Which marketing action does it?

Data inspection, a little something about R , linear regression and problems with multicollinearities

Inholland University of Applied Sciences
International Week 2014

Stefan Etschberger
Augsburg University of Applied Sciences

Who is talking to you?

- Stefan Etschberger
- University degree in mathematics and physics
- Worked as an engineer in semiconductor industry

- Back to university as a researcher: doctoral degree in economic science
- Research focus: marketing research using data analysis
- Professor of Mathematics and Statistics since 2006
- at University of Applied Sciences Augsburg since 2012

Where am I from?

- City of Augsburg
- Almost (OK, 2nd place) oldest city in Germany (15 b.C.)
- Famous for its renaissance architecture
- and the oldest social housing project in the world (1521)
- A lot of university students (25.000)
- And a business school at the

Augsburg University of Applied Science

Data analysis, Regression and Beyond: Table of Contents

Introduction

R and RStudio

Revision: Simple linear regression

Multicollinearity in Regression

(1)

Introduction
Mr. Maier and his cheese Mr. Maier and his data

- After his bachelor's degree in marketing Mr. Maier took over a respectable cheese dairy in Bavaria
- Regularly he does marketing focused on distinct towns
- He uses the phone, e-mail, mail and small gifts for his key customers
- And he collected data about his spendings per marketing action and his revenues for 30 days after the action took place

Mr. Maier's data

action	revenue	telephone	e-mail	mail	gift
1	10193.70	186.20	158.60	26.90	11.10
2	4828.20	470.30	55.00	14.40	20.30
3	11139.30	41.80	154.70	20.90	12.40
4	5030.10	530.10	79.80	21.70	17.00
\vdots					

Introduction
Mr. Maier and his cheese
Mr. Maier and his data
R and RStudio
Simple linear
regression
Multicollinearity

- Goal: Getting to know interesting structure hidden inside data
- Maybe: Forecast of his revenue as a model dependent of the spendings for his marketing actions
- Data has been sent the data from his external advertising service provider inside an Excel-file.
- Mr. Maier runs his data analysis software....

Data analysis, Regression and Beyond: Table of Contents

R and RStudio

Revision: Simple linear regression

Multicollinearity in Regression

R and RStudio
What is R ?
What is RStudio?
First steps

What is R and why R ?

- R is a free Data Analysis Software
$-R$ is very powerful and widely used in science and industry (in fact far more widely than SPSS)
- Created in 1993 at the University of Auckland
by Ross Ihaka and Robert Gentleman
- Since then: A lot of people improved the software and wrote thousands of packages for lots of applications
- Drawback (at first glance): No point and click tool
- Major advantage (at second thought): No point and click tool

Introduction
R and RStudio
What is R ?
What is RStudio? First steps

- The average data miner reports using 4 software tools.
- R is used by the most data miners (47%)
- STATISTICA is the primary data mining tool chosen most often (17%)

Simple linear
regression
Multicollinearity
Supplementary slides

What is RStudio?

Data analysis, Regression and Beyond
Stefan Etschberger

- RStudio is a Integrated

Development
Environment (IDE) for using R.

- Works on OSX, Linux and Windows
- It's free as well
- Still: You have to write commands
- But: RStudio supports you a lot

(R)Studio

Free \& Open-Source IDE for R

Introduction
R and RStudio
What is R ?
What is RStudio? First steps

Simple linear
regression
Mufticoltnearity
Supplementary slides

First steps

Data analysis, Regression and Beyond
Stefan Etschberger

Getting to know RStudio

- Code
- Console
- Workspace
- History
- Files
- Plots
- Packages
- Help
- Auto-

Completion

- Data Import

Introduction

R and RStudio
What is R ?
What is RStudio?
First steps
Simple linear
regression
Mufticollinearity
Supplementary slides

