Gegeben ist die Preis-Absatz-Funktion

$$p: \mathbb{R}_+ \to \mathbb{R}_+$$
 mit $p(x) = 20 - 2x$.

Dabei steht $x \in \mathbb{R}_+$ für die nachgefragte Menge und $p \in \mathbb{R}_+$ für den Preis. Bestimmen Sie die Preiselastizität der Nachfrage an der Stelle $p_1 = 5$.

also hic yesucht : Ex (p)

Lösungshinweis:

Prof. Dr. Stefan Etschberger – Hochschule Augsburg – Wirtschaftsmathematik – Wintersemester 2016/17 – Aufgabensammlung – (Seite 70 von 148)

Elastizität von
$$p(x)$$
 vi Abh. von x

$$\mathcal{E}_{p}(x) = \frac{p'}{p} \cdot x = \frac{-2}{20-2x} \cdot x = \frac{-x}{10-x}$$

$$(d.h. Machfrageelastizität des Preises)$$
hier nicht

Elastizität von x(p) mi Abh. von p dazu: Invertier p(x)

$$\mathcal{E}_{x}(\rho) = \frac{x^{1}}{x} \cdot \rho = \frac{-\frac{1}{2}}{\frac{10-\frac{1}{2}}{p}} \cdot \rho = \frac{-\rho}{\frac{10-\frac{1}{2}}{p}}$$

=)
$$\xi_{x}(p_{4}=5) = \frac{-5}{20-5} = -\frac{7}{3}$$

Erhöhung des Preises um 1% von P=5 vermindert (ma ginal) die Wach frage um 0.3%

Bestimmen Sie für die folgenden Preis-Absatz-Funktionen $p_i : \mathbb{R}_+ \to \mathbb{R}_+$ jeweils die Elastizität des Preises in Abhängigkeit von der Nachfrage:

a)
$$p_1(x) = \frac{1}{x} = x^{-1}$$

b) $p_2(x) = e^{-x}$

b)
$$p_2(x) = e^{-x}$$

c)
$$p_3(x) = -\ln\left(\frac{x}{100}\right)$$

d)
$$p_4(x) = \frac{2}{x^2}$$

e)
$$p_5(x) = \frac{1}{x^n} \min n \in \mathbb{N}$$

Lösungshinweis:

$$Q_1 \mathcal{E}_{p_1}(x) = \frac{p_1^1}{p_2} \cdot x = \frac{-x^{-2} \cdot x}{x^{-2}} = -1$$

b)
$$\mathcal{E} p_2(x) = \frac{p_1^1}{p_2} \cdot x = \frac{-e^{-x}}{e^{-x}} \cdot x = -x$$

$$\epsilon_{p_3}(x) = \frac{\int_{-\infty}^{\infty} \frac{100}{x^2} \cdot \frac{1}{400}}{\epsilon_{p_3}(x)} \cdot \kappa = \frac{1}{\epsilon_{p_3}(x)} \left[-\ln(\frac{x}{100}) - \ln(x) - \ln(\frac{x}{100}) \right]$$

$$E_{p_{3}}(x) = \frac{\int_{-\infty}^{\infty} \frac{100}{400}}{\int_{-\infty}^{\infty} \frac{100}{400}} \cdot x = \frac{1}{\ln \frac{x}{400}} \left[-\ln \left(\frac{x}{400} \right) - \ln \left(\frac{x}{400} \right) - \ln \left(\frac{x}{400} \right) - \ln \left(\frac{x}{400} \right) \right]$$

$$E_{p_{3}}(x) = \frac{1}{\ln \left(\frac{x}{400} \right)} \cdot x = -2$$

$$E_{p_{3}}(x) = \frac{1}{\ln \left(\frac{x}{400} \right)} \cdot x = \frac{1}{\ln \left(\frac{x}{400} \right)}$$

$$E_{p_{3}}(x) = \frac{1}{\ln \left(\frac{x}{400} \right)} \cdot x = \frac{1}{\ln \left(\frac{x}{400} \right)}$$

$$e_{j} \in \rho_{S}(x) = \frac{-h \times h^{-1}}{x^{-h}} \cdot x = -h$$

$$= \frac{2 \cdot (-2)}{x^{-h}} \cdot x = -h$$

$$\left(\frac{1}{x^{h}}\right)^{t} = \left(x^{-h}\right)^{t}$$

$$= -h \cdot x^{-h-q}$$

Differentialrechnung: Differenzierbarkeit (DIFF1.1)

