftly as the wind.  
 
Platonism is a special form of theology, perhaps a bit more precise, but not different in principle. 
It has no legitimacy in MatheRealism. 

https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://www.sdu.dk/~/media/1F59465C337B4A1B96BD2EDD9F1D5D63.ashx
https://arxiv.org/ftp/arxiv/papers/0709/0709.4102.pdf
https://archive.org/details/117719411_001
https://archive.org/details/117719411_001
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 Which numbers exist? 
 
(For a related definition of the existence of natural numbers cp. section "An upper bound for 
cardinal numbers" below.) 
Ë If the definition of a number exists in a memory (such that it can be retrieved), then the defined 
number exists in that memory. 
Ë If the definition of a number can exist in a memory (such that it could be retrieved), then the 
defined number can exist in that memory. 
Ë If the definition of a number cannot exist in a memory (because too much memory space is 
required), then the defined number cannot exist in that memory. 
Ë If the definition of a number cannot exist anywhere, then this very number does not exist. 
Because "in mathematics description and object are equivalent" [Wittgenstein]. 
 
The question about the existence of numbers rarely can be answered by yes or no. The number 1 
exists, for instance here on this screen but also in every abstraction of a singleton set. The number 
1/727 exists here. Its decimal representation with a period of 726 digits 
 
0.[0013755158184319119669876203576341127922971114167812929848693259972489683631
361760660247592847317744154057771664374140302613480055020632737276478679504814
305364511691884456671251719394773039889958734525447042640990371389270976616231
086657496561210453920220082530949105914718019257221458046767537826685006877579
092159559834938101788170563961485557083906464924346629986244841815680880330123
796423658872077028885832187070151306740027510316368638239339752407152682255845
942228335625859697386519944979367262723521320495185694635488308115543328748280
605226960110041265474552957359009628610729023383768913342503438789546079779917
469050894085281980742778541953232462173314993122420907840440165061898211829436
03851444291609353507565337] 
 
perhaps has never existed in a human brain and presumably never will, because of insignificance, 
unless someone would learn it by heart or apply a suitable algorithm for sporting reasons. But the 
decimal representation exists here on the screen and in every simple calculation program – 
latently though, but with a rather high degree of existence. 
 
Nelson's number (cp. "Edward Nelson" in chapter V) existed already before somebody had 
calculated it. Did it exist before Nelson formulated it? Perhaps its degree of existence had been 
0.1 before, 0.9 afterwards, and is now 1.0? That is difficult to quantify. A number that requires 
1010 steps to be calculated has certainly a much lower degree of existence, and a number that 
requires more steps than are available, does not exist. Its degree of existence is 0 and that will 
never change. 
 
Even summoning all support of the accessible universe we could not calculate all numbers 
between 1 and 1010100. But each of these numbers x can be paired with another number y to yield 
the sum x + y = 1010100 + 1 such that the sum (1010100 + 1)ÿ1010100/2 of all of them is known. 
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 An upper bound for cardinal numbers 
 
In MatheRealism we consider what the mathematicians of the 19th century could not yet know, 
and what those of the 20th century seem to have pushed out of their minds: The universe contains 
less than 1080 protons and certainly less than 10100 particles which can store bits. It is, however, a 
prerequisite of set theory that an element of a set must differ from any other element of that set by 
at least one property. For this sake one would need at least one bit per element. Therefore, an 
upper limit of the number of elements of all sets is 10100. The supremum is certainly less. We 
have to revise the idea of actually existing Cantorian sets. Even the smallest one, the set Ù of all 
natural numbers does not exist, let alone the set of all real numbers. At least two notions are to be 
distinguished in MatheRealism with respect to natural numbers.  
 
1) Only those natural numbers exist which are available, i.e., which can be used by someone for 
calculating purposes. This proposition, including the "someone", is left vague on purpose. The 
existence of a natural number has "relativistic" aspects: The question of its existence can be 
answered differently by different individuals and at different times. As an example consider a 
poem which exists for the poet who just has written it but not yet for anybody else. Another 
example is the set of prime numbers to be discovered in the year 2050. It does not yet exist. It is 
unknown how many elements it will have, even whether it will have elements at all. 
 
