Statistik

für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Sommersemester 2016

Veranstaltur	gen zur Statistik für BW/IN	A Sommersemeste	r 2016	
Was?	Wer?	Wann?	Wo?	ab wann?
Vorlesung Statistik	Etschberger	Mi, 14.00-17.00	B2.14	16.03.2016
Vorlesung Statistik PLUS	Etschberger/Jansen	- Blocktermin -	?	?
Übung Statistik	Etschberger	Mi, 17.00-18.30	A1.10	30.03.2016
Übung Statistik	Jansen	Di, 11.30-13.00	W1.06	22.03.2016
Obung Statistik	Jansen	Di, 14.00-15.30	W2.14	22.03.2016
Übung Statistik	Jansen	Mi, 11.30-13.00	W2.11	30.03.2016
Übung Statistik	Jansen	Do, 14.00-15.30	W2.14	31.03.2016
Übung Statistik	Schneller	Do, 14.00-15.30	W3.03	31.03.2016
Übung Statistik	Schneller	Do, 15.30-17.00	W3.03	31.03.2016
Übung Statistik	Wins	Di, 14.00-15.30	J3.19	22.03.2016
Übung Statistik	Wins	Di, 15.30-17.00	J3.13	22.03.2016
Offener Statistikraum	Etschberger/Tutoren	?	?	?
Veranstaltu	ngen für Teilnehmer der W	iMa-Klausur im Jul	i 2016	
Was?	Wer?	Wann?	Wo?	ab wann?
Tutorium Mathematik	Burkart	Do 13.30-15.00	W1.06	07.04.201
Tutorium Mathematik	Burkart	Do 15.00-16.15	W1.06	07.04.2016

1	H	ISA Statistik SS 2016 Sessionlist	
2			
3	Datum	Statistik für IM/BW	Nr.
4	Mittwoch, 16. März 2016	Einführung, R Installation, Rstudio Einführung, Skalen	1
5	Mittwoch, 23. März 2016	univ. deskr. Stat., Quantile, Plots	2
6	Mittwoch, 30. März 2016	Streuung, Konzentrationsmaße	3
7	Mittwoch, 6. April 2016	Kontingenztabellen, Mosaikplots, Korrelation	4
8	Mittwoch, 13. April 2016	Preisindizes, lineare Regression	5
9	Mittwoch, 20. April 2016	Kombinatorik, Wahrscheinlichkeit	6
10	Mittwoch, 27. April 2016	Wahrscheinlichkeit, diskrete Zufallsvariablen	7
11	Mittwoch, 4. Mai 2016	Pyramid	
12	Mittwoch, 11. Mai 2016	Binomial-, Hypergeom, Poisson-Verteilung	8
13	Mittwoch, 18. Mai 2016	Stetige ZV, Gleichverteilung	9
14	Mittwoch, 25. Mai 2016	Normalverteilung, Verteilungsparameter	10
15	Mittwoch, 1. Juni 2016	Schätzfunktionen und Punktschätzer	11
16	Mittwoch, 8. Juni 2016	Konfidenzintervalle	12
17	Mittwoch, 15. Juni 2016	Tests	13
18	Mittwoch, 22. Juni 2016	Puffer, WH, Fragen zur Probekl.	14
19	Mittwoch, 29. Juni 2016	AW Prüfungswoche	

Prof. Dr. Stefan Etschberger Hochschule Augsburg

Berühmte Leute zur Statistik
Wie lügt man mit Statistik?
Gute und schlechte Grafiken
Begriff Statistik
Grundbegriffe der Datenerhebung
R und RStudio

2 Deskriptive Statistik

Häufigkeiten
Lage und Streuung
Konzentration
Zwei Merkmale
Korrelation
Preisindizes
Lineare Regression

3 Wahrscheinlichkeitstheorie

Kombinatorik Zufall und Wahrscheinlichkeit Zufallsvariablen und Verteilungen Verteilungsparameter