data inspection

Data analysis, Regression and Beyond
Stefan Etschberger

```
# read in data from comma-seperated list
MyCheeseData = read.csv(file="Cheese.csv", header=TRUE)
# show first few lines of data matrix
head(MyCheeseData)
## phone gift email mail revenue
## 1 29.36 146.1 10.32 13.36 3138
## 2 
## 3 36.15 124.5 8.45 17.72 3085
## 4 51.20 129.4 10.27 39.59 4668
## 5 51.36 163.4 8.19 7.57 2286
## 6 34.65 110.0 7.89 21.68 4148
# make MyCheeseData the default dataset
attach(MyCheeseData)
# how many customer data objects do we have?
length(revenue)
## [1] 80
# mean, median and standard deviation of revenue
data.frame(mean=mean(revenue),
    median=median(revenue),
    sd=sd(revenue))
## mean median sd
## 1 3075 3086 903.4
```


Introduction
R and RStudio
What is R ?
What is RStudio?
First steps
Simple linear
regression
Mufticollinearity
Supplementary slides

data inspection

Data analysis, Regression and Beyond
Stefan Etschberger

Overview over all variables

\#\#	phone	gift	email
\#\#	Min. : 0.09	Min. : 32.9	Min. : 0.11
\#\#	1st Qu.:19.41	1st Qu.: 92.1	1st Qu.: 6.62
\#\#	Median :32.16	Median :112.4	Median : 8.48
\#\#	Mean :32.72	Mean : 114.7	Mean : 8.40
\#\#	3rd Qu.:48.23	3rd Qu.: 134.2	3rd Qu. : 10.43
\#\#	$\begin{gathered} \text { Max. }: 73.59 \\ \text { mail } \end{gathered}$	Max. :183.4 revenue	Max. $: 16.93$
\#\#	Min. : 1.82	Min. : 831	
\#\#	1st Qu.:12.68	1st Qu.:2326	
\#\#	Median :19.89	Median :3086	
\#\#	Mean : 19.60	Mean : 3075	
\#\#	3rd Qu.:25.55	3rd Qu.:3671	
\#\#	Max. $: 47.47$	Max. $: 4740$	

```
```

```
summary(MyCheeseData)
```

```
```

summary(MyCheeseData)

```

Introduction
R and RStudio
What is \(R\) ?
What is RStudio?
First steps
Simple linear
regression
Multicollinearity
Supplementary slides

\section*{data inspection}

Data analysis, Regression and

Beyond
Stefan Etschberger

\section*{Boxplots}
```