The set Ù* of all natural numbers which exist relative to an observer can increase or decrease like 
the set of all known primes. Therefore it is difficult to determine its cardinal number |Ù*|. But 
obviously |Ù*| < 10100 is not infinite. 
 
2) All natural numbers which ever have existed and which ever will exist do not form a set in the 
sense of set theory because not all of them are simultaneously available and distinguishable. 
Some of them do not exist yet, others have ceased to exist. The number of all those numbers of 
this collection is potentially infinite because it is not bounded by any threshold, but in no case 
any cardinal number can become the actual infinity ¡0 let alone exceed it. 
 
We can conclude: The set Ù = {1, 2, 3, ... } of all natural numbers in the sense of Cantorian set 
theory does not exist. It is simply not available. But it is difficult to recognize that, because 
usually only some comparatively small numbers are chosen as examples and in calculations, 
followed by the dubious symbol "...". The natural numbers, in general thoughtlessly imagined as 
an unbroken sequence, do not come along like the shiny wagons of a long train. Their sequence 
has gaps. 
 
As a result, we find in MatheRealism that infinite sets consisting of distinct elements cannot 
exist, neither in the brain of any intelligent being nor elsewhere in the universe. 10100 is an upper 
limit for any cardinal number of existing ideas, i.e., thought objects. Therefore, all the paradoxes 
of set theory, not easy to be circumvented otherwise, vanish. [W. Mückenheim: "Das 
Unendliche", de.sci.mathematik (5 Jan 2005). W. Mückenheim: "Physical constraints of 
numbers", Proceedings of the First International Symposium of Mathematics and its Connections 
to the Arts and Sciences, A. Beckmann, C. Michelsen, B. Sriraman (eds.), Franzbecker, Berlin 
(2005) pp. 134-141 & arXiv] 

https://groups.google.com/forum/#!searchin/de.sci.mathematik/DAS$20UNENDLICHE$20-$20TEIL$201$3A$20DIE$20NATUERLICHEN$20ZAHLEN%7Csort:relevance/de.sci.mathematik/t91R_GN1UHk/lLBDBCoQfbQJ
https://groups.google.com/forum/#!searchin/de.sci.mathematik/DAS$20UNENDLICHE$20-$20TEIL$201$3A$20DIE$20NATUERLICHEN$20ZAHLEN%7Csort:relevance/de.sci.mathematik/t91R_GN1UHk/lLBDBCoQfbQJ
http://arxiv.org/ftp/math/papers/0505/0505649.pdf
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 How to realize numbers? 
 
All sciences need and many arts apply mathematics whereas mathematics seems to be 
independent of all of them, only based upon logic. This conservative opinion however need to be 
revised because, contrary to Platonic idealism (frequently called "realism" by mathematicians), 
mathematical ideas, notions, and, in particular, numbers are not at all independent of physical 
laws and prerequisites. 
 
The existence of all natural numbers 1, 2, 3, ... is not guaranteed by their definition alone. In 
order to discuss this topic in detail we would need some formalized concept of existence. In its 
full generality the meaning of existence is a difficult philosophical question. The responses to it 
span the wide range between materialism and solipsism. But we need not consider this problem 
in great depth. What are the essentials of an idea? The answer to this question is comparatively 
easy. An idea exists on its own, if it is uniquely identifiable, i.e., if it can be distinguished from 
any other idea. A poem not yet written but existing in its author's mind is an idea as well as a 
mental image of a landscape or a mathematical problem. The result of the latter often is a 
number. While numbers belong to the set of ideas, they have to satisfy an even stronger criterion 
in order to be considered as really existing. Like an ordinary idea a number x can be 
individualised by a mere name. But its existence is certainly not yet established by labels like "2" 
or "π". "Number" is a patent of nobility, not issued unless its value, i.e., its ratio with respect to 
the unit, x/1, can be fixed precisely or at least to any desired approximation. 
 
