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Abstract The three basic features of transfinite set theory are shown to be inconsistent. (1) There 
is no complete infinite set Ù with ¡0 identifiable natural numbers. (2) Assuming that Ù exists 
there is no bijection between countable sets like Ù and –. (3) Even if countability is assumed 
there are no uncountable sets. 
 
 
 1. There is no actually infinite set Ù. 
 
The sequence of all Finite Initial Segments Of Natural numbers (FISONs) is represented below 
 
 {1} 
 {1, 2} 
 {1, 2, 3} 
 {1, 2, 3, 4} 
 {1, 2, 3, 4, 5} 
 ... . 
 
The terms of the sequence contain, as elements of FISONs, not more than any finite number of 
numbers. An infinite union Ù of ¡0 natural numbers is not produced because every FISON and 
every union of FISONs is finite. The claim that an infinite union does exist and is larger than 
every FISON can be dismissed by the fact that, according to the pigeonhole principle, there 
cannot be more FISONs than FISONs have elements. This is best seen in unary representation 
 
 o 
 oo 
 ooo 
 oooo 
 ooooo 
 ... . 
 
Since {1, 2, 3, ..., n} does not depend on the ordering of the elements {1, 2, 3, 4, 5} has same 
information content as ooooo. There is no exemption from the pigeonhole principle for infinite 
sets if all elements shall be distinct. 
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If we assume that an actually infinite set Ù exists with, for every n œ Ù, |Ù| = ¡0 > n, then it is 
clear that "n œ Ù: |Ù \ {1, 2, 3, ..., n}| = ¡0 is incompatible with Ù \ {1, 2, 3, ...} = «. 
 
Every FISON Fn = {1, 2, 3, ..., n} is the union of its predecessor Fn-1 = {1, 2, 3, ..., n-1} and {n}. 
In this way we accumulate ω or ¡0 finite unions of the form 
 
 (... (({1} » {2}) » {3}) » ... » {n}) = {1, 2, 3, ..., n} 
 
none of which yields the set Ù of all natural numbers although all natural numbers are present as 
elements in the set of all FISONs created in this way. But if we merge all these FISONs for 
another time, i.e., all the unsuccessful attempts to establish Ù (which is also the set of all last 
elements of the FISONs), then we get 
  
 {1} » {1, 2} » {1, 2, 3} » ... » {1, 2, 3, ..., n} » ... = {1, 2, 3, ...} = Ù . 
 
We execute union number ω + 1 over what already had been merged before (each FISON is in 
infinitely many unions), and without adding anything further we get a larger set than has been 
existing before, namely the set of all last elements of the FISONs. The infinite union  
 
 {1} » {1, 2} » {1, 2, 3} » ... = Ù       (1) 
 
is in the limit of the sequence of all finite unions 
 
 {1}, {1, 2}, {1, 2, 3}, ...         (2) 
 
since in both cases all natural numbers are applied. But Ù is not contained in (2) or (3): 
 
 {1}, {1} » {1, 2}, {1} » {1, 2} » {1, 2, 3}, ... .     (3) 
 
Since from every FISON we know by definition that it is neither sufficient nor necessary to yield 
the union of FISONs Ù, we can remove it from the union and find 
 
 «{F1, F2, F3, ...} = Ù   fl   «{ } = Ù . 
 
This is a highly counterintuitive result1, at least for those who believe in the union resulting in Ù. 
But it becomes easily understandable and clearly obvious without any induction in the form 
 
  "n œ Ù: «{F1, F2, F3, ..., Fn} = Ù   fl   { } = Ù 
like 
 Butter & Bread & Beef = Ù   fl   { } = Ù . 
 
The assumption of an actually infinite complete set Ù implies also complete endsegments. 
 

                                                 
1 Usually the handwaving claim is: "But infinitely many FISONs have to remain!" 
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Definition: En = (n, n+1, n+2, n+3, ...) = {k œ Ù | k ¥ n} is called the endsegment of n œ Ù. 
 
Every endsegment has ¡0 natural numbers as elements. This can be shown by induction: E1 = Ù 
has cardinality ¡0. If |En| = ¡0 then |En+1| = ¡0 - 1 = ¡0. Every endsegment is the finite 
intersection of itself and of all its predecessors, and every finite intersection has cardinality ¡0: 
 
 |E1| = ¡0, |E1 ∩ E2| = ¡0, |E1 ∩ E2 ∩ E3| = ¡0, ... . 
 
For every natural number n there is a first endsegment En+1 not containing it. Therefore, 
according to set theory, the intersection of all endsegments is empty (like the union of all FISONs 
is Ù) although there is no empty endsegment.  
 
This result is not acceptable. No natural number can be found1 that is in any En but not in E1 = Ù. 
Inclusion monotony then shows that all natural numbers of En are contained in all preceding 
endsegments, and almost all are contained in all succeeding endsegments too.  
 