names=names(MyCheeseData)
for(i in 1:5) {
boxplot(MyCheeseData[,i], col="lightblue", lwd=3, main=names[i], cex=1)
}

```


\section*{Introduction}
\(R\) and RStudio
What is \(R\) ?
What is RStudio?
First steps
Simple linear regression

Multicollinearity
Supplementary slides

\section*{Data inspection}

Data analysis, Regression and Beyond Stefan Etschberger

\section*{Visualize pairs}
plot(MyCheeseData, pch=19, col="\#8090ADa0")


\section*{data inspection}

Data analysis, Regression and Beyond
Stefan Etschberger


Introduction
R and PStudio
What is \(R\) ?
What is RStudio?
First steps

\section*{data inspection}

Data analysis, Regression and Beyond
Stefan Etschberger

\section*{Visualize correlation}

\section*{require(corrplot)}
corrplot(cor.MyCheeseData)
corrplot(cor.MyCheeseData, method="number", order ="AOE", tl.pos="d", type="upper")



\section*{Introduction}
\(R\) and RStudio
What is R ?
What is RStudio?
First steps
Simple linear regression

Mufticollinearity
Supplementary slides

\section*{Data analysis, Regression and Beyond: Table of Contents}

Introduction
(2) R and RStudio

3 Revision: Simple linear regression

Multicollinearity in Regression


3 Revision: Simple linear regression
Example set of data
Trend as a linear model
Least squares

\section*{Best solution}

Variance and information
Coefficient of determination
\(R^{2}\) is not perfect!
Residual analysis

\section*{Data}

Data analysis, Regression and Beyond Stefan Etschberger

\section*{Premier German Soccer League 2008/2009}
- Given: data for all 18 clubs in the German Premier Soccer League in the season 2008/09
- variables: Budget for season (only direct salaries for players)
- and: resulting table points at the end of the season
\begin{tabular}{rcc}
\hline & Etat & Punkte \\
\hline FC Bayern & 80 & 67 \\
VfL Wolfsburg & 60 & 69 \\
SV Werder Bremen & 48 & 45 \\
FC Schalke 04 & 48 & 50 \\
VfB Stuttgart & 38 & 64 \\
Hamburger SV & 35 & 61 \\
Bayer 04 Leverkusen & 35 & 49 \\
Bor. Dortmund & 32 & 59 \\
Hertha BSC Berlin & 31 & 63 \\
1. FC Köln & 28 & 39 \\
Bor. Mönchengladbach & 27 & 31 \\
TSG Hoffenheim & 26 & 55 \\
Eintracht Frankfurt & 25 & 33 \\
Hannover 96 & 24 & 40 \\
Energie Cottbus & 23 & 30 \\
VfL Bochum & 17 & 32 \\
Karlsruher SC & 17 & 29 \\
Arminia Bielefeld & 15 & 28 \\
\hline
\end{tabular}

\section*{data in scatter plot}

Data analysis, Regression and Beyond Stefan Etschberger

\section*{Bundesliga 2008/09}

- Is it possible to find a simple function which can describe the dependency of the end-of-season-points versus the club budget?
- In general: Description of a variable Y as a function of another variable \(X\) :
\[
y=f(x)
\]
- Notation:
- \(X\) : independent variable
- Y dependent variable
- Important and easiest special case: f represents a linear trend:

Introduction
R and RStudio
Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination \(R^{2}\) is not perfect!
Residual analysis
\[
y=a+b x
\]
- To estimate using the data: a (intercept) and b (slope)
- Estimation of \(a\) and \(b\) is called: Simple linear regression

\section*{Sum of error squares}
- using the regression model; per data object:
\[
y_{i}=a+b x_{i}+\epsilon_{i}
\]
- \(\epsilon_{i}\) is error (regarding the population),
\(\Rightarrow\) with \(e_{i}=y_{i}-\left(\hat{a}+\hat{b} x_{i}\right)\) : deviation (residual) of given data of the sample und estimated values
- model works well if all residuals \(e_{i}\) are together as small as possible
- But just summing them up does not work, because \(e_{i}\) are positive and negative
- Hence: Sum of squares of \(e_{i}\)

Introduction
\(R\) and RStudio
Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination \(R^{2}\) is not perfect!