The basic and most secure method to establish the reality of a number is to form its fundamental 
set. The roman numerals are reminiscent of this method. While "2" is a name, "II" is both, a name 
and a part of that number, namely of the fundamental set 
 
 2 = {all pairs like: II, you & me, mum & dad, sun & moon} . 
 
2 is the property that all its subsets have in common. Of course this realization of 2 presupposes 
some a priori knowledge about 2. But here we are concerned with the mere realization. The same 
method can be applied in case of 3 
 
 3 = {all triples like: III, sun & moon & earth, father & son & holy spirit} . 
  
Although IIII is easily intelligible, and pigeons are able to distinguish up to IIIIIII slots at first 
glance, it is impractical to realize larger numbers in this way. The Romans ceased at IV already. 
And we would have great difficulties to identify numbers beyond 20 in this construction. 
 
Position systems, decimal or binary or other n-adic systems remedy this problem and have the 
advantage to accomplish both identify a number and put it in order with other numbers by 
economical consumption of symbols. 
 
Does the fundamental set of 4711 exist? We don't know. It did at least in Cologne at the 
beginning of the 19th century. A set of 101000 elements does definitely not exist in the accessible 
universe. Nevertheless 4711 and 101000 are natural numbers. Their values, i.e., their ratios with 
respect to the unit are exactly determined. 
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It is impossible, however, to satisfy this condition for all natural numbers. It would require an 
unlimited amount of resources. But the universe is finite – at least that part available to us. Here 
is a simple means to realise the implications: First find out how many different natural numbers 
can be stored on a 10 GB hard disk. Then, step by step, expand the horizon to the 1011 neurons of 
your brain, to the 1028 atoms of your body, to the 1050 atoms of our earth, to the 1068 atoms of 
our galaxy, and finally to the 1078 protons within the universe. In principle, the whole universe 
could be turned into a big computer, but with far fewer resources than is usually expected without 
a thought be given to it.  
 
Does a number exist in spite of the fact that we do not know and cannot know much more about 
it but that it should be a natural number? Does a poem exist, if nobody knows anything about it, 
except that it consists of 80 characters? The attempt to label every 80-digits number like 
 
         12345678901234567890123456789012345678901234567890123456789012345678901234567890 
 
by a single proton only, would already consume more protons than the universe can supply. What 
you see is a number with no doubt. Each of those 80-digits strings can be noted on a small piece 
of paper. But all of them cannot even exist as individual ideas simultaneously, let alone as 
numbers with definite values. Given that photons and leptons can be recruited to store bits and 
given that the mysterious dark matter consists of particles or other means which can be used for 
that purpose too, it is nevertheless quite impossible to encode the values of 10100 natural numbers 
in order to have them simultaneously available. (An advanced estimation, based on the Planck-
length 1.6ÿ10-35 m, leads to an upper limit of 10205 but the concrete number is quite irrelevant. So 
let us stay with 10100, the Googol.) 
 
Even some numbers smaller than 210100 can never be stored, known, or thought of. In short they 
do not exist.1 (It must not be forgotten: Also one's head, brain, mind, and all thoughts belong to 
the interior of the universe.) To avoid misunderstanding: Of course, there is no largest natural 
number. By short cuts like 101010... we are able to express numbers with precisely known values 
surpassing any desired magnitude. But it will never be possible, by any means of future 
technology and of mathematical techniques, to know that natural number P which consists of the 
first 10100 decimal digits of π (given π is a normal irrational without any pattern appearing in its 
n-adic expansion). This P will never be fully available. But what is a natural number the digits of 
which will never be known? P is an idea but it is not a number and, contrary to any 80-digits 
string, it will never be a number. It is even impossible to distinguish it from that number P', 
which is created by replacing the last digit of P by, say, 5. It will probably never be possible to 
decide, whether P < P' or P = P' or P > P'. But if none of these relations can ever be verified, then 
we can conclude, adopting a realistic philosophical position, that none of them is true. 
 