3x²·(x²+1)^{1/2} + x²·½ (x²+1) · Łx

Gegeben sind die reellen Funktionen
$$f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$$
 mit:
$$f_1(x) = x^3 \sqrt{x^2 + 1}$$

$$f_2(x) = \begin{cases} \sqrt{x^2 + x + 1} & \text{für } x \ge 0 \\ x & \text{für } x < 0 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

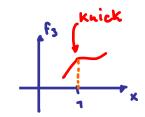
$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x^2 - 2x + 2 & \text{für } x \ge 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x - 2x + 2 & \text{für } x \le 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$

$$f_3(x) = \begin{cases} x - 2x + 2 & \text{für } x < 1 \\ e^{x-1} & \text{für } x < 1 \end{cases}$$



- - b) Berechnen Sie gegebenenfalls die Differentialquotienten.

Lösungshinweis:

 $f_1(x) = x^3 \cdot \sqrt{x^2 + 1}$ ist differenzierbar $\forall x \in \mathbb{R}$, da Komposition elementarer differenzierbarer

$$f_1'(x) = 3x^2 \sqrt{x^2 + 1} + x^3 \cdot \frac{1}{2} (x^2 + 1)^{-\frac{1}{2}} \cdot 2x = \frac{3x^4 + 3x^2 + x^4}{\sqrt{x^2 + 1}} = \frac{4x^4 + 3x^2}{\sqrt{x^2 + 1}}$$

$$f_2(x) = \begin{cases} \sqrt{x^2 + x + 1} & \text{für } x \ge 0 \\ x & \text{für } x < 0 \end{cases} \text{ ist stetig differentiar für } x \ne 0$$

 $\Rightarrow f_2'(x) = \begin{cases} \frac{1}{2}(x^2 + x + 1)^{-\frac{1}{2}} \cdot (2x + 1) & \text{für } x > 0\\ 1 & \text{für } x < 0 \end{cases} \text{ ist stetig differenzierbar für } x \neq 0$

Noch zu betrachten: x = 0. Für Differenzierbarkeit ist Stetigkeit von f_2 Voraussetzung:

$$\lim_{\substack{x \nearrow 0 \\ \lim_{x \searrow 0} f_2(x) = \sqrt{0^2 + 0 + 1}}} = 0$$

$$\lim_{x \searrow 0} f_2(x) = \sqrt{0^2 + 0 + 1} = 1$$

$$\Rightarrow f_2(x) \text{ ist nicht stetig für } x = 0$$

 $\Rightarrow f_2(x)$ ist nicht differenzierbar für x = 0

Analoge Überlegung bei $f_3(x)$ führt zu stetiger Differenzierbarkeit für $x \neq 1$

$$\Rightarrow f_3'(x) = \begin{cases} 2x - 2 & \text{für } x > 1\\ e^{x - 1} & \text{für } x < 1 \end{cases}$$

Zur Stetigkeit bei x = 1 $\lim_{\substack{x \nearrow 1 \\ x \searrow 1}} f_3(x) = e^{1-1} = 1$ $\lim_{\substack{x \searrow 1 \\ x \searrow 1}} f_3(x) = 1^2 - 2 \cdot 1 + 2 = 1$ $\Rightarrow f_3(x) \text{ ist stetig für } x = 1$

Diff.barkeit:
$$\lim_{\substack{x \nearrow 1 \\ x \searrow 1}} f_3'(x) = \mathrm{e}^{1-1} = 1$$
$$\lim_{\substack{x \searrow 1 \\ x \searrow 1}} f_3'(x) = 2 \cdot 1 - 2 = 0$$
 $\Rightarrow f_3(x)$ ist nicht diff.bar für $x = 1$