Residual analysis
Multicollinearity
Supplementary slides
- Ordinary Least squares (OLS): Choose \(a\) and \(b\) in such a way, that
\[
\mathrm{Q}(\mathrm{a}, \mathrm{~b})=\sum_{i=1}^{n}\left[y_{i}-\left(a+b x_{i}\right)\right]^{2} \rightarrow \min
\]

\section*{Best solution}

Data analysis, Regression and

\section*{- Best and unique solution:}
\[
\begin{aligned}
& \hat{b}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
&=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}} \\
& \hat{a}=\bar{y}-\hat{b} \bar{x}
\end{aligned}
\]


Introduction
R and RStudio
Simple linear

\section*{regression}

Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination \(R^{2}\) is not perfect!
Residual analysis
- regression line:
\[
\hat{y}=\hat{a}+\hat{b} x
\]

\section*{Soccer example}

Data analysis, Regression and Beyond Stefan Etschberger
- Calculation of the soccer model
- With: table points \(\hat{=} \mathrm{y}\) and budget \(\hat{=} \mathrm{x}\) :
\begin{tabular}{rlr}
\hline \(\bar{x}\) & 33,83 \\
\(\bar{y}\) & 46,89 \\
\(\sum x_{i}^{2}\) & 25209 \\
\(\sum x_{i} y_{i}\) & 31474 \\
n & 18 \\
\hline\(\Rightarrow \hat{\mathrm{~b}}\) & \(=\frac{31474-18 \cdot 33,83 \cdot 46,89}{25209-18 \cdot 33,83^{2}}\) \\
& \(\approx 0,634\) \\
\(\Rightarrow \hat{\mathrm{a}}\) & \(=46,89-\hat{\mathrm{b}} \cdot 33,83\) \\
& \(\approx 25,443\)
\end{tabular}
- model: \(\hat{y}=25,443+0,634 \cdot x\)

- prognosis for budget \(=30\) :
\[
\hat{y}(30)=25,443+0,634 \cdot 30 \approx 44,463
\]


Introduction
R and RStudio

Simple linear

\section*{regression}

Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination \(R^{2}\) is not perfect!
Residual analysis
Multicollinearity
Supplementary slides

\section*{Variance and information}

Data analysis, Regression and Beyond Stefan Etschberger
- Variance of data in \(y_{i}\) as indicator for model's information content
- Only a fraction of that variability can be mapped in the modeled values \(\hat{y}_{i}\)



Introduction
R and RStudio

Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination \(R^{2}\) is not perfect!
Residual analysis
Multicollinearity
Supplementary slides
- Empirical variance for „red" and "green":
\[
\frac{1}{18} \sum_{i=1}^{18}\left(y_{i}-\bar{y}\right)^{2} \approx 200,77 \quad \text { resp. } \quad \frac{1}{18} \sum_{i=1}^{18}\left(\hat{y}_{i}-\bar{y}\right)^{2} \approx 102,78
\]

\section*{Coefficient of determination}

Data analysis, Regression and Beyond Stefan Etschberger
- Quality criterion for regression model: Coefficient of determination:
\[
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{\sum_{i=1}^{n} \hat{y}_{i}^{2}-n \bar{y}^{2}}{\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}}=r^{2} \in[0 ; 1]
\]
- Possible interpretation of \(R^{2}\) :

Proportion of total information in data which could be explained using model
- \(\mathrm{R}^{2}=0\), if \(\mathrm{X}, \mathrm{Y}\) uncorrelated
\(R^{2}=1\), if \(\hat{y}_{i}=y_{i} \forall i\) (every data point on regression line)
- With soccer example:
\[
R^{2}=\frac{\sum_{i=1}^{18}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{18}\left(y_{i}-\bar{y}\right)^{2}} \approx \frac{102,78}{200,77} \approx 51,19 \%
\]

\section*{Regression: Four one-dimensional examples}

Data analysis, Regression and Beyond Stefan Etschberger

Famous data from the 1970ies:
\begin{tabular}{ccccccccc}
\hline\(i\) & \(x_{1 i}\) & \(x_{2 i}\) & \(x_{3 i}\) & \(x_{4 i}\) & \(y_{1 i}\) & \(y_{2 i}\) & \(y_{3 i}\) & \(y_{4 i}\) \\
\hline 1 & 10 & 10 & 10 & 8 & 8,04 & 9,14 & 7,46 & 6,58 \\
2 & 8 & 8 & 8 & 8 & 6,95 & 8,14 & 6,77 & 5,76 \\
3 & 13 & 13 & 13 & 8 & 7,58 & 8,74 & 12,74 & 7,71 \\
4 & 9 & 9 & 9 & 8 & 8,81 & 8,77 & 7,11 & 8,84 \\