Grundlagen Punkt-Schätzung Intervall-Schätzung Signifikanztests

- 1. Einführung
- 2. Deskriptive Statistik
- 3. W-Theorie
- 4. Induktive Statistik

uellen

Tahallan

a)
$$s^2 = \frac{1}{3} \cdot (50^2 + 0^2 + 50^2)$$

= $\frac{1}{3} \cdot (1950^2 + 2000^2 + 2050^2) - 2000^2 = 1666,67$

b)
$$s^2 = \frac{1}{3} \cdot (2000^2 + 2000^2 + 4000^2)$$

= $\frac{1}{3} \cdot (0^2 + 0^2 + 6000^2) - 2000^2$ = 8000000

- Einführung
- 2. Deskriptive Statistik
 Häufigkeiten

Lage und Streuung
Konzentration
Zwei Merkmale
Korrelation

Standardabweichung: $s = \sqrt{s^2}$ Im Beispiel:

a)	s =	$\sqrt{1666,67}$	=40.82

b)
$$s = \sqrt{8000000} = 2828,43$$

Laden	Standardabweichny	x
1	500 000	1 Mio
2	5 Min	100 Mie
3		
100		

- **Variationskoeffizient:** $V = \frac{s}{\bar{x}}$ (maßstabsunabhängig) Im Beispiel:
 - a) $V = \frac{40.82}{2000} = 0.02 \ (\widehat{=} 2\%)$

b)
$$V = \frac{2828,43}{2000} = 1,41 \ (= 141 \%)$$

LageStreuung)

- . Einführung
- 2. Deskriptive Statistik

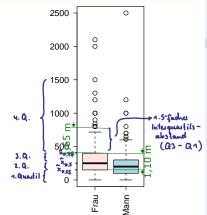
Häufigkeiten Lage und Streuung

Konzentration Zwei Merkmale Korrelation

Preisindizes

Lineare Regression

3. W-Theorie


4. Induktive Statistik

Quellen

	Alter	AlterV	AlterM	Geschwister	AnzSchuhe	AusgSchuhe
mean	22.13	54.28	51.64	1.51	21.22	270.45
median	21.00	54.00	51.00	1.00	16.00	200.00
Variance	11.36	35.35	25.74	1.18	415.51	56333.39
StdDev	3.37	5.95	5.07	1.08	20.38	237.35
VarCoeff	0.15	0.11	0.10	0.72	0.96	0.88

- Graphische Darstellung von Lage und Streuung
- **Box**: Oberer/Unterer Rand: 3. bzw. 1. Quartil ($\tilde{x}_{0,75}$ bzw. $\tilde{x}_{0,25}$),
- ▶ Linie in Mitte Median
- Whiskers: Länge: Max./Min Wert, aber beschränkt durch das 1,5-fache des Quartilsabstands (falls größter/kleinster Wert größeren/kleineren Abstand von Box: Länge Whiskers durch größten/kleinsten Wert innerhalb dieser Schranken)
- Ausreißer: Alle Objekte außerhalb der Whisker-Grenzen