A method to compute hexadecimal digits of π without knowing the previous digits [D.H. Bailey, 
P.B. Borwein, S. Plouffe: "On the rapid computation of various polylogarithmic constants", 
Math. Comput. 66 (1997) pp. 903-913] fails in this domain too because of finite precision and 
lacking memory space. But even if the last digit of P could be computed, we would need to know 

                                                 
1 Compare a commercial pocket calculator which can express and multiply numbers like 1040 and 1050 but 
not 123456789012345 and 1213141516171819. 
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all the other digits to distinguish P from all similar natural numbers 314...d... where d means the 
nth digit with 1§ n § 10100. And why should we stop at the comparatively small Googol? 
  
It is obvious how to apply the aforementioned ideas to the collection of rational numbers. 
Rational numbers can be defined as equivalence classes of pairs of natural numbers. By 
multiplying a rational number by its denominator, we obtain a natural number. Natural numbers 
measure values based on the unit, rational numbers measure values depending on their 
denominator. All rational numbers have some terminating n-adic expansions. In other 
representations they have periods. In case the terminating expansion or the period is not too long, 
these numbers can be identified and hence they do exist. A rational number however which 
approximates π better than 1/210100, i.e. to 10100 bits, does not exist. [W. Mückenheim: "Physical 
constraints of numbers", Proceedings of the First International Symposium of Mathematics and 
its Connections to the Arts and Sciences, A. Beckmann, C. Michelsen, B. Sriraman (eds.), 
Franzbecker, Berlin (2005) pp. 134-141 & arXiv. W. Mückenheim: "Die Geschichte des 
Unendlichen", 7th ed., Maro, Augsburg (2011) ch. XII.4] 
 
 
 
 Are the real numbers really real? 
 
Cauchy, Weierstrass, Cantor, and Dedekind attempted to give meaning to irrational numbers, 
being well aware that there was more to do than to find suitable names. According to Cantor, ◊3 
is not a number but only a symbol: "◊3 ist also nur ein Zeichen für eine Zahl, welche erst noch 
gefunden werden soll, nicht aber deren Definition. Letztere wird jedoch in meiner Weise etwa 
durch (1.7, 1.73, 1.732, ...) befriedigend gegeben" [Cantor, p. 114].  
 
It is argued that ◊3 does exist, because it can be approximated to any desired precision by some 
sequence (an) such that for any positive ε we can find a natural number n0 such that the distance 
|an - ◊3| < ε for n ¥ n0. It is clear that Cantor and his contemporaries could not perceive the 
principle limits of their approach. But every present-day scientist should know that it is in 
principle impossible to approximate any irrational like ◊3 to ε < 1/210100. (An exception are 
irrationals like ◊3/210100. But that does not establish their existence.) Therefore, the condition to 
achieve any desired precision fails in decimal and binary and any other fixed n-adic 
representation. 
 
What about continued fractions, sequences, series, or modular identities determining irrational 
numbers x with "arbitrary precision"? All these methods devised to compare x with 1 must 
necessarily fail, because the uninterrupted sequence of natural indices up to "arbitrary 
magnitude" required to calculate the terms and to store the rational approximations is not 
available. As a result we find that irrational numbers do not exist other than as ideas. In 
MatheRealism irrational numbers simply are not numbers but only ideas. [W. Mückenheim: 
"Physical constraints of numbers", Proceedings of the First International Symposium of 
Mathematics and its Connections to the Arts and Sciences, A. Beckmann, C. Michelsen, B. 
Sriraman (eds.), Franzbecker, Berlin (2005) pp. 134-141 & arXiv. W. Mückenheim: Die 
Mathematik des Unendlichen, Shaker-Verlag, Aachen (2006) p. 137] 

http://arxiv.org/ftp/math/papers/0505/0505649.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
https://www.hs-augsburg.de/~mueckenh/GU/Skript.pdf
http://arxiv.org/ftp/math/papers/0505/0505649.pdf
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 MatheRealism in geometry 
 
A real straight line consists of physical points, namely its molecules. Their number will rarely 
exceed 1020. Same holds for areas and bodies, often containing some more molecules though. 
 