Eine quaderförmige Kiste, deren oberes Ende geöffnet ist, soll aus einem quadratischen Blech mit der Seitenlänge *a* hergestellt werden. Dazu werden an den 4 Ecken des Blechs jeweils gleich große Quadrate mit Seitenlänge *x* ausgestanzt und die so entstandenen 4 Seitenrechtecke hochgeklappt um die Kiste zu formen. Wie groß muss *x* sein, so dass das Volumen der entstandenen Kiste maximal wird?

Lösungshinweis:

Für das Volumen in Abhängigkeit von x ergibt sich:

$$V(x) = (a - 2x)^2 \cdot x = a^2x - 4ax^2 + 4x^3$$

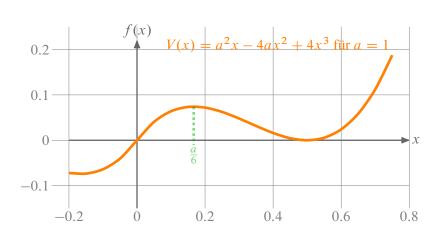
Zum Maximieren bildet man die erste und zweite Ableitung:

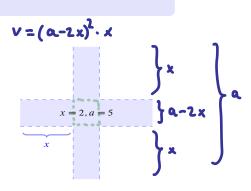
$$V'(x) = a^2 - 8ax + 12x^2$$
 und $V''(x) = -8a + 24x$

Nullstelle der ersten Ableitung:

$$x_{1/2} = \frac{1}{24} \left(8a \pm \sqrt{64a^2 - 48a^2} \right)$$
$$= a \cdot \begin{cases} 1/2 \\ 1/6 \end{cases}.$$

Damit ist $x = \frac{a}{6}$ optimal, denn $V''(\frac{a}{6}) < 0$.





optimal: x = 5/6, a = 5

Ein zylinderfömiger Ölbehälter soll einen Liter Flüssigkeit fassen. Der Behälter ist oben und unten komplett geschlossen. Wie müssen Höhe und Radius dimensioniert sein, so dass möglichst wenig Material verbraucht wird?

Lösungshinweis:

Mit r für den Radius des Deckels und h für die Höhe der Dose ergibt sich für das Volumen

$$V = r^2 \pi h = 1 \quad \Leftrightarrow \quad h = \frac{1}{r^2 \pi}$$

Als Materialbedarf in Abhängigkeit von r ergibt sich durch Einsetzen der Volumennebenbedingung:

$$M(r) = 2r\pi h + 2r^2\pi = \frac{2}{r} + 2\pi r^2$$

$$M(r) = \frac{2r\pi h}{r^2} + \frac{2r^2\pi}{r^2}$$

Mit der Nullstelle der Ableitung

$$M'(r) = -\frac{2}{r^2} + 4\pi r = 0 \quad \Leftrightarrow \quad r = \sqrt[3]{\frac{1}{2\pi}}$$

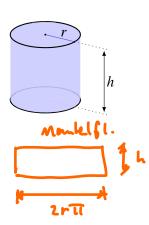
hat man ein Minimum der Materialmenge gefunden, denn die zweite Ableitung

$$M''(x) = \frac{4}{r^3} + 4\pi$$

ist für alle r > 0 positiv. Damit ergibt sich für die optimale Dose in Dezimeter (dm)

$$r = \sqrt[3]{\frac{1}{2\pi}} \approx 0.542 \,\mathrm{dm} \quad \mathrm{und} \quad h = \frac{1}{r^2\pi} = \sqrt[3]{\frac{4}{\pi}} \approx 1.084 \,\mathrm{dm} \,.$$

74



Die kumulierte Nachfrage y nach Videorecordern in Abhängigkeit der Zeit $t \ge 1$ wird durch die sogenannte Gompertz-Funktionsgleichung