Theorem   Every endsegment En has ¡0 natural numbers in common with all other endsegments. 
 
Proof: For every endsegment Em with m < n this follows from the definition. For every 
endsegment En+k it follows by commutativity of the intersection: Assume that En has less than ¡0 
numbers in common with En+k, then there is an endsegment, namely En+k , having less than ¡0 
numbers in common with its predecessor En. Contradiction. É 
 
All endsegments En which in finite intersections 
 
 E1 … E2 … E3 … ... … En ∫ « 
 
provably leave non-empty, even infinite, results should, when joined together with no additional 
participant, change their behaviour and decrease the intersection below all former benchmarks? 
This is another version of the clear contradiction that all natural numbers that have infinitely 
many natural numbers beyond them are all natural numbers that have nothing beyond them. 
 
Remark: "n œ Ù: En ∫ « but limnØ¶ En = « would be tantamount to ω, ω, ω, ... Ø 0. Accepting 
this kind of limit would invalidate all bijections between infinite sets which are so imperative for 
set theory. 
 
Remark: We do not use limnØ¶ |E1 ∩ E2 ∩ ... ∩ En| = |limnØ¶ E1 ∩ E2 ∩ ... ∩ En| here but only 
the simple argument: The infinite intersection of endsegments contains only endsegments.  
 
 

                                                 
1 An empty intersection would require an empty endsegment, which has been excluded, or at least two 
numbers j and k and two endsegments Em and En such that j œ Em ⁄ j – En ⁄ k – Em ⁄ k œ En, which can 
be excluded by inclusion monotony, En û En+1, of the sequence (En).
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 2. There is no bijection between Ù and –. 
 
All positive fractions  
 
 1/1, 1/2, 1/3, 1/4, ... 
 2/1, 2/2, 2/3, 2/4, ... 
 3/1, 3/2, 3/3, 3/4, ...         (4) 
 4/1, 4/2, 4/3, 4/4, ... 
 5/1, 5/2, 5/3, 5/4, ... 
  ... 
 
can be indexed by the Cantor function 
 
 k = (m + n - 1)(m + n - 2)/2 + m 
 
which attaches the index k to the fraction m/n by defining the sequence of fractions 
 
 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, ... 
 
When we assume that all indices 1, 2, 3, ... index the first column then we get Cantor's sequence 
 
 1/1, __, __, __, ... 
 1/2, __, __, __, ... 
 2/1, __, __, __, ... 
 1/3, __, __, __, ... 
 2/2, __, __, __, ... 
  ... 
 
However, when we exchange the fractions in (4) such that Cantor's sequence appears in the first 
column we will never produce an empty place in the matrix. The first term of the sequence of 
configuration is (4) since 1/1 stays at its place. Then 1/2 and 2/1 are exchanged, then 2/1 and 3/1, 
then 1/3 and 4/1, then 2/2 and 5/1, and so on. The second to fifth terms of the sequence of 
configurations with the exchanged fractions indicated in bold are shown here  
 
 1/1, 2/1, 1/3, 1/4, ... 1/1, 3/1, 1/3, 1/4, ... 1/1, 3/1, 4/1, 1/4, ... 1/1, 3/1, 4/1, 1/4, ... 
 1/2, 2/2, 2/3, 2/4, ... 1/2, 2/2, 2/3, 2/4, ... 1/2, 2/2, 2/3, 2/4, ... 1/2, 5/1, 2/3, 2/4, ... 
 3/1, 3/2, 3/3, 3/4, ... 2/1, 3/2, 3/3, 3/4, ... 2/1, 3/2, 3/3, 3/4, ... 2/1, 3/2, 3/3, 3/4, ...  
 4/1, 4/2, 4/3, 4/4, ... 4/1, 4/2, 4/3, 4/4, ... 1/3, 4/2, 4/3, 4/4, ... 1/3, 4/2, 4/3, 4/4, ... 
 5/1, 5/2, 5/3, 5/4, ... 5/1, 5/2, 5/3, 5/4, ... 5/1, 5/2, 5/3, 5/4, ... 2/2, 5/2, 5/3, 5/4, ... 
  ...   ...   ...   ... . 
 
The crucial point is this: As long as transpositions can be defined, the whole matrix is completely 
filled. There is not any place without a fraction. Every definable fraction can be found in the first 
column. Every fraction found in the other columns will not reside there permanently. But never a 
place will become empty. Of course never a place will be occupied by a "fraction" ¶. All 
fractions q which can appear at any place of the matrix satisfy 0 < q < ¶ and have been residing 
in the matrix from the start. 
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 3. There are no uncountable sets like — or P(Ù) 
 
The complete infinite Binary Tree consists of nodes representing bits (binary digits 0 and 1) 
which are indexed by non-negative integers and connected by edges such that every node has two 
and only two child nodes. Node number 2n + 1 is called the left child of node number n, node 
number 2n + 2 is called the right child of node number n. 
 