An ideal straight line (or area or body) consists of points which are identified by their 
coordinates. It is only imagined. Imagined points that are not imagined do not exist. If there are 
less than 10100 indices, then less than 10100 points can be imagined.  
 
Intervals, closed and open, are identified by their endpoints. The number of points inside is a 
matter of taste. Either we consider how many points inside have been defined or how many 
points inside can be defined. It is obvious that there is no point next to another one or next to the 
endpoint. Therefore open intervals have a very frayed character – when looking closely. 
 
 
 
 Epilogue: About mathematics and reality and this book1 
 
Mathematics facilitates organizing and recognizing reality and serves to provide an overview. For 
this purpose mathematical objects like numbers, figures, symbols, or structures have been 
created, their properties have been investigated and expressed in statements which, proved by 
means of logic, have become theorems. All this happens in a language as clear as possible. In 
order to define the meaning of a word however we need other words the meaning of which is 
known already. To avoid a circulus vitiosus a basis of words is required which cannot be 
analyzed further. Statements containing only those words and appearing so evident that further 
proof is not necessary have been introduced into ancient geometry already by Euclid and have 
been called axioms. 
 
It is controversial whether mathematics is a natural science. Many European and American 
universities house a faculty of mathematics and natural sciences, revealing the close connection 
between both. On the other hand, according to modern view, the choice of an axiom system is no 
longer bound to reality but completely arbitrary, as long as internal contradictions are avoided 
and the accepted mathematical theorems can be proved. This latter point however shows that the 
decision about the acceptance of mathematical theorems is not left to the axiom system. On the 
contrary, in the end reality decides whether an axiom system is acceptable. 
 
Unfortunately modern axiom systems lead to several unrealistic consequences. Therefore realistic 
mathematics should be developed from those foundations from which it originally arose, namely 
counting of units and drawing of lines. Mathematics owes its origin to the abstraction from 
observations of reality. A statement like "I + I = II" need not be derived from a proof covering 
many pages. This statement itself is a much more natural foundation of arithmetic than any axiom 
devised for that purpose. It can be proved by means of an abacus much more strictly than by any 
sophisticated chain of logical conclusions. 
 
                                                 
1 Form the preface of my book [W. Mückenheim: "Mathematik für die ersten Semester", 4th ed., De 
Gruyter, Berlin (2015)] which here is addressed as "this book". 
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The edifice of present mathematics has been erected by means of an axiom system based on 
Georg Cantor's teaching of the transfinite numbers. According to his own statement he developed 
it in order to describe the completed infinities which he surmised "in nature and in every 
extended part of space how small ever" [1]. In the light of our modern knowledge of nature it has 
turned out however that reality does not contain anything to apply transfinite numbers upon. "In 
the intellectual general picture of our century the actual infinite appears quite bluntly as an 
anachronism" [2]. On the other hand the finiteness of the accessible universe leads to the 
recognition that mathematics like every other science is forced to get by on finite means. But 
without infinite means there are no infinite results. A set of numbers consists of numbers that 
somehow must be distinguishable, i.e., that have distinct expressions. A number can be expressed 
by a name, by a definition, by a string of digits, or by other marks. If the number of all marks is 
bounded, then the set of distinguishable elements is bounded too. The universe with its 1078 
protons, let alone every part that really can be utilized for thinking and calculating, has a finite 
capacity for storing information. Therefore the number of distinct marks is limited by purely 
material reasons. If only significantly less than 10100 units of information or digits can be stored, 
then it is evidently impossible to distinguish more than 10100 numbers. But what cannot be 
marked and cannot be thought, that cannot be a number – what never has been thought and never 
can be thought does not belong to the set of thoughts. Without diving into a discussion about the 
meaning of existence we should agree that it is impossible and forever will remain impossible to 
apply "numbers" that cannot be marked in any way as individuals. They do not belong to 
mathematics as far as mathematics belongs to reality.  
 