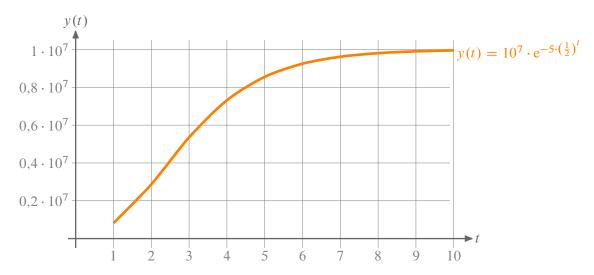
$$y(t) = 10^7 e^{-5(0.5)^t}$$

prognostiziert.

- a) Skizzieren Sie die Funktion und geben Sie eine Interpretation.
- b) Berechnen Sie die Sättigungsgrenze $\lim_{t\to\infty} y(t)$.
- c) Zeigen Sie, dass die Änderungsrate der Nachfrage für alle $t \ge 1$ positiv und monoton fallend ist.
- d) Zeigen Sie auch, dass die Nachfrage für $t \le 3$ elastisch und für $t \ge 4$ unelastisch ist.

Lösungshinweis:

a)



b)
$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} 10^7 \cdot e^{-5 \cdot \left(\frac{1}{2}\right)^t} = 10^7 \cdot e^{-5 \cdot \lim_{t \to \infty} \left(\frac{1}{2}\right)^t} = 10^7 \cdot e^{-5 \cdot 0} = 10^7$$

c)
$$\varrho_{y}(t) = \frac{y'(t)}{y(t)} = \frac{10^{7} \cdot e^{-5 \cdot \left(\frac{1}{2}\right)^{t}} \cdot \left(-5 \cdot \left(\frac{1}{2}\right)^{t} \cdot \ln \frac{1}{2}\right)}{10^{7} \cdot e^{-5 \cdot \left(\frac{1}{2}\right)^{t}}} = +5 \cdot \left(\frac{1}{2}\right)^{t} \cdot \ln 2 > 0$$

 $\Rightarrow \varrho_{y}(t)$ ist monoton fallend, denn $\left(\frac{1}{2}\right)^{t}$ ist monoton fallend.

d)
$$\varepsilon_{y}(t) = t \cdot \varrho_{y}(t) = t \cdot 5 \cdot \ln 2 \cdot \left(\frac{1}{2}\right)^{t}$$
.
 $\varepsilon_{y}^{t}(t) = 5 \cdot \ln 2 \cdot \left(t \cdot 0.5^{t}\right)^{t}$
 $= 5 \cdot \ln 2 \cdot \left(1 \cdot 0.5^{t} + t \cdot 0.5^{t} \cdot \ln 0.5\right)$ 75
 $= 5 \cdot \ln 2 \cdot 0.5^{t} \left(1 + t \cdot \ln 0.5\right)$

Damit ist $\varepsilon_y(3) = 3 \cdot 5 \cdot \ln 2 \cdot \left(\frac{1}{2}\right)^3 \approx 1,299 \text{ und } \varepsilon_y(4) = 4 \cdot 5 \cdot \ln 2 \cdot \left(\frac{1}{2}\right)^4 \approx 0,866.$

Außerdem gilt für die Ableitung:
$$\varepsilon_y'(t) = \underbrace{5 \cdot \ln 2 \cdot \left(\frac{1}{2}\right)^t}_{\text{immer } > 0} \cdot (1 - t \ln 2) = 5 \ln^2 2 \left(\frac{1}{2}\right)^t \cdot \left(\frac{1}{\ln 2} - t\right)$$

 $\frac{1}{\ln 2} \approx 1,44$, damit ist $\varepsilon_y'(t) > 0$ (streng monoton steigend) für t < 1,44 und $\varepsilon_y'(t) < 0$ (streng monoton fallend) für t > 1,44. Damit gilt, da $\varepsilon_y(1) \approx 1,7 > 1$ und $\varepsilon_y(t)$ für 1 < t < 1,44 steigt, dann bis t = 3 fällt mit $\varepsilon_y(3) \approx 1,299 > 1$, dass y(t) im Bereich von $1 \le t \le 3$ elastisch sein muss.