5 & 11 & 11 & 11 & 8 & 8,33 & 9,26 & 7,81 & 8,47 \\
6 & 14 & 14 & 14 & 8 & 9,96 & 8,10 & 8,84 & 7,04 \\
7 & 6 & 6 & 6 & 8 & 7,24 & 6,13 & 6,08 & 5,25 \\
8 & 4 & 4 & 4 & 19 & 4,26 & 3,10 & 5,39 & 12,50 \\
9 & 12 & 12 & 12 & 8 & 10,84 & 9,13 & 8,15 & 5,56 \\
10 & 7 & 7 & 7 & 8 & 4,82 & 7,26 & 6,42 & 7,91 \\
11 & 5 & 5 & 5 & 8 & 5,68 & 4,74 & 5,73 & 6,89 \\
\hline
\end{tabular}

Introduction
R and RStudio
Simple linear

\section*{regression}

Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
\(R^{2}\) is not perfect!
Residual analysis

Multicollinearity
Supplementary slides

\section*{Residual analysis}
- often illuminating: distribution of residuals \(e_{i}\)
- Common: graphical display of residuals
- e.g.: \(e_{i}\) over \(\hat{y}_{i}\)

Introduction
R and RStudio
Simple linear
regression
Example set of data
Trend as a linear model
Least squares
Best solution
Variance and information
Coefficient of determination
\(R^{2}\) is not perfect!
Residual analysis
Multicollinearity
Supplementary slides

\section*{Important}

\section*{Properties of residual distribution}
- Preferably no systematic pattern
- No change of variance dependent of \(\hat{y}_{i}\) (Homoscedasticity)
- Necessary for inferential analysis: Approximately normal distributed residuals (q-q-plots)

\section*{Causality vs. correlation}
- Mostly important for useful regression analysis:
- Causal connection between independent and dependent variable
- Otherwise: No valuable prognosis possible
- Often: Latent variables in the background

\section*{Data analysis, Regression and Beyond: Table of Contents}
(1) Introduction
(2) R and RStudio
(3) Revision: Simple linear regression
(4) Multicollinearity in Regression


Multicollinearity in Regression
Back to Mr. Meier
Mr. Maier und his problem
Vocabulary
Geometry and Multicollinearity
Common believe
Solution approach
From diagnosis to therapy
Roundup

\section*{Back to Mr. Meier's data}

Data analysis, Regression and Beyond Stefan Etschberger
\begin{tabular}{lrrrrr}
\hline & phone & gift & email & mail & revenue \\
\hline 1 & 29.36 & 146.14 & 10.32 & 13.36 & 3137.85 \\
2 & 8.75 & 125.82 & 11.27 & 14.72 & 3728.11 \\
3 & 36.15 & 124.51 & 8.45 & 17.72 & 3084.75 \\
4 & 51.20 & 129.36 & 10.27 & 39.59 & 4667.90 \\
5 & 51.36 & 163.42 & 8.19 & 7.57 & 2286.41 \\
6 & 34.65 & 110.04 & 7.89 & 21.68 & 4147.61 \\
7 & 19.65 & 113.88 & 10.23 & 22.17 & 3648.22 \\
8 & 17.51 & 84.04 & 6.79 & 13.82 & 2558.09 \\
9 & 10.93 & 123.18 & 12.24 & 20.81 & 3003.83 \\
10 & 1.35 & 152.89 & 15.52 & 22.63 & 4740.21 \\
11 & 46.36 & 120.54 & 10.81 & 41.75 & 4014.46 \\
12 & 31.61 & 131.27 & 7.69 & 6.72 & 3241.13 \\
13 & 23.48 & 96.71 & 7.93 & 17.80 & 2174.79 \\
14 & 70.09 & 152.44 & 8.55 & 29.77 & 3318.12 \\
15 & 32.70 & 94.12 & 7.66 & 24.92 & 3504.20 \\
& & \(\vdots\) & & & \\
\hline
\end{tabular}

Introduction
R and RStudio
Simple linear regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides
- Idea: Maybe there is a (linear) causal dependency between revenue and the distinct advertising actions
- In other words: How much (more) revenue in Euro do we get from investing one (more) Euro in customer gifts (mails, emails, phone calls)?
- That means: We have to do a Multivariate Regression model like this:
\[
\begin{aligned}
Y_{\text {revenue }}=\beta_{0} & +\beta_{\text {phone }} \cdot X_{\text {phone }} \\
& +\beta_{\text {gift }} \cdot X_{\text {gift }} \\
& +\beta_{\text {mail }} \cdot X_{\text {mail }} \\
& +\beta_{\text {email }} \cdot X_{\text {email }}
\end{aligned}
\]

Introduction
\(R\) and RStudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem
Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Result: Model}

Data analysis, Regression and Beyond Stefan Etschberger
```