Ausgaben für Schuhe

- Einführung
- 2. Deskriptive Statistik
 Häufigkeiten

Lage und Streuung
Konzentration
Zwei Merkmale
Korrelation
Preisindizes

Lineare Regression

3. W-Theorie

4. Induktive Statistik
Quellen

```
set.seed(4)
                                                         set.seed(4)
x = sample(Umfrage$Groesse, 10)
                                         \mathbf{N} \cdot \mathbf{0} = \mathbf{10} \cdot \mathbf{0.5} = \mathbf{5} \in \mathbb{N} \times = \text{sample}(\text{Umfrage} \cdot \mathbf{5} \text{Geschwister}, 10)
table(x)
                                                         table(x)
                                    20.5 = 2 (x + x )
164 166 168 170 171 179 185
                                                          1 1.5
       2
           2
                                        = 12 (168+170)
                                        = 169 = X med
Geben Sie an bzw. zeichnen Sie: 30.15 = x[0.25-10]
                                                          Geben Sie an bzw. zeichnen Sie:
                                                          a) Modus, Median, arithmetisches Mittel
a) Modus, Median, arithmetisches Mittel * [18]
                                                          b) empirische Ouantile zu 25% und 75%
b) empirische Quantile zu 25% und 75%
                                                          c) Boxplot
c) Boxplot
                                              = 166
                                                          (Bearbeitungszeit: 5 Minuten)
                                       20.75 = x = 471
(Bearbeitungszeit: 7 Minuten)
                         IRR = Q3-Q1 = 171-166 =5
                 4.5 - 1QR = 7.5
# Loesung:
                                                         # Loesung
quantile(x, probs=c(0.25, 0.5, 0.75), type=2)
                                                         quantile(x, probs=c(0.25, 0.5, 0.75), type=2)
boxplot(x, horizontal = TRUE, col="lightblue")
                                                         boxplot(x, horizontal = TRUE, col="lightblue")
25% 50% 75%
166 169 171
                                                          Umfrage: In der letzten Aufgabe hatte ich
                                  434 + 4.5 - IQR = 178.5
                                                          A) Alles richtig
                                       110
                                                   485
                                                          B) Alles bis auf die Zeichnung richtig
                            135
                 130
                                                          C) Einen Fehler in den Zahlen
                                                          D) Mehr als einen Fehler in den Zahlen
                                                          E) Ich wusste nicht, was zu tun ist
                                                             oder nicht fertig
                                                                                      Ergebnis (n=151)
Umfrage: In der letzten Aufgabe hatte ich
A) Alles richtig
B) Alles bis auf die Zeichnung richtig
                                                A 5%
C) Einen Fehler in den Zahlen
D) Mehr als einen Fehler in den Zahlen
                                                E) Ich wusste nicht, was zu tun ist
    oder bin nicht fertig geworden
```

Statistik Etschberger – SS2016

1. Einführung

2. Deskriptive Statistik

Häufigkeiten Lage und Streuung

Konzentration Zwei Merkmale

Korrelation Preisindizes

Lineare Regression

3. W-Theorie

4. Induktive Statistik

Quellen

Tabellen

summary(MyData)

##				Geschlecht Alter	
##	Min. :2014	Min. :17.00	Min. :150.0	Frau:389 Min. :3	8.00 Min. :37.00
##	1st Qu.:2014	1st Qu.:20.00	1st Qu.:166.0	Mann: 281 1st Qu.:5	0.00 1st Qu.:48.00
##	Median :2015	Median :21.00	Median :172.0	Median :5	4.00 Median :51.00
##	Mean : 2015	Mean :22.13	Mean :173.1	Mean :5	4.28 Mean :51.64
##	3rd Qu.:2016	3rd Qu.:24.00	3rd Qu.:180.0	3rd Qu.:5	7.00 3rd Qu.:55.00
##	Max. :2016	Max. :36.00	Max. :198.0	Max. :8	7.00 Max. :70.00
##				NA's :1	NA's :1
##	GroesseV	GroesseM	Geschwister	Farbe Au	sgKomm AnzSchuhe
##	Min. :160.0	Min. : 76.0	Min. :0.000	blau : 31 Min.	: 0.0 Min. : 2.00
##	1st Qu.:175.0	1st Qu.:162.0	1st Qu.:1.000	gelb : 5 1st Q	u.: 207.5 1st Qu.: 8.00
##	Median :180.0	Median :165.0	Median :1.000	rot : 24 Media	n : 360.0 Median : 16.00
##	Mean :179.1	Mean :166.2	Mean :1.509	schwarz:333 Mean	: 458.1 Mean : 21.22
##	3rd Qu.:183.0	3rd Qu.:170.0	3rd Qu.:2.000	silber : 82 3rd Q	u.: 600.0 3rd Qu.: 30.00
##	Max. :204.0	Max. :192.0	Max. :9.000	weiss :195 Max.	:4668.0 Max. :275.00
##	NA's :11	NA's :8		NA's	:2
##	AusgSchuhe	Essgewohn	heiten Raucher	NoteMathe	MatheZufr Studiengang
##	Min. : 0.0	carnivor :	420 ja : 81	Min. :1.000 unz	ufrieden :185 BW :107
##	1st Qu.: 100.0	fruktarisch :	1 nein:381	1st Qu.:2.650 geh	t so :151 ET : 1
##	Median : 200.0	pescetarisch:	26 NA's:208	Median :3.300 zuf	rieden :114 IM : 74
##	Mean : 270.5	vegan :	3	Mean :3.233 seh	r zufrieden: 74 Inf : 48
##	3rd Qu.: 350.0			3rd Ou.:4.000 NA'	s :146 WI : 59
##	Max. :2500.0			Max. :5.000	NA's:381
##	NA's :1			NA's :162	