Andererseits ist $\varepsilon_y(4) \approx 0.866 < 1$ und $\varepsilon_y(t)$ fällt für t > 4. Damit ist y(t) unelastisch für t > 4.

Für eine Einproduktunternehmung wurden in Abhängigkeit des Produktionsniveaus x > 0 die Kosten durch c(x) = 6x + 40 und die Preis-Absatz-Beziehung gemäß p(x) = 30 - 2x geschätzt.

- a) Geben Sie die Gewinnfunktion g mit $g(x) = x \cdot p(x) c(x)$ an und untersuchen Sie diese Funktion auf Monotonie und Konvexität.
- b) Berechnen Sie den Bereich positiver Gewinne sowie das gewinnmaximale Produktionsniveau.
- c) Bestimmen Sie das Produktionsniveau mit maximalem Stückgewinn.

Lösungshinweis:

Allgemein gilt:

- ▶ Das Produktionsniveau ist nicht negativ: $x \ge 0$
- Für die Kosten gilt: c(x) = 6x + 40
- Für den Preis gilt: p(x) = 30 2x

a)
$$g(x) = x \cdot p(x) - c(x) = x \cdot (30 - 2x) - (6x + 40) = -2x^2 + 24x - 40$$

 $\Rightarrow g'(x) = -4x + 24 = 4(6 - x)$ $\begin{cases} > 0 & \text{für } x < 6 & \text{str. mon. steigend} \\ < 0 & \text{für } x > 6 & \text{str. mon. fallend} \end{cases}$
 $\Rightarrow g''(x) = -4 \Rightarrow g(x) \text{ konkay } \forall x > 0$

b)
$$g(x) = 0 \Leftrightarrow x_{1/2} = +6 \pm \sqrt{36 - 20} = 6 \pm 4 = \begin{cases} 2 \\ 10 \end{cases}$$

 \Rightarrow wegen str. Konkavität: $g(x) > 0$ für $2 < x < 10$.
Maximaler Gewinn: $g'(x) = 0 \Leftrightarrow x = 6$ und $g''(x) = -4 < 0$
 $\Rightarrow g(6) = -2 \cdot 6^2 + 24 \cdot 6 - 40 = -72 + 144 - 40 = 32$

c) Für den Stückgewinn gilt: h(x) = g(x)/x = -2x + 24 - 40/xDamit: $h'(x) = -2 + \frac{40}{x^2}$. Extremum bei x wenn h'(x) = 0, also $-2 + 40x^{-2} = 0 \Leftrightarrow x = \pm\sqrt{20} \approx \pm 4.5$ $h''(x) = -2 \cdot \frac{40}{x^3} = -80x^{-3} < 0$ (für x > 0), also streng konkav. Damit ist $h(\sqrt{20}) \approx 6.1$ globales Stückgewinnmaximum.

Untersuchen Sie die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = 5 \left(e^{-\frac{x}{2}} \cdot (x-1) - 1 \right)$$
 auf Monotonie und Konvexität.
$$f'(x) = 5 \cdot \left(e^{-\frac{x}{2}} \cdot (-\frac{x}{2}) \cdot (x-1) + e^{-\frac{x}{2}} \cdot 1 \right)$$
 3
Bestimmen Sie außerdem alle Extremalstellen und Wendepunkte und skizzieren Sie den Ver-

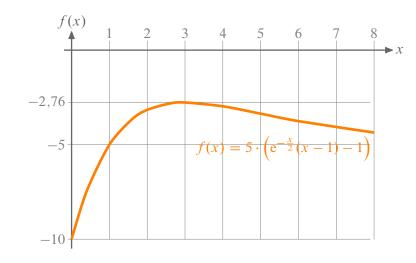
lauf der Funktion für $x \ge 0$.