Call:

lm(formula = revenue ~ phone + gift + mail + email, data = MyCheeseData)

Residuals:

\#\#	Min	$1 Q$	Median	$3 Q$	Max
$\# \#$	-1084.8	-348.9	-46.5	333.1	1010.1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 741.5 250.3 2.96 0.0041 **

phone -68.2 34.1 -2.00 0.0494 *

gift 47.5 22.8 2.08 0.0408 *

mail 132.6 46.3 2.86 0.0054 **

email -413.9 282.9 -1.46 0.1477

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 480 on 75 degrees of freedom

Multiple R-squared: 0.732, Adjusted R-squared: 0.718

F-statistic: 51.3 on 4 and 75 DF, p-value: <2e-16

```
- Adjusted coefficient of determination \(\left(\mathrm{R}^{2}\right) 0.7179\)
- F-statistic: 51.2593 , p-value: \(99628 \times 10^{-21}\)
- Herr Maier is a little surprised, e.g. why email advertising seems to be this harmful.
- But we know that numbers don't lie...

\section*{Small corrections to data}

Data analysis, Regression and
- Calculation of phone spendings was slightly incorrect...
- ...and has been corrected
\begin{tabular}{crr}
\hline & phone.old & phone.new \\
\hline 1 & 29.36 & 29.36 \\
2 & 8.75 & 13.75 \\
3 & 36.15 & 36.15 \\
4 & 51.20 & 56.20 \\
5 & 51.36 & 56.36 \\
6 & 34.65 & 39.65 \\
7 & 19.65 & 24.65 \\
8 & 17.51 & 22.51 \\
9 & 10.93 & 15.93 \\
10 & 1.35 & 6.35 \\
11 & 46.36 & 51.36 \\
12 & 31.61 & 31.61 \\
13 & 23.48 & 23.48 \\
14 & 70.09 & 75.09 \\
15 & 32.70 & 32.70 \\
& \(\vdots\) & \\
& & \\
\hline
\end{tabular}

\section*{Introduction}
\(R\) and RStudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem
Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Corrected model}

Data analysis, Regression and

\section*{Model from corrected data}

- Model of the original data

- Model seems to be very unstable
- Small changes in data have a dramatic effect to the model's parameters
- Causal analysis is necessary!

\section*{A few technical terms}
- Linear regression: models the relationship between a dependent variable \(y\), independent variables \(x_{1}, \ldots, x_{m}\) with the help of parameters \(\beta_{0}, \ldots, \beta_{m}\)
- in general: \(y=\beta_{0}+\beta_{1} \cdot x_{1}+\ldots+\beta_{m} \cdot x_{m}+u\)
\[
y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 m} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & \cdots & x_{n \mathrm{~m}}
\end{array}\right) \cdot\left(\begin{array}{c}
\beta_{0} \\
\vdots \\
\beta_{m}
\end{array}\right)+\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)=x \cdot \beta+u
\]
- The error term \(u\) is the portion of the data which can not be described by the model
- Typical: Estimation of the „best" model parameters \(\hat{\beta}_{0}, \ldots, \hat{\beta}_{\mathrm{m}}\) using a least-square analysis:
\[
\hat{\beta}=\left(\begin{array}{c}
\hat{\beta}_{o} \\
\vdots \\
\hat{\beta}_{m}
\end{array}\right)=\left(X^{\top} X\right)^{-1} X^{\top} y
\]

Introduction
\(R\) and RStudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Two independent variables}

Data analysis, Regression and Beyond Stefan Etschberger
- two-dimensional example
- stable model possible


Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary

Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Two independent variables}

Data analysis, Regression and Beyond Stefan Etschberger
- Perfect multicollinearity
- no regression model possible


\section*{Introduction \\ R and PStudio}

Simple linear regression

Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary

Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Two independent variables}

Data analysis, Regression and Beyond Stefan Etschberger
- Strong Multicollinearity
- All parameters of the regression model are unstable