Boxplots

```
for(attribute in c("Alter", "AlterV", "AlterM", "Geschwister",
                  "AusgSchuhe", "AusgKomm")) {
 data=MvData[, attribute]
 boxplot(data, # all rows, column of attribute
          col="lightblue", # fill color
                   # line width
          1wd=3.
          cex=2.
                              # character size
          oma=c(1,1,2,1)
  text(0.7,max(data), attribute, srt=90, adj=1)
                    Alle V
                                  AlkA
                       O
                                                                  0
                                                                                O
                                     0
                                     8
                                              ω
                       COORDOO
                                                                          3000
                 2
                                                            1500
                                22
                                                                                0
                                                                  00 00m) -
   53
                                22
                 20
                                                                          000
                                                            200
   8
```


- . Einführung
- 2. Deskriptive Statistik
 Häufigkeiten

Häufigkeiten
Lage und Streuung
Konzentration

- Zwei Merkmale Korrelation Preisindizes Lineare Regression
- 3. W-Theorie
- 4. Induktive Statistik
 Ouellen

Konzentrationsmaße

Statistik Etschberger – SS2016

- ▶ Gegeben: kardinale Werte $0 \le x_1 \le x_2 \le \cdots \le x_n$
- ► Achtung! Die Werte müssen aufsteigend sortiert werden!
- Lorenzkurve:

Wieviel Prozent der Merkmalssumme entfällt auf die x Prozent kleinsten Merkmalsträger?

- ▶ Beispiel: Die 90 % ärmsten besitzen 20 % des Gesamtvermögens.
- ► Streckenzug: (0,0), (u_1,v_1) , ..., (u_n,v_n) , * (1,1) mit
 - $v_k =$ Anteil der k kleinsten MM-Träger an der MM-Summe $= \frac{\sum\limits_{i=1}^k x_i}{\sum\limits_{i=1}^n x_i}$
 - $u_k = \text{Anteil der } \ k \ \text{ kleinsten an der Gesamtzahl der MM-Träger} = \frac{k}{n}$

. Einführung

2. Deskriptive Statistik
Häufigkeiten

Lage und Streuung Konzentration

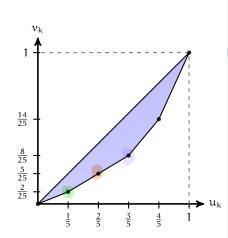
Zwei Merkmale Korrelation

Lineare Regression

3. W-Theorie

4. Induktive Statistik

uellen


Lorenzkurve: Beispiel

Statistik Etschberger – SS2016

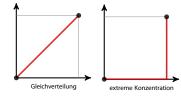
Markt mit fünf Unternehmen; Umsätze: 6, 3, 11, 2, 3 (Mio. €)

$$\Rightarrow$$
 n = 5, $\sum_{k=1}^{5} x_k = 25$

k	1	2	3	4	5
x_k	2	3	3	6	11
p_k	$\frac{2}{25}$	$\frac{3}{25}$	$\frac{3}{25}$	$\frac{6}{25}$	$\frac{11}{25}$
$\boldsymbol{\nu}_k$	$\frac{2}{25}$	$\frac{5}{25}$	$\frac{8}{25}$	$\frac{14}{25}$	1
\mathfrak{u}_k	1/5	<u>2</u> <u>5</u>	<u>3</u> 5	$\frac{4}{5}$	1

- 1. Einführung
- 2. Deskriptive Statistik
 Häufigkeiten
 Lage und Streuung
 Konzentration
 Zwei Merkmale
- Preisindizes
 Lineare Regression
 3. W-Theorie

Korrelation


4. Induktive Statistik
Ouellen

Knickstellen:

- ▶ Bei i-tem Merkmalsträger $\iff x_{i+1} > x_i$
- ► Empirische Verteilungsfunktion liefert Knickstellen:

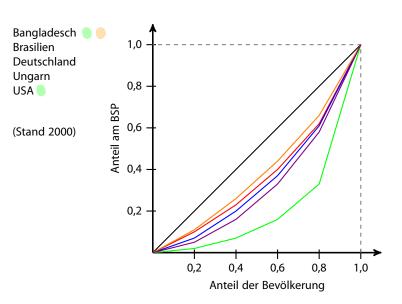
$\mathfrak{a}_{\mathfrak{j}}$	2	3	6	11
$h(a_j)$	1	2	1	1
$f(\alpha_{\mathfrak{j}})$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
$F(\alpha_{\mathfrak{j}})$	$\frac{1}{5}$	2 5 3 5	$\frac{4}{5}$	1

Vergleich von Lorenzkurven:

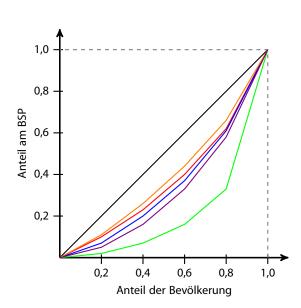
- . Einführung
- 2. Deskriptive Statistik
- Häufigkeiten Lage und Streuung
- age und streu
- Konzentration
- Zwei Merkmale
- Korrelation
- Preisindizes
- Lineare Regression
- illeare Regression
- 3. W-Theorie
- 4. Induktive Statistik
- Quellen
- Tabellen

Lorenzkurve: Beispiel Bevölkerungsanteil gegen BSP

Statistik Etschberger – SS2016



4. Induktive Statistik
Ouellen


Lorenzkurve: Beispiel Bevölkerungsanteil gegen BSP

Statistik Etschberger – SS2016

Bangladesch Brasilien Deutschland Ungarn USA

(Stand 2000)

- 1. Einführung
- 2. Deskriptive Statistik
 Häufigkeiten
 Lage und Streuung
 Konzentration
 Zwei Merkmale
 Korrelation
- Preisindizes
 Lineare Regression
 3. W-Theorie
- 4. Induktive Statistik

Numerisches Maß der Konzentration: Gini-Koeffizient G

$$G = \frac{\text{Fläche zwischen } 45^{\circ}\text{-Linie und L}}{\text{Fläche unter } 45^{\circ}\text{-Linie}} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$$

Aus den Daten:

$$G = \frac{2\sum\limits_{i=1}^n i\,x_i - (n+1)\sum\limits_{i=1}^n x_i}{n\sum\limits_{i=1}^n x_i} = \frac{2\sum\limits_{i=1}^n i\,p_i - (n+1)}{n} \quad \text{wobei} \quad p_i = \frac{x_i}{\sum\limits_{i=1}^n x_i}$$

- ▶ Problem: $G_{max} = \frac{n-1}{n}$
- Normierter Gini-Koeffizient:

$$G_* = \frac{n}{n-1} \cdot G \in [0;1]$$

- . Einführung
- 2. Deskriptive Statistik
 Häufigkeiten

Lage und Streuung
Konzentration
Zwei Merkmale

Korrelation
Preisindizes
Lineare Regression

- 3. W-Theorie
- 4. Induktive Statistik

Tahellen

```
Urliste: Bargeld in Hosentasche
               0,96,3,1
Sortieren:
                                    96
               Pr 0 0.01 0.03 0.96
Vr 0 0.01 0.04 1
Ur 74 74 74 1
                                \frac{2\sum_{i=1}^{n} i p_i - (n+1)}{2\sum_{i=1}^{n} i p_i}
                                    = 2(1.0+2.0.01+3.0.03+4.0.96) -(4+1)
0.5
                                    = 0.725
                                          normiut : 9 = 0.725 20.967
          0.15 0.5 0.35 1 UK
 Jetzt: Urliste : 0,0,0,100
             \Rightarrow G = \frac{2 \cdot (4 \cdot 1.0) - 5}{4} = \frac{3}{4}
                                                                       0.967
        Unliste: 0,0,0,...,0, 100
                  G = 2(n-1)-(n+1) = n-1 = 1-1
```

Beispiel (Lorenzk. und Gini-Koeffiz.)