Lösungshinweis:

 $f'(x) = \frac{5}{2}e^{-\frac{x}{2}}(3-x)$. Damit ist f'(x) > 0 (f str. mon. steigend) für x < 3 und f'(x) < 0 (f str. mon. fallend) für x > 3. Also ist x = 3 ein globales Maximum mit $f(3) = 5 (e^{-1.5} \cdot 2 - 1) \approx -2.77.$

 $f''(x) = \frac{5}{4}e^{-\frac{x}{2}}(x-5)$. Damit ist f''(x) > 0 (f streng konvex) für x > 5 und f''(x) < 0 (f streng konkav) für x < 5

Wertetabelle	
х	f(x)
0	-10
1	-5
2	-3,16
3	-2,77
5	-3,36
$\rightarrow \infty$	-5



Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = x^4 - 2x^3 + 1.$$

- a) Berechnen Sie alle Extremalstellen und Wendepunkte.
- b) Berechnen Sie die Funktion für x = -1, 0, 0.5, 1, 2 und skizzieren Sie f(x).
- c) Beschreiben Sie mit Hilfe von a) und b) das Monotonie- und das Konvexitätsverhalten der Funktion.

Lösungshinweis:

a) und c)

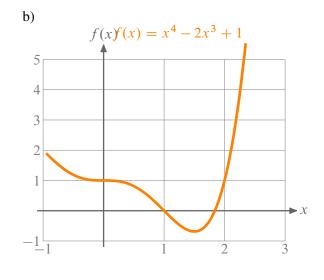
$$f'(x) = 4x^3 - 6x^2 = 4x^2(x - 3/2)$$

und damit

$$f''(x) = 12x(x-1)$$

Also gilt für das Monotonieverhalten:

$$f'(x) = \begin{cases} > 0 & \text{für } x > 3/2 \\ \text{str. mon. steigend} \end{cases}$$
$$= 0 & \text{für } x \in \{0, \frac{3}{2}\}$$
$$< 0 & \text{für } x \in (-\infty; \frac{3}{2}) \setminus \{0\}$$
$$\text{str. mon. fallend}$$



Für das Krümmungsverhalten gilt:

$$f''(x) = \begin{cases} > 0 & \text{für } x > 1 \lor x < 0 & \text{str. konvex} \\ < 0 & \text{für } 0 < x < 1 & \text{str. konkav} \end{cases}$$

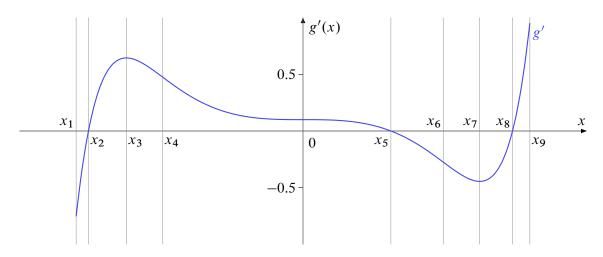
Damit ist $f(3/2) \approx -0.6875$ ein globales Minimum, f(0) = 1 eine Terrasse und f(1) = 0 ein Wendepunkt.

Gegeben sei die Funktion f mit folgender Funktionsgleichung:

$$f(x) = e^{-x} \cdot \ln(x^2)$$

- a) Geben Sie den maximalen Definitionsbereich $D_f \subset \mathbb{R}$ von f an.
- b) Berechnen Sie die Nullstellen von f.
- c) Bestimmen Sie die erste Ableitung f' und fassen Sie Ihr Ergebnis so weit wie möglich zusammen.
- d) Untersuchen Sie das Grenzwertverhalten von f für $x \to -\infty$.

Für eine andere Funktion, die stetige und zweimal stetig differenzierbare Funktion $g:[x_1,x_9]\to\mathbb{R}$, ist lediglich der Graph ihrer ersten Ableitung g' gegeben:



Die folgenden Teilaufgaben beziehen sich auf die der Ableitung g' zugrundeliegenden Funktion g.