\section*{Introduction \\ R and PStudio}

Simple linear regression

Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary

Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides


\section*{Idea for diagnosis: Correlation?}
- Maybe the correlation of the independent variables is a good measure?
- But: Perfect multicollinearity between three or more vectors (which are not pairwise correlated)
- Simple Example:
\[
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { and }\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\]

Mr. Maier's data: Correlation matrix from independent variables:
\begin{tabular}{lrrrr}
\hline & phone & gift & email & mail \\
\hline phone & 1.00 & 0.19 & -0.52 & 0.10 \\
gift & 0.19 & 1.00 & 0.57 & -0.11 \\
email & -0.52 & 0.57 & 1.00 & 0.37 \\
mail & 0.10 & -0.11 & 0.37 & 1.00 \\
\hline
\end{tabular}

\section*{Technical Consideration}
- Nearly multicollinearity: Nearly linear dependency of the columns of \(X\)
- \(\Rightarrow\) there is a vector \(v \neq 0\), such that
\[
v_{0} x_{0}+\ldots+v_{\mathrm{m}} x_{\mathrm{m}}=\mathrm{X} v=\mathrm{a} \approx 0
\]

Introduction
R and RS tudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem

\section*{Vocabulary}

Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
- Proportion of largest and smallest Eigenvalue as per
\[
\kappa(X)=\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}
\]
is called condition number
- To create a benchmark out of condition numbers: Standardise variables with their standard deviation; then:
\begin{tabular}{cc} 
Condition number & amount of multicollinearity \\
\(<10\) & weak \\
\(>30\) & middle to strong \\
\hline
\end{tabular}
- condition index \(\eta_{k}\) for all eigenvalues \(\lambda_{k}\) :
\[
\eta_{k}=\sqrt{\frac{\lambda_{\max }}{\lambda_{k}}}
\]

\section*{Introduction}

R and RStudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem
Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides
- One High condition index: One (nearly) multicollinear relationship

\section*{Variance decomposition proportions}
- Which variables (including the constant) are involved with detected multicollinear relationship?
- Necessary: decompose the sensitivity (variance) of the model's parameters to changes
- Result:
\[
\pi_{j k}=\frac{\lambda_{j}^{-1} v_{k j}^{2}}{\sum_{i=0}^{m} \lambda_{i}^{-1} v_{k i}^{2}}
\]
- With:
- k: index of regression parameter \(\beta_{\mathrm{k}}\)

Mr. Maier und his problem
Vocabulary

Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides
- \(\mathfrak{j}\) : index of (large) condition index \(\eta_{j}\)

\section*{Back to Mr. Maier's data}

Data analysis, Regression and Beyond Stefan Etschberger
- Comparison of
- the condition indices (1st column)
- and the variance proportions of \(\beta_{\mathrm{k}}\)
- Result:
\begin{tabular}{rrrrrrr}
\hline & cond.index & intercept & phone & gift & email & mail \\
\hline 1 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
2 & 4.05 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 \\
3 & 5.11 & 0.01 & 0.00 & 0.00 & 0.00 & 0.04 \\
4 & 11.35 & 0.99 & 0.01 & 0.00 & 0.00 & 0.00 \\
5 & 83.93 & 0.00 & 0.98 & 0.99 & 0.99 & 0.96 \\
\hline
\end{tabular}
- Diagnosis: Look at the lines with high condition indices ( \(>30\) ); if there are two variance proportions \(>0,5\)...
- ...there is probably a dangerous multicollinearity caused by the involved variables
- Here: all 4 variables build a dangerous multicolliearity situation which results in a condition index of 83,93
- Therapy: Elimination of one of these variable reduces the condition number to values \(<15\)