Beispiel:

i	1	2	3	4	Σ
x_i	1	2	2	15	20
p_i	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{2}{20}$	$\frac{15}{20}$	1

$$G = \frac{2 \cdot \left(1 \cdot \frac{1}{20} + 2 \cdot \frac{2}{20} + 3 \cdot \frac{2}{20} + 4 \cdot \frac{15}{20}\right) - (4+1)}{4} = 0,525$$

Mit
$$G_{max} = \frac{4-1}{4} = 0,75$$
 folgt

$$G_* = \frac{4}{4-1} \cdot 0,525 = 0,7$$

. Einführung

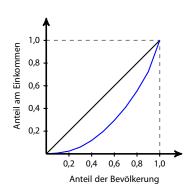
2. Deskriptive Statistik
Häufigkeiten

Lage und Streuung

Konzentration

Zwei Merkmale Korrelation

Preisindizes


Lineare Regression

3. W-Theorie

4. Induktive Statistik

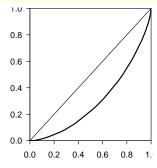
Armutsbericht der Bundesregierung 2008

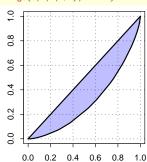
- Verteilung der Bruttoeinkommen in Preisen von 2000
- aus unselbständiger Arbeit der Arbeitnehmer/-innen insgesamt

	2002	2003	2004	2005
Arithmetisches Mittel	24.873	24.563	23.987	23.648
Median	21.857	21.531	20.438	20.089
Gini-Koeffizient	0,433	0,441	0,448	0,453

- 1. Einführung
- 2. Deskriptive Statistik Häufigkeiten

Lage und Streuung Konzentration Zwei Merkmale


Korrelation Preisindizes


Lineare Regression

W-Theorie
 Induktive Statistik

. . ..

```
require(ineq) # inequality Paket
Lorenz = Lc(na.exclude(MyData$AusgSchuhe))
  plot(Lorenz, xlab="", ylab="", main="") # Standard plot
  plot(c(0,1), c(0,1), type="n", # bisschen netter
     panel.first=grid(lwd=1.5, col=rgb(0,0,0,1/2)),
     xlab="", main="", ylab="")
  polygon(Lorenz$p, Lorenz$L, density=-1, col=rgb(0,0,1,1/4), lwd=2)
```


- . Einführung
- Deskriptive Statistik
 Häufigkeiten
 Lage und Streuung

Konzentration
Zwei Merkmale
Korrelation

- Lineare Regression

 3. W-Theorie
- 4. Induktive Statistik
 Ouellen

Tabellen

Gini(na.exclude(AusgSchuhe)) # Gini-Koeffizient
[1] 0.4069336

i=n-q+1

Konzentrationskoeffizient:

$$CR_2 = \sum_{i=5-2+1}^{5} p_i = \sum_{i=4}^{5} p_i = p_4 + p_5$$

► Herfindahl-Index:

Hermidani-index:
$$H=\sum_{i=1}^n \mathfrak{p}_i^2 \qquad (\in [\tfrac{1}{n};1])$$
 . Es gilt: $H=\tfrac{1}{n}\,(V^2+1)$ bzw. $V=\sqrt{n\cdot H-1}$

 $CR_q = Anteil$, der auf die g größten entfällt = $\sum_{i=1}^{n} p_i = 1 - v_{n-q}$

Exponential index: $0.01 \cdot 0.03 \cdot 0.03$

$$E = \prod_{i=1}^n p_i^{p_i} \qquad \left(\in [\tfrac{1}{n};1] \right) \qquad \text{wobei} \qquad 0^0 = 1$$

Im Beispiel mit x = (1, 2, 2, 15):

$$CR_2 = \frac{17}{20} = 0,85$$

$$H = \left(\frac{1}{20}\right)^2 + \dots + \left(\frac{15}{20}\right)^2 = 0,59$$

$$E = \left(\frac{1}{20}\right)^{\frac{1}{20}} \dots \left(\frac{15}{20}\right)^{\frac{15}{20}} = 0,44$$

1. Einführung

2. Deskriptive Statistik

Lage und Streuung
Konzentration
Zwei Merkmale
Korrelation

Preisindizes
Lineare Regression

To piff = 0°-11

W-Theorie

Urlisk: x = 2 Mio

Beispiel: $x = \frac{1}{100}, \frac{1}{100}, \frac{1}{100}, \frac{1}{100}$ $P_1 = \frac{1}{100}, \frac{1}{100}, \frac{1}{100}, \frac{1}{100}$