The set {ak | k œ Ù0} of nodes ak is countable as shown by the indices of the nodes: 
 
 Level           Bits          Nodes 
 

    0              0.               a0.  
            /      \             /      \  
    1          0         1          a1       a2  
        /  \        /  \             /   \      /   \  
    2       0    1     0    1    a3   a4 a5   a6  
      / \   / \    / \   / \       / \   / \   / \   / \  
    3   0 ...               a7 ... . 

 
A path p is a subset of nodes with 
 
 0 œ p 
and 
 n œ p  fl  (2n + 1 œ p  or  2n + 2 œ p  but not both). 
 
The complete infinite Binary Tree contains, as its paths, i.e., as infinite bit strings (ak) all real 
numbers between 0.000... and 0.111... .  
 
The Binary Tree containing only all terminating paths is, as far as nodes and edges are concerned, 
identical with the complete infinite Binary Tree. But how can the paths representing periodic and 
irrational strings be inserted into the Binary Tree to get the complete infinite Binary Tree? Not at 
all! 1/3 for instance has no binary representation but is only the limit of the sequence of partial 
sums 0.01, 0.0101, 0.010101, ..., i.e., the series represented by the string 0.010101... related to the 
path (0., 0, 1, 0, 1, 0, 1, ...). Periodic rational numbers and irrational numbers cannot be 
represented by strings or paths in the complete infinite Binary Tree.  
 
A countable set can be constructed by the well-known technique, namely using always half of the 
remaining time for the next step. According to set theory an uncountable set cannot be 
constructed such that uncountably many elements can be distinguished. So it is possible to 
construct Ù and with it all its subsets. But these subsets cannot be distinguished unless it is 
indicated which elements are to combine. Therefore we find in the Binary Tree with its countably 
many nodes and uncountably many paths: 
 
Ë The Binary Tree can be constructed because it consists of countably many nodes and edges.  
Ë The Binary Tree cannot be constructed because it consists of uncountably many distinct paths.  
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The basic structure of the Binary Tree is the branching at a node o 
 
    | 
   o 
            /   \  
 
where the number 2 of edges leaving a node is equal to the number of 1 incoming edge plus 1, 
represented by the node: 1 + 1 = 2 . 
 
All paths which can be distinguished on a certain level are distinguished by nodes (or edges). 
Therefore the number of distinguishable paths grows with the number of nodes. Every node 
increases the number of distinguishable paths by 1. The number of distinguishable paths is 
identical to the number of nodes + 1. It could be made equal to it by an additional pre-rootnode o. 
 
The number of all incoming distinguishable paths at some level plus the number of nodes on this 
level is the number of distinguishable paths leaving this level. 
 
Even "in the infinite", should it exist, a path cannot branch into two paths without a node; the 
branching creates the node, because a node is defined as a branching point. No increase in 
distinguishable paths is possible without the same increase in nodes. 
 
Not necessary to mention, at every level the cross-section of the Binary Tree, i.e., the number of 
nodes at that level, is finite. And, as an upper estimate: even lining up all ¡0 nodes on a single 
level would limit the set of paths to 2¡0. 
 
Finally let us consider a variant of the construction by infinite paths, the game "Conquer the 
Binary Tree" that only can be lost if set theory is true: You start with one cent. For a cent you can 
buy an infinite path of your choice in the Binary Tree. For every node covered by this path you 
will get a cent. For every cent you can buy another path of your choice. For every node covered 
by this path (and not yet covered by previously chosen paths) you will get a cent. For every cent 
you can buy another path. And so on. If there are only countably many nodes yielding as many 
cents but uncountably many paths requiring as many cents, the player will get bankrupt before all 
paths are conquered. If no player gets bankrupt, the number of paths cannot surpass the number 
of nodes. 
 
The power set of Ù, the set P(Ù), is a representation of the real numbers of the interval [0, 1) Õ — 
in binaries.1 Therefore it shares its fate. 
 
There is a counter-argument: For every attempted mapping of the subsets of Ù, the set M of those 
natural numbers which are mapped on sets of natural numbers not containing themselves cannot 
get indexed itself. If m is mapped on M, and m is a member of M, then m does not belong to M. 
But when m is removed, then m must be a member of M. 
 
This argument fails because it requires the complete existence of the mapping to define the 
members of M. But complete mappings between infinite sets cannot exist. 
 
                                                 
1 For instance { } represents 0.0..., {1} represents {0.1000...}, {1, 3, 5, ...} represents 0.101010... = 2/3.
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