\section*{Introduction}
\(R\) and RStudio
Simple linear
regression
Multicollinearity
Back to Mr. Meier
Mr. Maier und his problem Vocabulary
Geometry and
Multicollinearity
Common believe
Solution approach
Diagnosis and therapy
Roundup
Supplementary slides

\section*{Moral}

\section*{Results}
- Multicollinearity is a dangerous effect if undetected
- But can be handled using
- condition indices and
- variance decomposition proportions
- Major data analysis software packages all support this technique (R, SPSS, SAS)

\section*{Thanks for your attention! \\ Questions?}

\section*{Recipe to diagnose and eliminate multicollinearities}
(1) Columnwise standardisation of design matrix \(X\)
(2) Calculate eigenvalues \(\lambda_{k}\) und eigenvectors \(\nu_{k}\) from \(X^{\top} X\)
(3) Calculate the condition number \(\kappa(X)\).
(4) If \(\kappa(X) \geq 30\) : Calculate condition indices \(\eta_{j}\) and decompose the variance through \(\pi_{j k}\)
(5) Write down all \(\eta_{j}\) and all \(\pi_{j k}\)
(6) An \(\eta_{j}>30\) together with at least two \(\pi_{j k}>0,5\) indicates dangerous multicollinearity
(7) Eliminate one of the causing variables
(8) Back to 1.

\section*{Theory}
- Nearly multicollinearity: Nearly linear dependency of the columns of \(X\)
\(\Rightarrow \Rightarrow\) there is a vector \(v \neq 0\), such that
\[
v_{1} x_{1}+\ldots+v_{m} x_{m}=X v=a \approx 0
\]
(If not all scalars \(v_{1} \ldots v_{\mathrm{m}}\) are 0 )
- Therefore wanted: vector \(v\) with definit length (e.g. 1), sucht that \(|a|\) becomes small

Introduction
\(R\) and RStudio
Simple linear
regression
Multicollinearity
Supplementary slides
- That leads to a minimisation problem:
\[
\min _{v}|\mathrm{a}|^{2}=\min _{v} \mathrm{a}^{\top} \mathrm{a}=\min _{v} v^{\top} X^{\top} X v \quad \text { with } \quad|v|^{2}=v^{\top} v=1
\]
- Lagrange multipliers:
\[
\mathrm{L}(v, \lambda)=v^{\top} \mathrm{X}^{\top} \mathrm{X} v+\lambda\left(1-v^{\top} v\right)
\]
- Derivation results in necessary condition for minimum:
\[
X^{\top} X v=\lambda v
\]
- \(X^{\top} X v=\lambda v\) is an eigenvalue problem
- Which Eigenvalue \(\lambda\) minimises \(|a|\) ?
- Trick: Multiply \(\mathrm{X}^{\top} \mathrm{X} v=\lambda v\) with \(v^{\top}\)
\[
\Rightarrow v^{\top} X^{\top} X v=\lambda v^{\top} v \quad \Leftrightarrow \quad|\mathbf{a}|^{2}=\lambda \quad \Leftrightarrow \quad|\mathfrak{a}|=\sqrt{\lambda}
\]
- Smallest Eigenvalue \(\lambda_{1}\) for Eigenvector \(\nu_{1}\) minimises \(|\mathrm{a}|\) and shows strongest (nearly-)linear dependency

Introduction
- Sort eigenvalues according to size: \(\left(\lambda_{2}, \ldots\right)\) and Eigenvectors \(\nu_{2}, \ldots\) gives the other values \(a_{2}, \ldots\).
- Proportion of largest and smallest eigenvalue:
\[
\kappa(X)=\sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}
\]
is called condition number
\[
\operatorname{Var}\left(\hat{\beta}_{k}\right)=\sigma^{2}\left(X^{\top} X\right)_{k k}^{-1}=\sigma^{2}\left(\mathrm{~V}^{-1} \mathrm{~V}^{\top}\right)_{k k}=\sigma^{2} \sum_{j=0}^{m} \frac{v_{k j}^{2}}{\lambda_{j}}
\]

With:
\(\Lambda\) diagonal matrix of eigenvalues \(\lambda_{1}, \ldots\) and
V as matrix of eigen vectors \(v_{1}, \ldots\)
- Meaning: Small eigenvalue und large component in eigenvector (both hints for multicollinearity) result in large proportion in variance of \(\beta\).
- Large variance of \(\beta\) : Instable model
- Weight of this variance proportion (Summanden in Formel) divided through full variance: variance decomposition proportion \(\pi_{j k}\)
\[
\pi_{j k}=\frac{\lambda_{j}^{-1} v_{k j}^{2}}{\sum_{i=0}^{m} \lambda_{i}^{-1} v_{k i}^{2}}
\]```