The finiteness of every set of numbers however does not imply the existence of a largest number, 
as often is assumed erroneously. The number 10100 and also much larger numbers like 101000 can 
be named and identified, for instance here on this sheet or in the mind of the reader.1 But many 
numbers the representation of which would require 10100 different digits, cannot be defined and 
thus cannot be utilized. It is impossible to count from 1 till 1010100 – and this is independent of the 
time available. "The sequence of natural numbers does not appear perfect like an intercity train. It 
has gaps" [3]. And these gaps are increasing with the size of the numbers. Therefore it is not 
meaningful to talk of an actually infinite number sequence, and in the present book it is not 
attempted to postulate the existence of actually infinite sets or to compute with transfinite 
numbers. The most important theorems of a mathematics oriented towards reality can be proved 
in good approximation by means of experiments, performed mainly on efficient computers. 
Computers are the telescopes and microscopes of mathematicians. They improve the perspective 
and allow to distinguish details that cannot be seen otherwise. The notions "infinite set" and "set 
of all numbers with a certain property" are used in this book, but here we mean sets that have no 
actual existence, sets that cannot be overlooked and that therefore are infinite in the literal sense. 
In contrast to an actually infinite set the number of elements of a potentially infinite set can 
neither be determined nor be surpassed, since the set is never completed. "Numbers are free 
creations of the human mind" [4]. Their number is finite and always will remain so. "A 
construction does not exist until it is made; when something new is made, it is something new 
and not a selection from a pre-existing collection" [5]. Therefore sets of numbers are not fixed. 
"The 'natural numbers' of today are not the same as the 'natural numbers' of yesterday" [6]. "The 
infinite is nowhere realized; it is neither present in nature nor admissible as the basis of our 
rational thinking – a remarkable harmony between being and thinking" [7]. 
                                                 
1 In order to immediately comprehend the argument consider a pocket calculator with a ten-digit display. 
This device can process and display the number 1050 but not the number 123456789012345. 
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 The finiteness of every set makes also the set of all indices of digits of a number finite. The 
common tacitly accepted assumption that every real number can be approximated with "arbitrary 
precision" has not unrestricted validity. The number axis is not free of gaps; the notions of 
continuity, convergence, and other basics of calculus become problematic; the intermediate value 
theorem or the fundamental theorem of algebra "suffer from exceptions". 
 
No-one can find a remedy! Mathematics is not existing outside of reality. It is of little use to 
require the existence of actually infinite sets and so to "prove" the completeness of real numbers. 
This does not better rectify the shortage than a merchant who adds some zeros to his balance – as 
Immanuel Kant emphasized in an analogous context [8]. The really accessible "continuum" has a 
granular structure. The grain size depends on the computing capacity. The mathematician who is 
merely equipped with an abacus has access to integers only. Fortunately the grainy structure is 
usually fine enough not to cause disadvantages. Just like the quantization of the earth's orbit has 
no relevance to astronomical problems and the molecular structure of butter does not noticeably 
limit its spreadability, the principle uncertainty of numbers will not impair their suitability for the 
purpose of organizing and recognizing reality. In general the 10-digit-precision of pocket 
calculators or the 100-digit-precision of simple computing programs are sufficient. The 
knowledge of the first 10100 digits will only be strived for on extremely rare occasions and will 
never be reached with irrational numbers [9]. 
 
But at the most this lack will become perceptible in fundamental research. And even for that 
realm the inventor of non-standard analysis has asserted: "Infinite totalities do not exist in any 
sense of the word (i.e., either really or ideally). More precisely, any mention, or purported 
mention, of infinite totalities is, literally, meaningless. Nevertheless, we should continue the 
business of Mathematics 'as usual', i.e., we should act as if infinite totalities really existed" [10]. 
Without suppressing the knowledge about this shortage and blocking it out of our consciousness 
we can and will apply mathematics for organizing and recognizing reality as if infinite sets 
existed. 
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