- e) Geben Sie die x-Werte der lokalen Minima von g an.
- f) Geben Sie die x-Werte der lokalen Maxima von g an.
- g) In welchem (bzw. welchen) Intervall(en) ist g monoton wachsend?
- h) In welchem (bzw. welchen) Intervall(en) ist g monoton fallend?
- i) In welchem (bzw. welchen) Intervall(en) ist g konvex?
- j) In welchem (bzw. welchen) Intervall(en) ist g konkav?

Lösungshinweis:

- a) $D_f = \mathbb{R} \setminus \{0\}$
- b) $f(x) = e^{-x} \cdot \ln(x^2) = 0$ für $\ln(x^2) = 0$ $\Rightarrow x^2 = 1 \Rightarrow x_1 = 1, x_2 = -1$ c) $f'(x) = e^{-x} \cdot (-1) \cdot \ln(x^2) + e^{-x} \cdot \frac{1}{x^2} \cdot \frac{2x}{80}$ $= -e^{-x} \cdot \ln(x^2) + e^{-x} \cdot \frac{2}{x}$ $= e^{-x} \left(\frac{2}{x} - \ln\left(x^2\right) \right)$
- d) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[\underbrace{e^{-x}}_{\to +\infty} \cdot \underbrace{\ln(x^2)}_{\to +\infty} \right] = +\infty$

- e) Minimalstellen: x_2, x_8
- f) Maximalstellen: x_1, x_5, x_9
- g) g monoton wachsend für $x \in [x_2, x_5] \cup [x_8, x_9]$
- h) g monoton fallend für $x \in [x_1, x_2] \cup [x_5, x_8]$
- i) $g \text{ konvex für } x \in [x_1, x_3] \cup [x_7, x_9]$
- j) g konkav für $x \in [x_3, x_7]$

Im Folgenden bedeutet $u: \mathbb{R}_+ \to \mathbb{R}$ den Umsatz u(x) in Abhängigkeit von der verkauften Stückzahl x und $k: \mathbb{R}_+ \to \mathbb{R}$ die Produktionskosten k(x). Umsatz und Produktionskosten seien stetig differenzierbar. Daraus leitet sich die Gewinnfunktion $g: \mathbb{R} \to \mathbb{R}$ mit g(x) = u(x) - k(x) ab. Die Ausdrücke $\frac{du}{dx}$ und $\frac{dk}{dx}$ bezeichnet man als den *Grenzumsatz* beziehungsweise die *Grenzkosten* beim Produktionsniveau x. Beweisen Sie folgende Aussagen:

a) $\mathbf{g} = \mathbf{v} - \mathbf{k}$ a) Maximaler Gewinn entsteht (sofern er existiert) bei einem Produktionsniveau x, bei dem

- Grenzumsatz und Grenzkosten übereinstimmen.
- b) Beim Produktionsniveau x mit den niedrigsten Stückkosten (sofern es existiert) sind die

Stückkosten und die Grenzkosten gleich hoch.
$$\left(\frac{\mathbf{K}(\mathbf{x})}{\mathbf{x}}\right)' = \frac{\mathbf{K}' \cdot \mathbf{x} - \mathbf{K} \cdot \mathbf{1}}{\mathbf{x}^2} = 0 \quad (=) \quad \mathbf{K}' \cdot \mathbf{x} = \mathbf{K} \quad (=) \quad \mathbf{K}' = \mathbf{K}'$$

Lösungshinweis:

- a) Maximaler Gewinn existiert $\Rightarrow g'(x) = u'(x) k'(x) = 0 \Rightarrow u'(x) = k'(x)$
- b) Produktionsniveau x > 0 mit den niedrigsten Stückkosten existiert

$$\Rightarrow \left(\frac{g(x)}{x}\right)' = \frac{g'(x) \cdot x - g(x) \cdot 1}{x^2} = 0 \Rightarrow g'(x) \cdot x = g(x) \Rightarrow g'(x) = \frac{g(x)}{x}$$

Also: Stückkosten gleich Grenzkosten.

Grenzkoste

